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GROWTH AND VALUE DISTRIBUTION OF LINEAR
DIFFERENCE POLYNOMIALS GENERATED BY
MEROMORPHIC SOLUTIONS OF HIGHER-ORDER
LINEAR DIFFERENCE EQUATIONS

YI XIN LUO, XIU MIN ZHENG

ABSTRACT. In this article, we investigate the relationship between growth and
value distribution of meromorphic solutions for the higher-order complex linear
difference equations
An(2)f(z+n) + -+ A1(2)f(z + 1) + Ao(2)f(2) =0 and = F(2),
and for the linear difference polynomial
9(z) = an(2)f(z+n) + -+ o (2)f(z + 1) + a0 (2)f(2)

generated by f(z), where A;(z2),a;(z) (j =0,1,...,n), F(z)(# 0) are mero-
morphic functions. We improve some previous results due to Belaidi, Chen
and Zheng and others.

1. INTRODUCTION AND MAIN RESULTS

Throughout this article, we assume that the readers are familiar with the stan-
dard notations of Nevanlinna value distribution theory (see [9, [10] 17 [18]). Espe-
cially, for a meromorphic function f(z) in C, we use the notation p(f) and 7(f) to
denote the order and the type of f(z) respectively, and use the notations A(f) and
A( %) to denote the exponent of convergence of the zeros sequence and the poles
sequence of f(z) respectively.

Recently, there has been an increasing interest in the study on the properties
of meromorphic solutions of complex difference equations from the viewpoint of
difference analogues of Nevanlinna theory (see [4 [0 [8]) and among those many
good results are obtained for the case of complex linear difference equations (see
[4, 5] [6, 1], 12} 14} [T6], 19, 20]). For the case of complex linear differential-difference
equations see [II 2] B [I3] 15, 2I]. In particular, inspired by the results about the
growth and the value distribution of differential polynomials generated by meromor-
phic solutions of complex linear differential equations, Latreuch and Belaidi in [11]
investigated the growth of linear difference polynomials generated by meromorphic
solutions of the second order complex linear difference equation

fz+2) +a(2)f(z+1) +b(2)f(2) =0, (1.1)
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where a(z) and b(z) are meromorphic functions.
By denoting the shifts of a meromorphic function f(z) as

fo(z) = 1(2)
f](Z):f(Z—‘y-j), j€N+7

they stated their result as follows.

(1.2)

Theorem 1.1 ([11]). Let a(z) and b(z) be meromorphic functions satisfying M(§) <
p(b) < 400, pla) < p(b) or 0 < 7(a) < 7(b) < 400 if pla) = p(b) > 0, and let
a(z),B(2),v(z) be meromorphic functions not all vanishing identically such that
max{p(a), p(B), p(7)} < p(b) + 1 and h(z) #Z 0, where h(z) is defined as follows:
denote
k(z) = B(z) — a(z)a(z), 1(z) =~(z) — a(z)b(z),
a1(2)b1(2) — fr(2)a(z) + aa(z)a(z)a (),
n(2) = @ (2)ar (2)H(2) — (D),
h(z) = k(2)n(z) — m(2)l(z).
If f(2)(# 0) is a meromorphic solution of (L.1)), then the linear difference polyno-
mial

L(f(2)) = a(z) fa(2) + B(2) f1(2) +7(2) f(2) (1.3)
satisfies p(L(f)) = p(f) = p(b) + 1.
Note that there is a dominant coefficient b(z) in Theorem Chen and Zheng

in [13] investigated a special case when p(a) = p(b) = 1. They considered the
homogeneous complex linear difference equation

f2(2) 4 c(2)e® f1(2) + d(2)e” f(2) =0 (1.4)
and the non-homogeneous complex linear difference equation
fa(2) + c(2)e® f1(2) + d(2)e** f(2) = F(2), (1.5)

and proved the following two results.

Theorem 1.2 ([3]). Let a(# 0),b(# a) be complex constants, c(z),d(z) be mero-
morphic functions satisfying max{p(c), p(d)} < 1, a(z), 8(2),v(z) be meromorphic

e
functions not all vanishing identically such that max{p(a),p(B),p(7)} < 2 and
h(z) £ 0, where h(z) is defined as follows: denote

k(2) = B(2) — a(2)c(2)e,  1(z) = v(2) — a(z)d(z)e>,
m(z) = 71(z) — a1 (2)di(2)e” T = Bi(2)e(2)e™ + ai(z)e(z)er (2)e e,
n(z) = o (2)en ()4 — By (2)d(2)e"
h(z) = k(z)n(z) — m(2)I(2).
Let p(z)(£ 0) be a meromorphic function satisfying p(¢) < 2 and (z) £ 0, where

k(2)p1(z) —m(z)p(z
ooy = KD mClet)
If f(2)(# 0) is a meromorphic solution of (L.4), then the linear difference polyno-
maal (1.3]) satisfies
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Furthermore, if f(2) satisfies p2(f) < 1, then
ML(f) = @) = p(L(f) = ¢) = p(L(f)) = p(f) = 2.

Theorem 1.3 ([3]). Let a,b,c(z),d(z),(z), B(2),¥(z) be as in Theorem[1.3 Let
©(2)(#£ 0), F(2)(£ 0) be meromorphic functions satisfying max{p(y), p(F)} < 2
and ¢(z) £ 0, where

_ k@i (2) = (2)F(z) = ki(2)F(2)] = m(2)[p(z) — a(2) F(2)]

If f(z) is a meromorphic solution of (1.5)), then the linear difference polynomial
(1.3) satisfies

p(L(f) =) = p(L(f)) = p(f) = 2
with at most one exceptional meromorphic solution. Furthermore, if f(z) satisfies
p2(f) < 1, then
ML(f) = @) = p(L(f) = ¢) = p(L(f)) = p(f) = 2.

Now, a natural question arises: would there be similar conclusions for the higher-
order complex linear difference equations? So, we investigate the higher-order linear
difference equation

An(2)fn(2) + -+ + A1(2) 1(2) + Ao(2) f(2) =0 (1.6)

and correspondingly the linear difference polynomial
9(z) = an(2)fu(2) + -+ + a1(2) f1(2) + a0 (2) f(2) (1.7)
generated by f(z), where A;(z),;(2)(j =0,1,...,n) are meromorphic functions.

In particular, we investigate a special case of (1.6)), that is, the homogeneous
linear difference equation

an(2)eP fu(2) + -+ ar () f1(2) + ao(2)e* £(2) = 0 (18)
and correspondingly the non-homogeneous linear difference equation
an (2)e" fu(2) + -+ a1 (2)e" fi(z) + ao(2)e™? f(2) = F(2), (1.9)
where a;(z) (j = 0,1,...,n), F(z)(# 0) are meromorphic functions and b; (j =
0,1,...,n) are distinct complex constants.
Before stating our results, we denote
A .
foij=—Fn+a;, 0<i<n-—1,
Ay
A 4

&Gi= "1 G-rta &, 1Si<n-10<i<n—1,

n

where
& 1 1(2)=0, of(z) =ai(z+k),
;?71,2'71(2) =¢&j-1i-1(2 + k), Af(z) = Ai(z+k), keN,.

Then we define
0,0 o1 - Son—1
B _ 51,0 51,1 cee gl,n—l

En-10 &n-11 -+ En—1n—1
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Also we denote

ai (p._
ie(b% bn)z
an

Moy = — o+, 0<i<n—1,

Qi (b;—by)z, 1 1 . .
Mjg = =T, 1SS, 0<i<n -,

n
where

Mo1,1(2) =0, af(z) = ai(z + k),

nf1i1(z) =mj—1i-1(z+ k), k€N,
Then we define

10,0 No,1 e No,n—1
1,0 .1 ce Mn-1
Y
Mn—-1,0 "m-1,1 --- Tn-1mn-1

Firstly, we consider the growth and the value distribution of the linear difference
polynomial (1.7 generated by the meromorphic solution of (1.6)), and obtain the
following result.

Theorem 1.4. Let A;(z) (j =0,1,...,n—1), A,(2) (#0) be meromorphic func-
tions satisfying that there exists an integer I € {0,1,...,n} such that A(A%) <
p(A) < o0 and max{p(4;),0 < j < n.j # I} < pl(Ay),

> T(A;) < 7(4)) < +oc.
p(Aj)=p(AL), j#
Let a;j(z)(j = 0,1,...,n) be meromorphic functions not all vanishing identically
such that B # 0 and max{p(c;),0 < j < n} < p(4A;) + 1. If f(2)(# 0) is a
meromorphic solution of , then the linear difference polynomial satisfies
plg) = p(f) = p(A1) + 1.

Furthermore, if f(z) satisfies p2(f) < 1 and p(z)(# 0) is a meromorphic function
satisfying p(¢) < p(4;) + 1 and w(z) £ 0, where

1 T(20%1 .- Tn—1
w(z) = 3 Z (—1)7 Gttt s e (i Ei et

then
Mg =) =plg—¢)=plg) =p(f) > p(A) + 1.

As a concrete application, we consider the relationship between the growth of
f(2) and its forward differences A7 f, j € Ny, where

Af(z) = fz+1) = f(2)
N f(z) = A(AITHf(2), jeNs

Remark 1.5. It is shown in [0, P. 106] and [7, P. 66] that for an arbitrary complex
number ¢(# 0), we have

(1 +o0(W)T(r —lef, f(2)) < T(r, f(z+¢)) < (1 +0(1)T(r + |c|, f(2))

as r — +oo for a general meromorphic function f(z). Therefore, it is easy to obtain
that

p(f(z+c))=p(f), w(f(z+c))=pulf).
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From the above remark we see that p(f;) = p(f) and p(AIf) < p(f), j €
N,. But the equality p(A7f) = p(f),j € Ny may not hold. Next, we give some
assumptions to guarantee that the equality holds.

Corollary 1.6. Let Aj(z) (j = 0,1,...,n — 1), A,(2) (# 0) be meromorphic
functions satisfying that there exists an integer | € {0,1,...,n} such that )\(A%) <
p(Al) < o0, max{p(AJ),O < ] < naj 7& l} < P(Al); and

Z T(4;) < 7(4;) < +o0.
p(Ag)=p(Ar), 1
If f(2)(# 0) is a meromorphic solution of (1.6), then p(Af) = p(f). Furthermore,
if

n n

B= A D (G+DAI =D A > AL #£0,
j=0 j=0

3=0 j=1
then p(A2f) = p(f)-

Note that there is a dominant coefficient A;(z) in Theorem and Corollary
Next, we consider a special case of (1.6]), that is (1.8), where the coefficients
have the same order and admit a weaker condition on their types.

Theorem 1.7. Let b;j(j = 0,1,...,n) be distinct complex constants, a;(z)(# 0)
(j =0,1,...,n) be meromorphic functions satisfying max{p(a;),0 < j < n} <1,
a;(z)(j = 0,1,...,n) be meromorphic functions not all vanishing identically such
that v # 0 and max{p(c;),0 < j <n} < 2. If f(2)(£ 0) is a meromorphic solution
of , then the linear difference polynomial satisfies

plg) = p(f) = 2.
Furthermore, if f(z) satisfies p2(f) < 1 and ¢(z)(# 0) is a meromorphic function
satisfying p(p) < 2 and §(z) # 0, where
1 (081 i
6(z) = 5 S ()T G Mg i1

2021 .- Tn—1

then Mg — @) = p(g — ) = p(g) = p(f) = 2.

Corollary 1.8. Let b;j(j = 0,1,...,n) be distinct complex constants, a;(z) (# 0)
(7 =0,1,...,n) be meromorphic functions satisfying max{p(a;),0 < j < n} < 1.
If f(2)(£ 0) is a meromorphic solution of (1.8, then

p(Af) = p(f) = 2.

Furthermore, if f(z) satisfies p2(f) <1 and p(z)(# 0) be a meromorphic function
satisfying p(p) < 2 and

(_ n—1 n—1

Z%‘ Z aje’* £0,
=0

= Jj=i+1

d(z) =

(Gl
CLnebnz,}/
then
MAf =) =p(Af —¢)=p(Af) =p(f) = 2.
Correspondingly, we consider the non-homogeneous linear difference equation

(1.9) under the same condition as in Theorem [1.7| and obtain the following weaker
result.
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Theorem 1.9. Let bj,a;(z),a;(z)(j = 0,1,...,n) be the same as in Theorem [1.7]
and F(z)(# 0) be a meromorphic function with p(F) < 1. If f(2) is a meromorphic

solution of (|L.9), then the linear difference polynomial (1.7) satisfies p(g) = p(f) >
2 with at most one exceptional meromorphic solution.

Corollary 1.10. Let bj,a;(2)(j =0,1,...,n) be the same as in C’orollary and
F(z)(# 0) be a meromorphic function with p(F) < 1. If f(2) is a meromorphic
solution of (1.9), then p(Af) = p(f) > 2 with at most one exceptional meromorphic
solution.

Next we give some examples to illustrate our results.
Example 1.11. The function f(z) = e with p(f) = 2 satisfies

e (2 42) - f(2) = 0,

Set g(2) = —fa(2)+ f1(2) +€2* f(2) and p(2) = z. Then the hypotheses of Theorem
hold. Therefore, A(g —z) = p g z) = p(g) = p(f) = 2. And the hypotheses of
e

Corollary hold, so we have p(A%f) = p(Af) = p(f) = 2.
Example 1.12. The function f(z) = e* t**1 with p(f) = 2 satisfies
6762712f(z 4 3) + 672Z72f(z + 1) . 2f(2) _

Set g(2) = —f3(2) +e2**6 f5(2) — fi1(2) + f(2) and @(2) = €. Then the hypotheses
of Theorem [I.4] hold. Therefore, A(g — e*) = p(g — €*) = p(g) = p(f) = 2. And the
hypotheses of Corollary . 1.6| hold, so we have p(AQf) =p(Af)=p(f) =2

Example 1.13. The function f(z) = e* ~ with p(f) = 2 satisfies
S+ )~ (D) f(2) =0

Let g(z) and p(2) be the same as in Example 1.1. Then the hypotheses of Theorem
[[.7/hold. Therefore, A(g — z) = p(g — z) = p(g) = p(f) = 2. And the hypotheses of
Corollary [.8 hold, so we have p(Af) = p(f) = 2.

Example 1.14. The function f(z) = e’ 22 with p(f) = 2 satisfies
Z 1 3z 1 5z Tz
3¢ ef(z+3)+ ¢ f(z—|—2)+§e fz+1) = (2+2)e”f(2)=0

Set g(2) = f3(2) — f2(2) — fi(2) + €>*T3f(2) and ¢(z) = ze*. Then the hypotheses
of Theorem hold. Therefore, A(g — ze*) = p(g — ze*) = p(g) = p(f) = 2. And
the hypotheses of Corollary hold, so we have p(Af) = p(f) = 2.

2. PREPARATIONS FOR PROOFS OF MAIN RESULTS

Lemma 2.1 ([T1]). Let A;(z) (j =0,1,...,n) be memmorphic functions satisfying
that there exists an integer | € {0,1,. n} such that A4 o) < p(Ar) < 400 and

max{p(4;):0<j <n,j#1} < p(A )

> 7(4;) < 7(A;) < +oo.
p(A5)=p(Ar), jl

If f(2)(# 0) is a meromorphic solution of (L6), then p(f) > p(A;) + 1.
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Lemma 2.2 ([19]). Let A;(z) = aj(2)e%* (j = 0,1,...,n), whereb;(j =0,1,...,n)
are distinct complex constants, a;(z) (#0) (j =0,1,...,n) are meromorphic func-
tions with max{p(a;),0 < j < n} < 1, then every meromorphic solution f(z)(z 0)

of satisfies p(f) > 2.

Lemma 2.3 ([19]). Let A;(2)(j =0,1,...,n) satisfy the hypotheses of Lemma
and F(z)(# 0) be a meromorphic function with p(F') < 1, then at most one mero-

morphic solution fo(z) of (1.9) satisfies 1 < p(fo) < 2 and max{)\(fo),)\(%)} =
p(fo), the other solutions f(z) satisfy p(f) > 2.

Lemma 2.4 ([I3]). Letc;(j =0,1,...,n) be distinct complex constants, A;(z) (j =
0,1,...,n) and F(z) (£ 0) be meromorphic functions. If f(z) is a meromorphic
solution of

An(DF G+ en) 4+ A1) f(z 4+ 1) + Ao(2)f(2) = F(2)

and satisfies max{p(F),p(A;) : 0 < j < n} < p(f) and p2(f) < 1, then A(f) =
p(f)-

Lemma 2.5 ([I8]). Let f(z) and g(z) be non-constant meromorphic functions of
orders p(f) and p(g) respectively. Then we have

p(f +g) < max{p(f),p(9)},
p(fg) < max{p(f),p(g)}

Furthermore, if p(f) > p(g) , then p(f + g) = p(fg) = p(f).

3. PROOFS OF MAIN RESULTS

Proof of Theorem[I]] By Lemma we have p(f) > p(A;) + 1. By substituting
1

fn = *Ai(An—lfn—l + -+ Alfl + AOfO)
into ([L.7]), we obtain
an
9o = _T(An—lfn—l +-+Aifi + Aofo) + an1fac1 o+ o fo
A, _ A A
= (_ A ! Qyy + an—l)fn—l + -+ (_IlavL + al)fl + (_IOQTL + aO)fO
=&o,n—1fn—1+ -+ &o0,1.f1 + &o,0 fo-
Then
91 =& prfnt G2+ &N
£0n—
= —%(Aannﬂ o ALfi+ Ao fo) F Emafa1 o+ & 0N
A, A A
= (- A 1§é,n—1 + E(%,n—Q)fn—l +- (_Ilgé,n—l + §é,o)f1 + (_Tofé,n—l)fo

=& n-1fo-1++&1f1+&0fo-
By repeating the above argument n — 2 times, we obtain
o,0fo + &1 f1 4+ +&mn-1fa—1 =90
Sofot&afit - Fln1fo1 =0

n—10fo+én—1nfi+ Fén-1n—1Sn—1 = Gn—1
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Then by Cramer’s Rule and the assumption that 5 # 0, the system of equations
(3.1) has a unique solution f(z), and

g0 50,1 e €0,n—1
1| % 10 oo &1
f==1". . . (3.2)
B : :
In—1 &n-11 -+ En—1n-1

On the one hand, by Lemma Remark and the assumption max{p(a;),0 <

Jj < n} < p(A) +1 < p(f), it is clear from (1.7) that p(g) < p(f). On the
other hand, by Lemma Remark and the assumptions max{p(4,),0 < j <

n,j # 1} < p(Ar), max{p(a;),0 < j < n} < p(4;) + 1, it is clear from that
p(f) < p(g). Hence,
plg) = p(f) = p(A) + 1.
Set G(z) = g(z) — ¢(z). By Lemma and the assumption p(p) < p(4;) + 1,
we have
p(G) = plg —¢) = p(9) = p(f) = p(A)) + 1.
By substituting g(z) = G(2) + ¢(z) into (3.2)), we obtain

Go + o 1 - Son—1
F 1 Gi1+ ¢ &1 cee E1n—1
B : : :
Gno1+¢n-1 &n-11 -+ &n—1n—-1
1 (3081 in—
] D G N (e P ST e RO SR
G081 .in_1 (33)
1 T (40010 ip— :
= 3 Z (-1) oz I)Giofn,lfizg R S |

1081 I —1

1 (01 vin—
+ 3 Z (—1)TOon ) g € €2 Ky

1001l —1

1 (i1 mim—
== > (-pylenei VGiotin1€in2 - - - Einym-1 + W,

20%1---Tn—1

where {ig,%1,...,in—1} = {0,1,...,n — 1}. Then by substituting (3.3)) into (1.6,
we obtain

1 (3081 - vim— n en n
An(ﬁ— Z (-1) (Gt 1)Gig+n§i1,15¢2,2 & a1 T wn)

1091+ n—1

1 6021 -+ Tn — —1lgn—1 -1
PG 3 DTG g )
L

2001 Tn—1

1 T (igin.mvin
ot Ag(z YD ()T G 6 1 et +w) = 0;

001w in_1
that is,

An T(n—1,i1...%9,— n n n
7 2 (nmbiein-en en € 1Gan
n

n—1,41...in—1
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An T(N—2,41...9n—1) ¢n n n
+ (5 Z (—1)( ' ' )511,1512,2~-~§in,1,n—1

Ay, 1y en— _
+ n—1 Z (71)7(71 1,7,1...ln—1)£ifi711 ?2,21.“51‘7;711,71_1)(;2”_2

SRR = (—1)TOin e 1a . & m-1Go

0,410 —1

= —(Anwn + An_lwn_l —+ -+ Aow).

By Lemma[2.5, Remark[I.5]and the assumption max{p(¢), p(4;), p(a;),0 < j <
n} < p(A;)+1, we have p(w) < p(A4;)+1. Then, by Lemmal[2.1]and the assumption
w # 0, w is not a solution of (1.6]), that is,

Anwn —+ An_lwn_l + -+ Aow 7% 0.
Hence, by Lemma [2.4] we have A(G) = p(G), that is,
Mg =) =plg =) =plg) = p(f) = p(A1) + 1.

O

Proof of Corollary[I.6 Set g(z) = Af(z) = fi(z) — f(2). Then by (L.7), we have

aq=-1l,an =1, s =0a3=---=a, =0. So,
-1 1 0 0 0
0 -1 1 0 0
=16 0 o 1 0
0 0 0 -1 1
_@ _i _Q An—2 An_1 _ 1
A’V‘L A’V‘L A’V‘L e A’V‘L n
0 1 0 0 0
0 0 1 0 0 (3.4)
—_ 1 . . . : :
n 0 0 0 1 0
0 0 0 0 1
Z;;O Aj Z?:l Aj Z?:Q Ajo Z?:n_z Aj Ap1+An
(=D)" ¢
7=0

Since max{p(A4;), 0 <j <mn, j#I1} < p(4) < 400,
> T(A;) < 7(4;) < 400,
p(Aj)=p(A1), j#l

by (3.4) and Lemma 2.5 we have p(8) = p(A4;) > 0, which means that 3 # 0. Then
by Theorem [1.4] we have p(Af) = p(g) = p(f).
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Now, set g(z) = A?f(2) = fa(2) —2f1(2) + f(2). Then by (L.7)), we have ap = 1,

ag=-2, =1, a3=---=a, =0. So,
1 -2 ... 0 0
0 1 0 0
=l o0 9 1
e e T B et
671,,1 /Bn,Q .. ﬂn n—1 ﬂn,n
where the bottom row of the above matrix has Values
ﬂn,l - A7n< Al + Q)a 671,2 ( 1 2) - Ai(l) B
An_g ALy Ays A ALy Ao
n,n—1 = 2) — ; n,n — 2) — 1.
i Pl T e P T o
The above determinant is equal to
0 0 1 0 0
0 0 0 0 0
0 0 0 ... O
7Aln Z?ZO Aj 7Aln Z?Zl jA] * e *
Br.1 Bn,2 ¥ .. k%
= (A G+ 04A; =354, 3 4]),
no =0 j=0 j=1 j=0
where
. Al +2AL I &
'67%1:( A AL )ZA AL ZAJ’7
n =0
. AL +24L =
6”22( A AL )ZJJ A12j+1
Since 8 # 0, by Theorem we have p(A%f) = p(g) = p(f). O
Proof of Theorem[I.7. By Lemma we have p(f) > 2. By substituting
o= —m(an—leb"’lzfn—l ot are?c f 4 aoeb"zfo)
into ([L.7]), we obtain
e
0=y eznz (an—1€" Y o1 4+ aoe™ fo) + an_1fa1+ - + a0 fo
_ (_%e(bnfl_bn)zan + anfl)fnfl 4o g (_%e(bl—bn,)zan + al)fl
a
+ (= =2e0=b)% 0, + ag) fo
Qnp

=Non-1Sn—1+ -+ 10,151 + 10,00
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Then

9= 1 fnt 002 f2 0001

1

No,n—1
T a :bnz (an—1€" " a1+ -+ a1 fi + aoge™ fo) + 15 p_afr—1

n
+ g fi

ap—1 _

= (7 Z] e(bn71 bn)znOI,n—l + T](l),n—2)fn—1 +..
n

ay _ ap _
(e TG L g0) fu (= e T g ) f

A, n

=Mmn-1fn—1+ - +n1,1f1 +110f0-
By repeating the above argument n — 2 times, we obtain

no,0fo + 10,1 f1 4+ -+ Mon—1fn-1 = go
mofo+maifi+ - +Mmun-1fnc1 =01

Mn-1,0fo + M—1,1f1 + + Mn—tn-1fn-1 = gn—1

Then by Cramer’s Rule and the assumption v # 0, the equation system (3.5 has
a unique solution f(z), and

go 7o,1 cee M0,n—1
1| 91 M cee M,n—1
f=-1". . . (3.6)
Y
gn—-1 Nn-11 .-+ TNn—-1mn-1

On the one hand, by Lemma Remark and the assumption max{p(c;),0 <
Jj < n} <2< p(f), it is clear from that p(g) < p(f). On the other
hand, by Lemma Remark and the assumptions max{p(a;),0 < j < n} <
1, max{p(e;),0 < j < n} <2, it is clear from that p(f) < p(g). Hence,

Set G(z) = g(z) — ¢(z). By Lemma[2.5] and the assumption p(¢) < 2, we have

p(G) = plg —¢) = p(g) = p(f) = 2.
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By substituting g(z) = G(z) + ¢(z) into (3.6]), we obtain

Go + ¢o o1 .- Mon—1
1 Gi1+ o1 1,1 Mn—1
f=- ) ) )
0 : : :
Gno1+®n-1 Ma-11 - Nn-l,n-1

1 (061 im—

T S O ) E e (R T P AT Y R

v 9081+ In—1

1 T(30%1 .- fn—1) (37)
5 > (=D GigNis 1Miz,2 - - Mip—1,n—1

1081 .. 8n—1

1 S
M ; Z (71)7-(10“mzn_l)‘piomlylmzﬂ s M1 n—1

2001 Tn—1

Z (_1)T(i0i1...in—l)Gionihlniz,Q . nin,l,n—l 4 5,

9081+ In—1

where {ig,41,...,in—1} = {0,1,...,n — 1}. Then by substituting (3.7) into (1.8]),
we obtain

1 S
ane (0 T G g ey )
n

1
v

1081 i1

1 — B B _
+ an—lebnilz(v 1 Z (_1)7(10214..1,L—1)Gi0+n71mnl’11n;z2’21 . n?n_ll,n—l + 5n71)
—

001 in—1

1 (061 in—
+oetage (= Y (=) RN )G s i i et +0) =0,

1081+ tn—1
that is,

an, 6bnz

—1,i1.in_
D U G
n

n—l,il...in_l
bnz

G et i1 in_
+ (72 Z (*1)7(71 et 1)77?1,177?2,2 N
n

n72,i1...in,1

T(n—1,41...tn—1), n—1_n—1 n—1
E (_1) Niv1 Mig,2 -+ 'nin_l,n—l)GQH*Q

n—1,41...9n—1

an716b7171Z

Tn—1

(10 61)02

+ -+ T Z (—1)7(0’““'iml)ﬁil,lﬁiz,Z s nin—hn_lGO

0,61 in_1

= —(an€# 6, + ap_1€" 178, _1 + - - - + age®9).

By Lemma Remark and the assumption max{p(y), p(a;), p(a;),0 < j <
n} < 2, we have p(d) < 2. Then by Lemma [2.2f and the assumption 6 # 0, § is not

a solution of 7 that is,
ane’ 8, + ap_1€" 161 + -+ aoebOZ(; Z 0.
Hence, by Lemma [2.4] we have A(G) = p(G), that is,
Mg =) =plg —¢) =plg) = p(f) = 2
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d

Proof of Corollary[I.8 Set g(z) = Af(z) = fi(z) — f(2). Then by (L.7), we have

ap=—-1l, a1 =1,a=a3=--=a, =0. So,

-1 1 0 0 0
0 -1 1 0 0
=0 0 0 1 0
0 0 0 -1 1
apeb0? a1eP1? apeb2? Gy _geln—2% Q. 1ePn—1%
anebnz  a,ebnz  qgpebnz T apebn= T apebnz —1
0 1 0 ... 0 0
0 0 1 ... 0 0 (3.8)
_ 1 :
ayebn 0 0 0 1 0
0 0 0 0 1
Z?:o ajebi® Z?:l ajeb® % Z;L:nﬂ ajeb*
D" < b
= a ebnz Z@j@ "
By the assumptions that b;(; = 0,1,...,n) are distinct complex constants and

a;(z) Z0(j =0,1,...,n), we have Z?:o ajebi* # 0, consequently v # 0. Then by
Theorem [1.7) we have p(Af) = p(f) > 2. Since

0 1 0 0 0
©®1 -1 1 0 0
1 : : : .
5= — : : : : :
Y |Pn—-3 0 0 ce. 1 0
Pn—2 0 0 . —1 1
b1z by z bp_22 bp—12
Pn-1 — gi:b:lz - sjib:,z cee T an;izbnz - a";izbnz -1
" |pns 0 0 .. 1 0
Pn—2 0 0 .. 0 1
B Z“;L=1 ajebjz B Z;L=2 ajebjz B E;L=n72 ajebjz B E";L=n71 ajebjz
Pn—1 @, cbn® a, con= cee w, et e P
(71)7171 n—1 n
- a, ebnz Z ¥i Z ajebjz ;é 0,
n s j=i+1

by Theorem we have

MAf =) =p(Af —¢) =p(Af) = p(f) = 2. 0
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Proof of Theorem|[I.9 By Lemma we have p(f) > 2 with at most one excep-
tional meromorphic solution. Next, we assume that p(f) > 2. By substituting

1

Jn = W(F —ap1 € g — o — a1 € f1 — age™” fo)
n
into (|1.7), we obtain
a
0=~ eznz (F = ap_1€" " frq — -+ — age® fo) + an_1fn_1+ -+ aofo
n
a U
— Z zF J'_ (_Lle(bnfl_bn)zan + Olnfl)fnfl + .
a,ebn an
a a
+ (= e )%, an) fi + (——e®P%a,, + ag) fo
n a/n
a
= ——F 4+ non-1fa-1+--+n01f1 +m00fo-
Q. en
Then

1
Qn

I gL ebn D) i

= DS+ 0o L2 F M0 f1

1
M0,n—1
= a :bnz (F — an_lebn—lzfn_l . — aleblzfl _ aOebOZfO) + né’n_an_l
n
+ot 77(%70f1
1
Mo,n—1 On—1 (b, _1—by)z, 1 1
- an:b"zF + (727716( 1 )Znov"—l + nO,n—Q)fn—l
1 (b1~ ao (p,—
+ooe Tt (_;e(bl bn)z’r]é,n—l + T](l),o)fl + (_?e(bo bn)zné7n_1)f0
n n
10,11
= a ,gbnzF + 7717n71fn71 + te + 771)1f1 + 771,0f0-
n

By repeating the above argument n — 2 times, we obtain

020

no,0fo +mo,1f1+ -+ Non—1fn-1 =90 — ——
apebn

)

1 1
(% No,n—1

D —
a}Lebn (z+1) anebnz

mofo+mafi+ - +Mn-1fnc1 =01 —
(3.9)

9

Mn—-1,0fo0 + =111+ F T—1,n—1fn-1

n—1 n—2 t+1

a —2—t,n—1
n n N
= gnt — et Fy — Y ol
dn (ZZ 16b”(z ) n g a%@b”(ZH)
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Then by Cramer’s Rule and the assumption v # 0, the equation system (3.9 has
a unique solution f(z), and

9o — b= F Mo,1 .- Ton—1
1
1 91— a%esffzﬂ) F - Zoe"bnlz F mai .. Mp—1
=3
In—1— % - 02 %Ft Mn-11 -+ Nn-1pn-1
(3.10)

Jj < n} <2< p(f), it is clear from (L.7) that p(g) < p(f). On the other
hand, by Lemma Remark and the assumptions max{p(a;),0 < j < n} <

1, max{p(e;),0 < j < n} < 2,p(F) < 1, it is clear from (3.10) that p(f) < p(g).
Hence, p(g) = p(f) = 2. O

Proof of Corollary[1.10, We have
(_1)" - biz
= b 2 % #0

as in (3.8). So, by Theorem [1.9) we have p(Af) = p(f) > 2 with at most one
exceptional meromorphic solution. (I

On the one hand, by Lemma Remark and the assumption max{p(c;),0 <
1.7

Acknowledgments. This research was supported by the National Natural Science
Foundation of China (11761035).

REFERENCES

[1] B. Belaidi; Study of solutions of logarithmic order to higher order linear differential-difference
equations, Univ. Tagel. Acta Math., 2017, 53, 15-32.

[2] R. Bellaama, B. Belaidi; Lower order for meromorphic solutions to linear delay-differential
equations, Electron. J. Differential Equations, 2021, 2021, No0.92, 1-20.

[3] Z. Chen; Growth and value distribution of meromorphic solutions of complex linear
(differential-)difference equations, Diss. JiangXi Normal University, 2019.

[4] Z. X. Chen; Complez differences and difference equations, Mathematics Monograph series
29, Science Press, Beijing, 2014.

[5] Z. X. Chen, K. H. Shon; On growth of meromorphic slutions for linear difference equation,
Abstr. Appl. Anal., 2013, No.619296, 1-6.

[6] Y. M. Chiang, S. J. Feng; On the Nevanlinna characteristic of f(z + n) and difference
equations in the complexr plane, Ramanujan J., 2008, 16, 105-129.

[7] A. A. Gol’dberg, I. V. Ostrovskii; The distribution of values of meromorphic functions,
Nauka, Moscow, 1970. (in Russian)

[8] R. G. Halburd, R. J. Korhonen; Difference analogue of the lemma on the logarithmic deriv-
ative with applications to difference equations, J. Math. Anal. Appl., 2006, 314(2), 477-487.

[9] W. K. Hayman; Meromorphic functions, Clarendon Press, Oxford, 1964.

[10] I. Laine; Nevanlinna theory and complex differential equations, Walter de Gruyter, Berlin,
1993.

[11] Z. Latreuch, B. Belaidi; Growth and oscillation of meromorphic solutions of linear difference
equations, Matematnykn Bechnk., 2014, 66(2), 213-222.

[12] S. Li, Z. S. Gao; Finite order meromorphic solutions of linear difference equations, Proc.
Japan Acad., 2011, 87(5), 73-76.

[13] S. Z. Wu, X. M. Zheng; Growth of meromorphic solutions of complex linear differential-
difference equation with coefficients having the same order, J. Math. Res. Appl., 2014, 34(6),
683-695.

[14] H. Y. Xu, S. Y. Liu, X. M. Zheng; Some properties of meromorphic solutions for g-difference
equations, Electron. J. Differential Equations, 2017, 2017, No. 175, 1-12.



16 Y. X. LUO, X. M. ZHENG EJDE-2023/84

[15] H. Y. Xu, Z. X. Xuan; Growth of the solutions of some g-difference differential equations,
Adv. Difference Equations, 2015, 172, 1-12.

[16] H. Y. Xu, X. M. Zheng; Zeros, poles, and fized points of solution and its difference for some
types of difference equations, Lith. Math. J., 2020, 60(4), 544-561.

[17] L. Yang; Value distribution theory, Springer-Verlag, Berlin, Science Press, Beijing, 1993.

[18] C. C. Yang, H. X. Yi; Uniqueness theory of meromorphic functions, Kluwer Academic Pub-
lishers Group, Dordrecht, 2003.

[19] Y. L. Zhang, L. Qiu; Results on the growth of meromorphic solutions of some linear difference
equations with meromorphic coefficients, Adv. Difference Equ., 2014, 306, 1-13.

[20] X. M. Zheng, J. Tu; Growth of meromorphic solutions of linear difference equations, J. Math.
Anal. Appl., 2011, 384(2), 349-356.

[21] Y. P. Zhou, X. M. Zheng; Growth of meromorphic solutions to homogeneous and non-
homogeneous linear (differential-)difference equations with meromorphic coefficients, Elec-
tron. J. Differential Equations, 2017, 2017, No.34, 1-15.

Y1 XiN Luo
SCHOOL OF MATHEMATICS AND STATISTICS, JIANGXI NORMAL UNIVERSITY, NANCHANG, 330022,
CHINA.
JIANGXI PROVINCIAL CENTER FOR APPLIED MATHEMATICS, JIANGXI NORMAL UNIVERSITY, NAN-
CHANG, 330022, CHINA

Email address: bellowinnie@163.com

X1u MIN ZHENG (CORRESPONDING AUTHOR)
SCHOOL OF MATHEMATICS AND STATISTICS, JIANGXI NORMAL UNIVERSITY, NANCHANG, 330022,
CHINA.
JIANGXI PROVINCIAL CENTER FOR APPLIED MATHEMATICS, JIANGXI NORMAL UNIVERSITY, NAN-
CHANG, 330022, CHINA

Email address: zhengxiumin2008@sina.com



	1. Introduction and main results
	2. Preparations for proofs of main results
	3. Proofs of main results
	Acknowledgments

	References

