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GLOBAL LOW-ENERGY WEAK SOLUTIONS FOR
COMPRESSIBLE MAGNETO-MICROPOLAR FLUIDS WITH
DISCONTINUOUS INITIAL DATA IN R?

WANPING WU, YINGHUI ZHANG

ABSTRACT. This article concerns the weak solutions of a 3D Cauchy problem of
compressible magneto-micropolar fluids with discontinuous initial data. Under
the assumption that the initial data are of small energy and the initial density
is positive and essentially bounded, we establish the existence of weak solutions
that are global-in-time. Moreover, we obtain the large-time behavior of such
solutions.

1. INTRODUCTION

We consider the 3D compressible magneto-micropolar fluid equation
pt + div(pu) = 0,
(pu)e + div(pu ® u) + VP(p)
=(p+OAu+ (p+A—Vdiv(u) +2(V xw+ (V x H) X H,
(pw); + div(pu @ w) + 4¢w = p' Aw + (¢ + X))V div(w) + 2(V x u,
H —Vx(uxH)=-Vx WV xH),
div(H) =0,

(1.1)

where the functions p = p(x,t) > 0, u = u(x,t), P(p) = ap” (a > 0,7 > 1),
w = w(x,t) and H = H(x,t) are density, velocity, v-law pressure, micro-rotational
velocity and magnetic field for (z,t) € R?* x R,. Furthermore, the unknown con-
stants u, ¢, A and v are the shear viscosity coefficient, dynamics micro-rotation
viscosity, bulk viscosity coefficient and resistivity coefficient, respectively. p’ and
A denote the angular viscosities which satisfy the conditions:

v, Copl > 0,20 +3X > 0,20+ 3\ —4¢ > 0.

1.1. History of the problem. Before introducing the mathematical theory of the
system, we explain the significance of studying magneto-micropolar fluids system.
Equation is commonly used to model the motion of a compressible conducting
micropolar fluid in any magnetic field (see [2]). Because of the great research
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value, the research challenge and the phenomenological significance of magnetic-
micropolar fluids in physics and mathematics, more and more researchers in physics
and mathematics have devoted themselves to the research of magnetic-micropolar
fluid equations.

The purpose of this article is to prove the existence weak solutions, that are
global-in-time and low energy, for the Cauchy problem of system(L.1) with the
initial conditions

(p(, 0)7 u(, 0)7 w('7 0), H('7 O)) = (po, uo, wo, HO)' (1.2)
So that pg(z) has an upper and lower bounds far from zero, and ug(z), wo(z), Ho(x) €
LP(R?) satisfy and for some p > 6. Since (po(z), uo(z), wo(x), Ho(x)) is
small in L?(R3), the total initial energy is small. No other smallness or regularity
conditions are imposed.

As is well known, if there is no micro-rotational velocity, magnetic field and dy-
namics micro-rotation viscosity, i.e. w = ( = H = 0, magnetic-micropolar system
reduces to the compressible Navier-Stokes equations. For initial data ap-
proaching non-vacuum equilibrium in the H?3(R?) space, Matsumura-Nishida first
established relevant results on global classical solutions in [I8, [19]. Furthermore,
when the initial density of the system is small L? and bounded in L, and the
initial velocity is small in L? and bounded in L?" (the norm of L? must be slightly
weighted in two dimensions), Hoff [§] proved the global existence of weak solu-
tions in two and three dimensions. Moreover, Hoff [9] extended the above results
to general initial data. Later, Lions [14](see also Feireisl et al. [6]) made a major
breakthrough in the existence of solutions in two and three dimensional space with
arbitrary initial data.

In the absence of a micro-rotation velocity and dynamics micro-rotation viscosity
w={_=0, reduces to the Magnetohydrodynamic equations (MHD). Assuming
that the initial data of system is small in L? and the initial density is nonnegative
and essentially bounded, Hu-Wang [T1] established the global-in-time existence of
the weak solutions. In the vacuum case, assuming that the initial energy is suitably
small in L?, Liu-Yu-Zhang [16] investigated the global existence of weak solutions
in three-dimensional space. Other related results of the MHD system can be found
in [25] 26| [3T] and references therein.

When there is no dynamic micro-rotational viscosity ¢ > 0 and magnetic field,
the compressible micropolar fluids become the magneto-micropolar system. The
theory of micropolar fluids was first proposed by Eringen [4] and Lukaszewicz [I7].
The problems related to one-dimensional micropolar flow can be referred to the
literature such as [20, 211, 22]. In addition, in the case of multi-dimensional microp-
olar flows, we refer to [23] 27) [I5]. In recent years, for weak solutions to equations
with discontinuous initial data, Chen has studied the global existence of compress-
ible micropolar fluids in the case that the vacuum state may be included and the
oscillations of the solutions can be arbitrarily large.

For the compressible magneto-micropolar fluids , [30] analyzes the global
existence and optimal convergence rates of the solutions. In the framework of
Lions [14], Amirat-Hamdache [3] proved the global existence of finite-energy weak
solutions. Recently, for the case of the half-space R} (n = 2, 3), Xu-Tan-Wang-Tong
[32] established the global low-energy of the weak solutions magnetic-micropolar
fluids with no slip boundary and discontinuous initial data. Other relevant
results can be found in references [28] 24 0] and their references.
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However, to the best of our knowledge, there is no result on the low-energy weak
solutions for the 3D compressible magneto-micropolar fluid systems with discon-
tinuous initial data in the whole space. Compared to the NS equation [8] and the
MHD system [26], the coupling of the micro-rotation velocity w with the momen-
tum equation (.1} brings research difficulties and research challenges in proving
time-independent global energy estimates. In the proof, the local existence theo-
rem of the smooth solution of the system needs to be established first. Compared
with [32], our results and methods are very different. The main differences can be
outlined as follows. First, [32] established the local existence Theorem by using
the results proved by Kagei and Kawashima on the local solvability of an ini-
tial boundary value problem for a quasilinear hyperbolic-parabolic system in [12],
while we establish local existence Theorem by using Kawashima’s results in [I3].
Secondly, during the proof process, we establish more effective viscous flux and en-
ergy functionals, and the uniform estimate of the energy functionals is much more
complicated and difficult. Thirdly, to obtain our main results, we derive pointwise
bound for the density p which is independent both of time and initial smoothness.
The proof process consists of a maximum-principle arguments applied to integral
curves of the velocity field and Holder-continuity of u(-,t). In two cases, we derive
the upper and lower pointwise bounds of density. However, [32] only proved the
boundness of the density p. Finally, compared with [32], we also prove low-energy
estimates of effective viscous flux and vorticity and the large-time behavior of the
weak solutions.

1.2. Main results. Before stating the principal result of the paper, we introduce
the notation that we need in later sections. For the definition of Holder seminorms:
if u:R3 — R™ and v € (0,1], we have

|u(y2) — u(yr)| |

W= sup , (1.3)
y1,92€R3, y1 F£y2 ly2 — 17
and if u: S C R3 x [0,00) — R3 and 71,72 € (0,1],
to) — t
(u)'él’” _ sup [u(y2, ta) — u(y1, 1)l (1.4)

(y1,t1)(yarta)ES [Y2 — Y170 4 [ta — tq 72
(y1,t1)#(y2,t2)

For simplicity, we abbreviate X3 to X, where X is a Banach space. When I C
[0,00) is an interval, then C(I; X) will be the elements u € C(I; X) such that the
distribution derivative u; € D’(int];R?) is regarded as an element of C'(I; X).

As described in [8] [10], the effective viscous flux plays a crucial part in the study
of compressible fluid dynamics. In the following G; and G5 represent the “effective
viscosity” of flux, and Wy, Wy denote the vorticity of magneto-micropolar fluids:

Gy 2 2+ N div(w) — (P(p) — P(7), W2V xu
Gy 2 (2 + N)div(w), We =V x w.

In addition, for the pressure P(p) = ap”(a > 0,7 > 1), we select two positive
bounding densities p and p to fix a positive reference density p,

p<p<p, (1.6)
then we define the nonnegative number

(1.5)

1

ézmin{ﬁ*pai(ﬁiﬁ)aﬁ*ﬁ}' (1.7)



4 W. P. WU, Y. H. ZHANG EJDE-2023/86

It should be mentioned that § need not be “small”. For the parameters u, ¢, A, i/,
X, and v, we assume that

v >0, 0§X<(—%+—'621)u’,
1.8)
1 L+ A= Op— VP (
- —2)— 0.
o= Lt O+ (utr—0)
Hence, we obtain

1, [ +XN)(p - 2)]?

l —9) — 0 1.9

A P=2) L (W) >0, (1.9)

for p = 6 and thus for some p > 6, which we now fix. For (po, up, wo, Hp), suppose
that we have the nonnegative numbers s < é and N satisfying

[uollr + llwoll e + | HollL» < N, (1.10)
p+ s <essinfpyg <esssuppg < p— s, (1.11)

where N > 0 can be arbitrarily large. At the same time, we assume that
div(H)g =0 in D'(R?), (1.12)
1 1 1
By 2 / (5p0lu0f? + Dipo) + 5poluwol? + 5 Hol?) da. (1.13)
R3
where the potential energy density D can be represented by
P P(s)— P(p
D(p) & p/ M ds. (1.14)
p S
It is easy to show that
Cilp, 5, p)(p = p)* < D(p) < Ca(p, 5, p) (P = p)*, (1.15)
where €1 and C3 are nonnegative constants that depend only on g, p and p.
Definition 1.1. The weak solutions (p, u, w, H) of system (1.1)) is defined as follows:
we assume that (p — p, pu,w, H) € C([0,00); H*(R?)) with (p,u,w, H)|i=o =
(po, ug, wo, Hy), (Vu, Vw, VH) € L?(R3 x (0,00)) and div(H) = 0 in D’(R3) for

t > 0. Furthermore, the following equations hold for t, > ¢t; > 0 and C' test
functions ¥ having uniformly bounded support in z for ¢ € [t1,to]:

/pij}t:ndx

to
/ pub(t, ) dx / / (14 OOV - Voo + (1 + A — O)(div(u)) V) da dt

to
/ / (ps + pu - Vo) da dt, (1.16)

= / / puy + puu - Vip + P(p)divey) + 2Cw rot 3
t; JRs

+ %V|H|2divz/1 . HTva) da dt,
(1.17)
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t b2
[ pwsteaasl v [ [ vV X @) + 4Gwp) de
R3 t1 R3

to
= / / (pwipy + puw - Vip + 2¢urot 1) dz dt,
t, JR3
(1.18)

H(x,t)Y(x,t)dx

to t2
+u / VHV de dt
t1 R3

R3 tl
to

z/ /(HTu—uTH) Y dadt.
t1 R3

The main results of this article reads as follows.

Theorem 1.2. Let the parameters of system (1.1)-(1.2)) satisfy (1.6)—(1.9), let the

nonnegative numbers N and s < 0 be given. Then,depending on N, a nonnegative
lower bound for s, the parameters and hypothesis of (1.6)-(1.9)), there exist positive
numbers e, C, and T, such that, if (po, uo, wo, Ho) satisfies ((1.16])-(1.19) and

Ey<e. (1.20)

Then we have a weak solution (p,u,w,H) which satisfies Definition . At the
same time, the solution satisfies the following:

p— by pu,w, H € C([0,00); HH(R?)), (1.21)
Vu, Vw, VH € L*([0,00); R?), (1.22)
u(-,t),w(-t), H(-,t) € H'(R?), t>0, (1.23)
(1.24)

(1.25)

(1.19)

Gl('a t)v GQ('a t)a Wl('a t)a WQ('a t) € Hl(Rg)v t> 07
1/2,1/8 1/2,1/8 1/2,1/8 -
<u>]R{°’><[e/,oo)’ <w>R/3><[E/,oo)7 <H>R/3><[e/,oo) = C(E)Cov
where C(e) may depand on the nonnegative lower bound of e,
p<plz,t)<p ae onR®x[0,00), (1.26)
and

sup [ [lo= 57 + uf? + ol + [P + 99l + [Vul + ol + [VHP)

>0
+ (G + GE + [V + VW[ | de
> . . 1.27
[0 ] 0vul vl + (TP + 0 (jif? + P (1.27)
0o Jrs
+ [Hy [ + [V + |VW2|2) + (V] + [Vib]? + [VH,[*)] dz ds
<CCy,
where 9(t) = min{1,t}. Moreover, we also have the following large-time behavior:
A ([lp = plles) + [ullwrr@s) + lwllwir@s) + [Hlwr@s) =0, (1.28)
holds forl € (2,00),r € (2,6).

In section [2} we list a number of auxiliary inequalities and fundamental results
that play an irreplaceable role in the proof. In section [3] we work on calculating
energy estimates independent of time. In section 4] we establish the upper and
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lower limits of the key points of density. Finally, we complete the proof of the
Theorem [[.2] in section Bl

2. PRELIMINARIES

First, we introduce the celebrated Gagliardo-Nirenberg inequality [1I, [33].

Lemma 2.1. For each a € [2,6] and f € HY(R3), we can find a constant C(«)
such that
6—a)/2 30—6)/2
e esy < CL@IFN G2 IV f g2, (2.1)
For any a € (3,00), ¢ > 1 and f € LI(R®) N WL*(R3), there exists a constant
C(a, q) such that

-3)/(3 -3 3a/(3 _3
1l ey < Clan @)l 85 Corae g i Gatae=s) (2.9
(NEs < C@V fllzas), (2.3)

where § =1 — %
The next Lemma can be found in [§].

Lemma 2.2. Given ¢1 € [1,3) and ¢2 € (3,00], let T be the fundamental solution
for the Laplace operator in R3, we can find a constant C = C(n,q1,q2) such that

Tz, * gllLe@s) < C(n,q1,62) {19l Lo r2) + (|9l Lo w3)]- (2.4)

In the process of proving Theorem [I.2] the existence of smooth solutions plays
an indispensable role. Therefore, based on a direct generalization of the classical
results of the Navier-Stokes equation [29] and Magnetohydrodynamics equation
[13], we will give the following formal existence results:

Theorem 2.3. Suppose that u, p', ¢ and v are positive constants and the pressure
satisfy P € C3((0,00)). Then given p > p > 0 and Cs > 0, there exists a positive
time T which depends on p, p, and Cs and on the system parameters p, ¢, 1, v,
X\, X and P, such that, if the initial data (py — p,uo, wo, Ho) satisfies

l(po — p, w0, wo, Ho) | g3 rsy < Cs, (2.5)

inf py > p, and div(H)o = 0, then in R? x [0,T] the solution (p,u,w,H) of (LI)-
(1.2) satisfying

p—peCH[0,T];H*(R*) N C([0,T); H*(R?)), (2.6)

u,w, H € C1([0,T); H*(R®)) N C([0, T); H*(R®)) N L*([0, T); H*(R?)).  (2.7)

Then the equations in (1.1)) are satisfied in the sense of equality of weak derivatives
onR3x(0,T), and each weak derivative is treated as an element of C([0, T]; H*(R3)),

and the weak form (1.16)-(1.19) hold.

In addition, there exists a nonnegative number that depends on u, ¢, p', v, A,
X and P. Then, if the above assumptions hold with C3 < €, the solution exists on
R3 x [0,00).

Lemma 2.4. Under the assumption that (p,uw,w, H) is the smooth solution of (1.1))
on (0,T) x R3. Then, for any 2 < p < 6, there exists a constant C' > 0 depending
on pu, X\, ¢, N and ¢ such that

(VG1,VGo, VW1, VWo)||L» < C||(ptt, pti, Vu, Vw, w, H - VH,V|H|*)||Lr, (2.8)
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IVult)llze < CIGL( 1), Wi, 1), (P(p) = P) (1)l o (2.9)
[Vw(, t)llLr < CllGa(, 1), Wal-, 1)l e, (2.10)

where the definitions of G1, G2, Wi and Wy can be found (L.5) and ||(f,g)|L»
represents || fllre + ||g]lLe-

Proof. According to (1.5), one has
pi=VG — (u+¢)rot Wy + 2¢rotw — (V x H) x H,

. , (2.11)
pw + 4w = VGy — ' rot Wa + 2( rot u,
and thus we obtain the following equations
AG; = div(pu) — div[(V x H) x H],
AGs = div(pw) — 4¢ div(w),
2 (pi) — A div(w) (2.12)

(u+ QAW =V x (pu) —2(V x Wo — V x [(V x H) x H],
W AWy —4(Wo =V x (p) — 2¢V x Wy,
where § £ g; +u - Vg. Next, applying standard LP-estimates for elliptic systems,
we obtain . Meanwhile, by the definition —Au =V x Wy — Vdivu we have
Vu=V(-A)"'V x W, — V(=A)"'Vdivu. (2.13)

On the other hand, employing the Marcinkiewicz multiplier Theorem for the above
relation, it holds that

IVu(,t)llze < Cldivu+ [Wi(, )] Le] < ClG1 (1), Wa(, 1), (P = P)(-,1)]| s

(2.14)
Inequality (2.10) can be obtained by employing the similar method. The proof is
complete. 0

3. ENERGY ESTIMATES

Here we establish several prior bounds of the smooth solution described in Section
which can roughly correspond to . These estimates require quite complex
and technical methods. Therefore we omit the identical and analogous parts of the
proof as in [8] and [26]. Specifically, we define a new energy functional

A(t) = Oiugtﬂ(IIVUIliz +lwllfe + IVwll7e + IVH| )

+ Oiugtﬁs(llﬂlliz +lwll7e + [IVWAlIZ: + [VW2][Zs + | Hell72)
s>

¢ (3.1)
+/O O(fallZe + wllZe + IVWilZs + VW72 + [[HellZ2) ds

t
+/ P(IValZ + [ ValZ + [ VHZ2) ds,
0

where ¥(t) = min{1,¢}. Assuming that the initial energy Ey in ((1.20]) is small and
the upper and lower bound of the density is away from zero, then we obtain a prior
bound for A(t) in the following proposition.

Proposition 3.1. Assume that the parameters in system (1.1)) satisfy the condi-
tions of (L.6)-(1.9), and N and s < § are nonnegative constants. If (p,u,w, H)
is a solution of (1.1)) on R3 x [0,T] in the sense of Theorem with initial data
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(po — p, uo, Hy) € H3(R3)) satisfying (1.10)-(1.13)). Then according to the hypothe-
ses and notation in (1.6)-(1.9), N and the nonnegative lower bound of s, there exist
nonnegative numbers €, M and T such that, if Cy < € and

p<plz,t)<p onR®x[0,T], (3.2)
we have A(T) < MCY.

The proof will be given in the series of lemmas below, and more specifically, we
estimate some auxiliary energy functionals. We start by reviewing the definition
of p in and , which is an open condition and thus allows us to select
q € [6,min{p, 12}) that satisfies both and (L.9). So, we can define

A= s (IVulls + lwllE: + Vol +[VHIE.)
_s_

+ sup ([l + )3 + IVWAlE: + [VWallZa + | Hell2)

¢ (3.3)
+ / (NallZ + N3 + IVWA e + IV Wal3e + 132 ) ds
t
+ / (IVall3: + IVel3e + | VHi|32) ds,
O4(t) = sup (Jullf, + wlf, + |H].)
0<s<t
t
+/ / (|u|q’2|Vu\2+|w|q’2|Vw|2+|H|q’2|VH|2> dzds
0 JE? (3.4)

t
[ (VR + ol o )P
0 JR3
+ || H2)2) do ds,

Pt)= swp [ 0 (WPIVHP + [V [P + [HPIVHP) de, (35)
0<s<t Jr3

Plt) = sup/ (IVuPlHP + [P [VHP + [HPVHP) dz, (36)
1<s<t JR3

t
Q) = [ 92 (19l + IVulls + VL)

+ 0 (I Vullfs + [Vl i+ [VH] ) ds (3.7)
t
+‘ / dukr uk2 ks dads|,
1S};k]§3 0 RS hq ho hg

t
Qt) = /1 (HVUHis +[Vwllis + [IVH| s + [[Vul 74 + [Vl 7
+ HVH||§4) ds.

The regularity (2.6)-(2.7) is sufficient to justify the following estimate. First, we
prove the L? energy estimate of the solution.
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Lemma 3.2. Under the assumptions and notation of Proposition [3.1], we have
sup (|lp = pllzz + lullz + lwlZe + [1HI7)
0<t<T
T (3.9)
+ [ (ulRe + [Fwls + VA de < Mo,
0

Proof. Adding ((L-1)),, u) and ((L.I),,w) we obtain

1d

5 L Pl pluPdo+ [ VPGude + (ot O Tul:

th R3 RB

T (A = Qlldival 2 + @/ [Vw)2s + (@ + N)lldivulBe +4C|w|2.  (3.10)

=2( (wa)-udx+/(VxH)xH~udx—|—2C (V xu) wdx.
R3 R3 R3

First, based on the definition of D(p) in (1.14) and the mass equation (1.1));, we
obtain

d
— D(p)dx + / (P(p) — P(p))divudz = 0. (3.11)
dt R3 R3
For H, we take the similar steps
1d
77/ H2de + v|VH|2, = / V % (ux H)- Hda. (3.12)
2 dt R3 R3
Thus by summing up (3.10)-(3.12)), we ahve
d Lo 1 2 | 2
— - = D —|H|*d \Y%
G L, 3ol + ol + Do)+ 5IHPE o+ u-+ OVl
(et A= Qlldival + V0l + (4 + X) divaol (313)
+v||VH|32 + 4¢|w]|7> = 0.
Using the fact [V x w-u = [V x u-w and Young’s inequality, we have
4 [ (Vxu) -wdzr < (C+ B)HVUH%Z + (4¢ + 2 w3 (3.14)
R? - 2 20+ p
Because of the divergence free condition, we have
/(VxH)xH-udx—i— Vx(ux H)-Hdz=0. (3.15)
R3 R3

Substituting (3.14) and (3.15) into (3.13]) and integrating the resultant inequality
over [0,t], we obtain (3.9). The proof is complete. O

Lemma 3.3. Under the assumptions of Proposition for0 <t < 1AT, one
has

sup 9 (|[Vulf: + [wlfe + [Vwlf + | VH|Z:)

0<s<t
t

+/ ﬂ(l\m/zu\liz oM 2] + ||Ht||2m) ds (3.16)
0

< M[Co+Ci7077 +q),
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and forT'>1 and 1 <t <T, one has
liugt(HVUHQLz + w7z + IVwlZz + IVH|72)

t
4 [ (102l + 19003 + i) ds (3.17)
1

< M[Co + Cy?AY? + Q] + A1),
Here 1 AT =min{1,T}.

Proof. For the case of 0 < t < 1 AT, multiplying (1.1))2-(1.1)3 by ¥4 and Jw,
respectively, and integrating the resultant equations over R? x [0, ], we have

t
| o(Ie 2l + 192 al3:) ds
0

¢ ¢
:—/ ﬁu-VP(p)dx—i—(,u—i—C)/ Y- Audz ds
0 JR3 0o JR3

t t
—|—(,u+)\—§)/ / 1911~Vdiv(u)dzds—|—,u’/ / Jw - Awdzds
o Jrs o Jr3 (3.18)

t ¢
—|—(,u’+)\’)/ ﬁw-Vdiv(w)dxds—i—%/ Jrotw - udwds
0 Jrs 0 Jrs

t t
—4C/ / 19w-u'1da:ds—|—2</ Jdrotu - wdxds
0 JR3 0 JR3
¢ 1
+/ I(H-VH— -V|H|?)-adzds.
o Jrs 2

From , we can infer that
(P(p) = P(p))e +vP(p) div(u) + u- V(P(p) — P(p)) = 0, (3.19)
Then integrating by parts and (3.19)) for the first term, we have

/Ot/RSz%L-VP(p)do:

=— /t Hug +u- Vu)VP(p)dz ds
0 R3
— (1) / div(u)(P(p) ~ (7)) de - / / dydiv(u) (P(p) — P(5)) dr ds
- / FH((P(p) — P(p)) div(u) + VP(p)u - Vu) dz ds
0 JR? . (3.20)
—9(t) [ div(w)(P(p) - P()) da — / [ oudiv(u)(P(p) = P() s

R3
+ / I((y = D)(P(p) = P(p)(div(u))* + VP(p)u - Vu) dz ds
0 JR3

1INt
gM[ﬂ(t)/ |Vu||<p—ﬁ>|dx+/ /\wnp—mdx
R3 0 R3

t
+// |Vu|2da:ds]
o Jrs
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For the second term in (3.18)), we obtain

t
(M+C)/0 A3ﬁ(ut+u~VU)Audxds

1At
:—MHV 12, da + (M+<)/ V|3 dzds
0

5 (3.21)
+ Z / / ﬁu’;}l uZiQ uke‘ ds,
1<h;,k; <3 R?
Similarly, we have
t
(M+A—C)/ I(ug +u - Vu) - Vdiv(u) deds
0 Jr3
+A=009(), .. p+A—=0¢) [
= 2Ol + S [ v leds (s
+ Z / ﬁu’;lhlu];iz u];i’bg dz ds.

1<h;,k; <3

Later, to deal with the terms 2¢ fot Jgs Vot w-i dx ds and 2¢ fot Jgs U rot u-w dx ds,
we use integration by parts to obtain

¢ ¢
2(/ / ﬁrotw-udmds—l—%/ Yrotu - wdxds
o Jr3 0o Jr3
t
:2(/ I(w - rot up + wy - rot w) dx ds
0o Jr3
¢
—|—2§/ d(rotw - (u- Vu) +rotu- (u-Vw))drds
o Jr3
1At
<2C19()/ w - rotuda:—2§/ / w - rotudxds+2(/ 9| Vw|? dz ds
R3 R3
+2</ / Iul? |vu\2dxds+24/ / 9| Vu|? dz ds
+2(/ / I|ul?|Vw|? dz ds.
R3

For the terms f Jgs P - Awdzds and (1 + X) fo Jgs D - V div(w) dz ds, we
take the similar proof of (3.21] - ) and ( - At the same time, it is obvious that

- 4(/ Jw - wdzrds
o Jr3
1At ¢
:—2C19(t)/ w2dx+2C/ / w2dxds—4C/ Yw - (u-Vw)de
R3 0 R3 o Jr3
1At t
§—2C19(t)/ w? da 4+ 2¢ / dexd8+2C/ I|w|? dzds
R3 0 R3 o Jr3

t
+2§//19|u|2|Vw|2dxds.
o Jrs

(3.23)



12 W. P. WU, Y. H . ZHANG EJDE-2023/86

Then, for magnetic field H, multiplying the magnetic field equation by 9H; and
integrating, we have

t 1 t
| oz s+ Gv [ o1 HEas
0 0 (3.24)

1INt t
= 1u/ IVH|2: ds +/ VH[V x (u x H)]dzds.
2 0 0 JR3

Plugging (3.20)-(3.24) into (3.18) and employing Cauchy inequality, we obtain
sup O(|[VulZ: + [wls + [IVwlZ. + [VH|:)
0<s<t

t
+ [ o(I0M2al3 + o2 + 1) ds
0

t (3.25)
<yfcor+ [ [ OIVHPIHE +|uPlHP
o Jrs
+ [VHP[uf® + [u?|Vul? + |uf2|Vw|?] dz ds}.
Utilizing Young’s inequality, one has
¢
/ / | Vul*| H|* de ds
o Jrs
t 2/3 t 1/3
SM(/ / 193/2|Vu|3dmds) (/ \H|6dxds)
0 JRs 0 JR3 (3.26)

gM[Q+/()t( g |H|2dx)gg(/RS |H|de)‘%2ds]

<M(Q+Ci0i?).

The other terms of ([3.25) can be estimated in a similar manner used in (3.17)). For
the case of 1 <t < T, employing similar argument used in (3.16}), one has

s (IVullZz + IVwlZ: + lwlie + [VHZ2)

t
+ / (V20120 + 2025 + [ He22) ds
1 (3.27)

t
<3{Co+ Q+ [ [ [VHPIHP + [TuPIHP + [VHPaf + o |Vul
1 JR3
+ [uf2[Vw]?] dxds} A1),

The terms on the right-hand side of the above inequality can be estimated in a
similar way

t t
[ [ vHPup asds < [ 9AIL - uloas
1 JR3 1

t
<G+ / el 2| Va2 ds
1

< M(Q + Cy?PAV?),

Substituting the above estimates into (3.27) yields (3.17)) directly. The proof is
complete. [
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In the following lemma, we estimate u, w and Hy.
Lemma 3.4. Under the assumptions of Proposition[3.1], if 0 <t <1AT, then
sup 0° (|32 + 132 + 1132
0<s<t
t
+ [ (Vs + 1901 + [VHE) ds
0 (3.28)
g=6 _a_ =4 2 =2 2
<M[Co+Q+Ci0i 7 + (ci70i ") (Q+Ci 0 7)
a=6 _4_
+ (G0 ) A,
and for the case of T > 1 and 1 <t < T, it holds that

t
sup (lallze + IHl22 + b3 ) + / (IVal2e + IVEL: + V)32 ) s
7'57

2(¢—3) 2

< M{Co+ CoAQ + Cy P Gg" P A+ Q} + A(1).

(3.29)
Proof. For the case of 0 <t <1AT, (1.1)) and (1.1))3 can be rewritten as

pu+VP=(p+Au+2(Vxw+ (p+A—)Vdiv(u) + (V x H) x H,

3.30
pir + 4w = p/ Aw + 2¢V x u + (¢’ + N )V div(w). (3:30)

Next, for the magnetic field H, taking the derivative of (1.1), with respect to t,
multiplying the result by ¥°H; and integrating over R? x [0,t], we have

1 t
S v [ PIVH. ds
0

. (3.31)

t t
— 7/ 9| Hy |2, ds+/ / 95V x (u x H)|H; dz ds.
2 0 0 JR3

By applying the derivative (3.30)) with respect to ¢ and (1.1));, we can infer that

pts + pu-Vi+ V(P(p)t) — (2AV xw+ (VX H)x H)y
= (p+QOAu+ (p+ A= OVdiva — [(u+ ) A(u- Vu)
+ (p+ A= QVdiv(u- Vu)] + div[((p + ) Au+ (p+ A — )V div(u)) @ u

—VP(p)@u+(2¢V xw+ (Vx H) x H) @ ul,
(3.32)
and

pug + pw - Vo + (4¢w)y — (2¢V x u)y
=W Au+ (p + N)Vdivw — [ A(u- Vw) + (' + N)Vdiv(u - Vw)]  (3.33)
+ div[( Aw + (@' + X))V div(w)) @ u — (4¢w — 2¢V X u) @ u).
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Multiplying (3.32) and (3.33)) by 9¥°4 and 97w, respectively and integrating over
R? x [0,t], we obtain

t
sup 0 (il + | IEs + 0l3) + [ O H I as
0

0<s<t
t
<00’ [ (0%l + 100l ) ds
0
t
+(p+¢) / 950u(Auy + div(Au @ u)) dz ds
0 JR3
t
+(p—=C+N / 950(V div uy + div(ud; divu)) deds
0 JR3
t
+ / P (Aw; + div(Aw @ u)) dz ds
0 Jr3
t
+ (W +N) / / PPV div w; + div(ud; div(w))] dz ds
0 JR3
t
_ / / IV (P(p)s) + div(VP(p) @ u)) dar ds
0 JR3
t
+ 2(/ 951 (rot wy + div(rot w ® u)) + ¥ ai(rot ug + div(rot u @ u)) de ds
0 Jr3
t t
- 4§/ / 95 (wy + div(w ® u)) dz ds +/ / 9V x (u x H)| H, dzds
0 Jr3 0 JR3
t
+/ 950 - [(V x H) x H) +div((V x H) x H) @ u)]
0 JR3

t
+§/ I || Hy| 2 ds.
2 0

(3.34)
Then, we estimate the second term of (3.34) as follows

t
(n+<) /0 /R3 92U Auy + div(Au @ u)) dz ds

n t

ij=1

wro S [ [

ij=1

V?:L‘z + 8Ju81u18]u — ajué)juﬁiu — azuﬁjuiaju) dx ds

t t
<m(- / 9| Vil||2s ds +/ 9 Vull4. ds).
0 0
(3.35)
Similarly, we can obtain the following estimates

t
(L+A=¢) / 9°0(V div uy + div(ud; divu)) de ds
0 R (3.36)

t t
SM(—/ 9% div 1|2 ds+/ 195||Vu||§4ds),
0 0
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t
w / 95 (Aw; + div(Aw ® u)) dz ds
0 R3
t t t (3.37)
< M(—/ 95|V |2, ds+/ 9 Vul|, ds +/ 9 Vw|L. ds),
0 0 0
t
(' +N) / 9wV div w, + div(ud; div(w))] dz ds
0 R3
. . . (3.38)
—/ 95| div |2, ds +/ 9|Vl ds +/ 9Vl ds).
0 0 0
Integrating by parts and by (3.19)), we obtain
t
_ / UV (P(p)s) + div(VP(p) @ u)) dar ds
0 R3

Z/ R3195 —yP(p) divudji + 0;udiu; P(p) — P(p)0;(ditu;)) dzds (3.39)

i,j=1
gM(—/ 195||vu||2pds+/ 195HVUH%2d5),
0 0
and

2(/ 95 [i(rot wy + div(rot w @ u)) + w(rot us + div(rot u ® u))] dz ds
R3
—4@/ / 195r0t ()
R3
—2C/ [9° ot - (u - Vw)de — 9° rot i - (u - Vu)]de ds
R3
n t n t
—QCZ/ ﬁsuiaiu-rotwdmds—ZCZ/ 95u; 0 - rot u d ds
: 0 JR3 : 0 JR3
t
gM// 95 rot a||(5 — p)ib + pit| da ds
0 Jr3
t t
[ OPullgs [Vl o Vil ds + 31 [0l Fuls]| T2 ds
0 0
t t t
SM[/ 195||vu|\%2ds+/ 195Hpu'1\|%2d8+/ 9°|| V|3 ds
0 0 0

t t t
+ / 95 ulSo ds + / | Vul3, ds + / |Vl ds].
0 0 0

and
—4¢ /t 9 (w; + div(w @ u)) dz ds
0 JR3
= —4(/195|u')|2dx+4§/195((u-Vw)-u';+ (u- Vi) - w)dz (3.40)

t t i
SM[—/ 195||w||i2ds+/ 195||Vu||?igds+/ 9% ||w||S ds]
0 0 0
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Plugging all the above estimates (3.35)-(3.40]) into (3.34]), using the definitions of P
and Oy, as well as the Lemma Lemma [3.3] Cauchy’s and Gagliardo-Nirenberg
inequalities, we finally derive

sup 195/ (16 + Fl? + hif?) d
Rfi

0<s<t

t
+/ / P(|Va> + |VH|? + |Vw|?) dz ds
0 R3

(3.41)
q=6 _a_ t
SM[CO+Q+COQ-20;-2+/ / VH | [ul®(|Vul? + |[VH|?) dz ds
0 Jr3
t
b [ OUHPIE P + P do ds].
0 JR3
Using Gagliardo-Nirenberg inequality and Cauchy inequality, we have
t
/ / 9O H P2Vl dz ds
0 JR3
t
g/ / P (HI® + [ul® + [Vul*) de ds
o Jr3 (3.42)
t
<Qu+ sup [ D)y | 0 H) oy ds
0<s<t 0
=4 2 a=4 2
<Q+M[Cy 07 ][Q@ + Cg 7 0q 7.
Similarly, we obtain
t
/ / 9O H a2 dz ds
0 JR3
t 1/3 t s 2/3
< M(/ |H|6dxds> (/ 197\ﬂ|3dxds)
o JRr3 o JR3
a=s i iz [ .13/2 3/2 2/3
_M(CO ZOq 2) (/O 1915/2Hu||L2(]R3)||Vu||L2(R3) ) (343)

t 1/6
(Cq 2 q 2)1/3(/ 1915”,&”6[3/2(]1%3)(11,(18)
0

t 1/2
5 <112
x (/0 9 HVu||L2(R3)dxds)

=6 _a_
<M(ci2og?) A
The other integrals in (3.41)) can be bounded similarly. Thus, we can obtain (3.28]).
For the case of 1 <t < T, similar to (3.28)), one has

t
Sup/ <|ﬂ|2+|Htl2+\wl2)dx+// (IViL|2+|VHt|2+|Vw|2>dzds
R3 0 JRr3

0<s<t

¢
SM[C’O—FP—F/ / (IVul* + |[VH[?)|H|*|u|* dz ds
1 Jrs

t
+// (1l |2 4 |2 2 4 [l ) dods] + AQ).
1 JR3
(3.44)
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Employing Cauchy’s and Gagliardo-Nirenberg inequalities, we can arrive at

t
// |ul?|Vul? | H|* dz ds
1 R3
t
g/ / (Juf® + |Vul* + |H[®) dz ds
1 R3

10/3 14/3
<Q+ sup |(u, H ||L1{)/3(R3)/ II(u Loé(RS) ds

1<s< (3.45)

Q-+ sup [In H) st [V ) )

/ ety I 19 Gt H) 1 gy s
<Q+ MCyAQ,

and

t t 2/3 1/3
// \H|2|u\2dxdsg/( |H\3dx) (/ |a\6dx) ds
1 R3 1 R3 R3

2/3 [t
< ( sup |H|? dm) / / |Va|? dz ds (3.46)
R3 1 JR3

1<s<t

2(¢—3)

< 03(q 2>G3<q 2)A

Since the other integrals in (3.44]) can be bounded similarly, we can prove (3.29).
The proof is complete. O

Next, we shall estimate the effective viscous flux and vorticity.
Lemma 3.5. For 0 <t < 1AT, under the hypotheses of Proposition one has
S P([VGilZ2 + IVGallZe + VWi T2 + [VIW2]Z2)
<s<t

t
+/ I(IVGC |2 + [VGal2s + [VIV2|2s + [VIWa]22) ds
0

9=6 _4 (3-47)
SM(A+P+Q2/3’C§"*605H+ sup / 9°|af* dz
0<s<t JR3
t t
+/ 9af? dzds + sup 195\u'1|2dx+/ / 19|w|2dxds),
0 R3 0<s<t JR3 0 R3

and for the case of 1 <t <T and T > 1, one has

sup (VG2 + VG + [VW[* + [VW2[?)
1<s<t

t
+ / (VG2 + [VGaf? + VWA + VT, [2) ds
1

o ¢ (3.48)
§M<A+Q+ Sup/ \a|2dx+// a2
1<s<t JR3 1 R3

t
+ sup |u';|2dx+// \w|2dxds).
1<s<t JRr3 1 Jrs
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Proof. From the definition of G; and Gs, we obtain AG; = div(pu) — div[(V x
H) x H| and AG4 = div(pw) — 4¢ div(w). Then

t
/ / I(VG1? +|VGa|? + VW > + [VIW,|?) dz ds
0 JR3

t
gM/ / I + |2 + |Vl + [Vol? + |w? + |VH2[H]?) de ds

/3, [t 2/3
<MA+ // |H|6dxds) (/ 193|VH|2dxds) ]
RS
// 19|u|2dxds+/ / I|w|? dz ds
Rd

t
gM[A+Q2/3C(§TGO(;T—6]+// 19|u|2dxds+/ / I|w|* dz ds,
0 JR3 0 JR3

and

195/ (IVG1]? +|VGa|? + VW1 |2 + [V, |?) dz ds
RS

< M[ sup [ 9P(|af? + ]2 + |Vul® + [Vwl® + |w]? + \VH\2|H|2)dmds]
0<s<t JR3

M(A+ P)+ sup / 195|12|2d:£+ sup / 195|u';|2dx.
R3 R3

0<s<t 0<s<t
For the case of 1 <t < T, we take a similar approach to . O
Now we estimate P and P.
Lemma 3.6. Under the assumptions of Proposition[3.1}, for 0 <t < 1AT one has
P < MA[CFTFOF™ + A+ AY), (3.49)
and for the case T > 1 and 1 <t <T, one has
P < M[Cy/* AT/ 4 CyAt + A2 4 A7]. (3.50)

Proof. We only focus on the proof of (3.49)), since the proof of (3.50) is similar.
Using Gagliardo-Nirenberg inequality and Cauchy inequality, we can bound the
first term of P as

/ 9 |Vul2| H P de
R3

S OYH ()1 [0Vl 1)]2:]

, S ) (3.51)
< MA[PHC Ol + IV, O74]
< MA[CGT 05 + [ AVH( D20 H ()1
From (1.1))4, we have
1/2
[05/2V2H (-, 1)|| 2 < M[/ P (|He* + |VH -uf’ 4+ [Vu - H|2)dx}
R (3.52)

< M(A+ P)Y/?,
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which implies
9—-4 2
/ P|Vul?|H? de < MA[CF™ 07~ + AY4 (A + P)*/1]. (3.53)
R3

The terms [p, 9°|VH[*|H|?dz and [, 9°|VH[?*|u|*dz in P can be estimated in
the same method, and we obtain (3.49). O

Now we estimate the energy functional O,.

Lemma 3.7. Under the assumptions of Proposition[3.1], for 0 <t <T one has

3¢—11 q

P=d 4o 9=6_ _2 4 a+3 3¢=7
0, < M[C;*zNﬁ + G0 4+ G0 +CyT PO . (3.54)

Proof. Multiplying (1.1))2 and (1.1))3 by |u|?"2u and |w|9~2w, respectively and in-
tegrating by parts, we obtain

q‘l/ plul? dz ) + q‘1/ plw|? dalg
R3 R3
t
[ elt 2Vl + Gt Olud Tl dads
0 JR3
t 1 4 212
[ [+ g = Dlul 19 (up?)
0 RS 4
F (i + A — O)ulr2(div u)ﬂ da ds
t
1
[ [ a= 219 QP )Pl + G+ X2 w)?] o s
0 3
t
- / / [ div(ul*"2u)(P = P) + [ul*"2u- ((V x H) x H) (3.55)
0 JR3
+2¢|ulu - (V x w)} dz ds
t
1
- / / S+ A= (g = 2)lul"*(diva)u - V(|u|?) dzds
0 R3 2
t
1
_/ / S+ X) (g = D] (divw)w - 9 (Juf?) dr ds
0 JR3
t
+/ / [2¢|w]T 2w - (V x u)] de ds
0 JR3
4
=1
Firstly, we estimate the second integral of (3.55)). For ¢ > 0 we have

1 ! =2 .. a-4
T2 A= Ola=2) [ [l divall F V()] de s
0 JR3

1 t
*(u+/\—C)(q—2){9// =2 div u? dz ds
4 0 R3

t
+g*1// [u =4V (Juf?)? de ds]
0 JR3

<
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If we select

Lt A= O~ 20 = Blut O+ (4 A—0), (3.56)

for a fixed 8 > 0, then
t
Jo < 3B(u+¢) / / w7 2| Vu|* dods + (u+ X — g)/ lu|?™?(div u)? dz ds

Bu+r-0@-2) s i
+5(M+C) + (A — g// a7V (Juf*)|* dz ds.

(3.57)
Similarly, for any ¢’ > 0, we have
1 / / ¢ a—2 . a—4 2
J3 < 5(/1 +X)(g—2) |w| = |divw||w| = |V(|w|?)|dzds
o Jrs
1 t
<—(W+XN)(g-2) [Q'/ / |w|?2| div w|? dz ds
4 o Jrs
t
+ Q'il/ / |w|T 4|V (Jw|?)|? dxds]
0 JR3
If we select
1
W N =2)d" =B+ (W' + X), (3.58)

for a fixed 8’ > 0,

¢
J3<36’u'/ / |w|? 2| Vw|* de ds + (i +/\)/ Jw|?2(div w)? dz ds

[3(1" +N)(
i 5’u+u+/\’ // ol IV () de ds.

(3.59)

Substituting (3.57) and (3.59)) into (3.55)), we obtain

t
o [ oluftdaly (e O -38) [ [ (FuPluprdeds
R3 0 R3

t
cat [ oluptasly v =39) [ [ vl dzas
RS

+ (G 0—2) - BT 82‘{;2 S [ st e azas
+ EMI(CI—Q) [ é’u++)\uq+>\? / / IV (|w]?)*|w]9™* do ds

t
§|/ / (pr)div(|u|q’2u)dxds|+|// 2¢|u??u - (V x w) dz ds|
0 JR3 0 JR3
t t
1
+|// |u|q—2u-(H-VH)dxds\+y// lu|!"%u - V(2 |H[?) dz ds|
o Jrs 0 Jr3 2
t
+|// 2C|w|q72w~(V><u)d:cds|.
0 JR3

Because ¢ € [6,p), inequalities ((1.8) and (1.9 remain unchanged when p is replaced
by ¢. When g = 1/3, the condition int the left bracket is nonnegative. Then for
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some f € (0, %), this term which we now fix is positive. Next, we have
_ t _ t
q 1/ plul® dz|; +q 1/ plwl|? dz|
R3 R3
t t
[ [ vt dsds [ v )P deds
0 R3 0 R3
t t
< M[|/ / div(|u|??u)(P — P)dz ds| +]/ / 2¢|u|?*u - (V x w) dz ds|
0 R3 0 R3
t t 1
+ |/ / \u|q72u-(H-VH)da:ds|—|—}/ / [ulf"u - V(£ |H[?) dz ds|
0 R3 0 R3 2

-i-’/Ot/R3 2¢|w|? 2w - (V x u)dxds”.

For the magnetic field H, in a similar way as for (3.55)), one has

(3.60)

t
1
o [ s+ [ vHEATHE + Jula - 2lHV(HP)P deds
RS o JRs 4

t
:—/ |H|9?H - (V x (u x H))dzds.
0 JR3

(3.61)
By adding (3.60) and (3.61]), and using the Cauchy-Schwartz inequality, we obtain

[l Jwlr + |1 o
R3
t
+/ / (Ju]72|Vul? + |w|?2|Vw]? + [H|72|VH|?*) dz ds
0 JR3
t
[ PPt 4 9 ) + H 952 P)] dods
0 JR3
t
<[ [ (uolt+ ol + oy do+ [ [ o= plldiv(lulr 2] dods
R3 0 JR3
t t 1
+\// |u\q—2u-(H-VH)dxdsy+|// [ul!"?u- V(5 |H?) dz ds|
0 Jrs o Jrs 2
t
—|—|// |H|9?H - (V x (u x H))dzds|
0 JR3

t
+| / / 2¢w|9w - (V x u) da ds|
o Jrs
7

t
+ | / / 2¢[u|?%u - (V x w) dxds‘] = Z Ji.
0 JR3 i=1
(3.62)
By Holder’s and Sobolev’s inequalities, one has

q—2

—-q
gz ([ uol? + wof? + o o) ([ fuol? + uwol? + Ho do)
R3 R3

(3.63)
p—=q q—2
< MCy N3,
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Employing Gagliardo-Nirenberg inequality, one has

J2 < [/Ot . |22 da:ds} v [/Ot . |Vul? dxds} i
<Gy [/Ot ([ wran) ([ o) as]
<ol [ ([ wriwuraz) ([ e a)
0 RS RS

12—q 3g—16
< Cy"*0y% sw | [ Ju(s)P? da] 6“’*”[/ Jus)1* da]
0<s<t R3 R3
q+3 3g—11

< Mcc;d(qfﬁ 05(472) .
For the other terms, it can be deduced that

Js+ Jy+ Js5

// V() Pl + [Vul?fuf=?) deds] // fuf~ 2|H|4dxds}

1/2
/ / (V(HP)PH|T + [VH? | H|* 2)dxds / / | [7 dzas]

The terms fg Jgs [H[*u|?"2 dz ds and fg Jgs [H|?|u? dz ds are also bounded. We
will estimate the first term of the above inequality, the other terms are estimated
similarly. By Holder inequality,

// |H|*u|?"2 dz ds
1/3 ¢ 3q 3i t 3q 2(%72)

< (/ \H|6dxds) (/ |H| =2 do:ds) q(/ |u| 2 dxdds) !

o Jrs o Jrs o Jrs

g=6 _4_ t q % 1/q
< (C’Oq_"’qu_z)l/g{/ ( |H|37 dx) ds}3 [ sup |u|qu}

0o “Jms 0<s<t JR3
X [// |Vu|2|u\q_2dxds} !
o Jrs

a=6 _4_ 4 1/ t e
< (Cg*’-’ogfz)l/“{ sup |H|‘Idx} q{/ (/ \VH|?|H|9~2 dz)3/ d5]3 03/
0<s<t JR3 0 R3

a=6 _a_ 1/ t 1/
g(cg”o;*)”‘”’[ sup /R |H|qu} q[/o /}R |H|q*2|VH|2dxds} "0z

0<s<t

(003%20‘132)“30 02/

+1
S COGq 1203q 6

(3.64)
Thus, we have

Jz3+Jy+ J5 < ng 603q 6+1 (365)
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For the last term, by employing the fact [V X w-u = [V x u-w, one has

t 1/2 t 1/2
Jo + Jr < [/ / \w|q_2|Vw|2d:vds} {/ / || |w]?~2 da:ds}
o Jrs o Jrs
t 1/2 t 1/2
+ {/ / |u|q72\Vu\2dxds] [/ / |w|?{u|72 dxds} .
o Jrs o Jrs

Next, we have the estimate

t
/ / |w|?|u|?7? dz ds
0 JR3
t 1/2 t 1/2
< (/ |w|4dxds) (/ |u|?(@=2) dxds)
0 JRS 0 JRs

< M[c(;i_go;%}m[/ot( [prans( [ pupton as)™as) "

< M[C(%I—;LO;EQ]”Q[/: (/]Rs |u|q_2\Vu\2dm)</Rs ) 3@ dx)z/gds} i

(3.66)

q—4 219 12—¢ 3¢—16
a—= —_—= 6(qg—2 6(g—2
<Mfef 07102 s [ [ )P ad] [ [ Jute)pras]
0<s<t R3 R3
q 3q—8
S MCOB(Q72) 05(472)'
Thus, we obtain
q 3q-7
Jo + Jr < C(;S‘FIZ O;(FG . (367)

Substituting (3.63))-(3.67) into (3.62)), we obtain (3.54]). The proof is complete. O

Next, we estimate u in W'7", which plays an important role in proving the
estimation of the auxiliary energy functionals @ and Q.

Lemma 3.8. Under the assumptions of Proposition [3.1], there exist polynomials
©1 and py whose degrees and coefficients depend on M defined by Proposition [3.1]
such that: for the case 0 <t < 1AT, it holds that

Q < M[p1(Co) + p2(A+ Og)], (3.68)
and for the case 1 <t <T and T > 1, it holds that
Q < M[p1(Co + A(1)) + pa2(A)]. (3.69)

The polynomial p1 contains no constant term, and the degrees of the monomials in
o are strictly greater than 1.

Proof. We only give the proof of (3.68]), and we only need to estimate the term
t
/ / W2Vl + [Vol* + [VHP) + 05(Vul* + [Vaul* + |VH[)] de ds
o Jr3
occurring in the definition (3.3]) of P. The term

¢
J1 4 d2 503
E | . Vug), ugi ug, d£d5|
1<kijm<s W0 K
has been bounded in [§]. First, from Lemma [2.4] we have

t t
/ 9|Vt dz ds < M[/ / P (|lp— pl* + |Ga* + \W1|4)dxds] (3.70)
0 R3 0 JR3
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The first term in (3.70) can be bounded by MCy. For the second term, applying
Gagliardo-Nirenberg inequality, we have

¢
/ 9°|G1|* dz ds
0 Jr3

e e (3.71)
< (sup 19|G1|2dm) (195/ |VG1|2da:) (/ / 19|VG1|2da:ds).
0<s JR3 R3 0 R3
From the definition of G; and Lemma [3.2] we have
1/2
(sup / dleh[2dz) " < M(Cy + 4. (3.72)
0<s<t JRrs

Meanwhile, from the defintion AG; = div(pi) — div[(V x H) x H]|, we obtain
t
/ I|VG|*dzds
o Jrs
t
< M/ I|g|* dz ds
0 Jr3

< M[/Ot /Rsﬁ(\mu [V H|HP?) d ds| (3.73)

M+ (/Ot /R 193/2|VH|2dxds>2/3</0t R3|H|6dxds)1/3]

49=6 _4
< M[A+ PR 05,

A

and

195/ Ve Pdr < M| sup [ 0°(af? + [VHP|HP)da] < M(A+ Q). (3.74)
RE 0<s<t JR?
Thus
t 9—6 4
/ PGl < M(Co + 4) (A + QY2 (4+ PPCITT0FT). (375)
0 R3

Similarly, using Lemma [3.5] we obtain

¢

/ 195|W1|4

0o Jr3

1/2 1/2 t
g( sup 19|W1|2d9c) (195/ |VW1|2dx) (/ / 19\VW1|2d33) (3.76)
0<s<t JR3 R3 o Jm3
a=6 4

< MAV(A+ Q)2 (A+ PRI 07,

which together with ([3.70) gives

t q—6 _4
/ FIVult < M[(Co+ AV (A+Q)"? (A+ PO 0 ) +.Co], (3.77)
0 R3
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as required. Using Lemmas [2.1] 2.4 and 3.5 we have

t
/ 97| Vw|* dz ds
o Jrs

t
SM[//195(|Gz\4+\wg|4)dxds}
0 JR3

1/2 1/2
< (sup/ 9|Gaf? + 0|15 de (195/ VG + o[VWPdz) T (3T8)
R3 R3

0<s

t
x(/ / IVGoP + 0T Waf? da ds )
0 JR3
a=6 4
< M[AV?(A+Co)'?(A+Q+ PPRCi°08")].

Next, we bound the term fot Jgs 9°|VH|* dzds. From the magnetic field equation,
we have

sup 95|\ VEH|? dx < supM/ 9 (|H? + |VH)?|w?* + |Vw|* | H|?) dz

0<s<t JR3 0<s R3

< M(A+ P),
and from Lemma [3.3]and (3.26]), one has
¢ t
/ I|V2H|? dzds < M/ / I(|He|* + |[VH|w|® + [Vw[*|H|?) dz ds
o Jr3 o Jrs
a=6 4
<SMA+Q+Ci204§7?).

Applying Lemma [2.1} we obtain

t
/ 95| VH[*dz ds
0 JR3

t
g/ 9 ( |VH|2dx)1/2(/ |V2H|2dx)3/2ds
0 R3 R3

1/2 172 [t
< sup ( 19|VH|2dm) (/ 195|V2H\2dx> // I|\V2H|? dz ds
R3 R3 0 R3

0<s<t

(3.79)

a=6 _4_
< MAP(A+ P)P(A+Q+C3 708 7),

as required. The term flt Js(IVul? + [Vw|? + [VH|?) dz ds can be bounded in a
similarway. Then employing Lemma [3.6] we can bound @ and thus proves (3.68]).
We completed the proof. O

Taking Lemmas [3.2][3.8 together, we obtain the following bound for A 4 O,.

Lemma 3.9. Under the assumptions and concepts of Proposition foro<t<
LAT, there are polynomials p1 and 2 as described in Lemma[3.8 such that

A+ Oq < M[p1(Co) + p2(A+ Og)], (3.80)
and for 1 <t <T and T > 1, it holds that
A < Mlg1(A(1) + Co) + ga(A)]. (3.81)
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3.1. Proof of Proposition The statement can be derived directly from the

bounds (3.80) and (3.81)) and the fact that the functions A, A, O, are continuous in
time.

4. POINT WISE BOUNDS FOR THE DENSITY

We establish pointwise estimates for the density p, which are independent both
of time and of initial smoothness. At the same time, this will close the estimates
of Proposition and provide an uncontingent estimate for the energy functional
A defined in (3.1). We next list two auxiliary lemmas. The first lemma in Hoff [§]
is a maximum-principle argument applied to integral curves of the velocity field.

Lemma 4.1. Suppose that (p,u,w, H) is the solution satisfying Proposition
and 0 < C; < p < Cqy on R3 x [0,T]. Then, we fix to > 0 and define the particle
trajectories x : [0,00) x R3 — R? by
L(t,y) = u(xz(t,y), t),
z(to,y) = y.
Therefore, when f € L'(R3) is non-negative and t € [0,T], there exists a constant

C only depending on C1 and Cy such that each of the integrals [pq f(2(t,y)) dy and
ng x) dzx is bounded by C times the other.

(4.1)

In the second lemma, we derive a result concerning Holder-continuity of u(-,t)
to various norms appearing in the definition (3.1)) of the functional A:

Lemma 4.2. Let (p,u,w, H) be the solution satisfying Proposition . Ift € (0,T]
and o € (0,1/2], one has

(- £)* < M[(IVH - HC 0l + it D7) ™

e >HL2 el

2c

“(Co + [ Vu(-, 1)]|22)

(4.2)

+ IVl 0,7
(w(-, 1)° < M (Ve O)32) = (il )l + (-, 6)32)
W0l ]

Proof. Let o € (0,1/2] and define r € (3,6] by » = 3/(1 — ). Using and
we have
L"']»

(4.3)

+ [Vl )7

e+ Wi, )]

rr+ (o = p) (-, )]

(u(-,1))* < M[||G1(-,t)] 4)
(w(, 1)) < M[[|Ga (-, )| + [Wa -, 8) 2], ‘
Applying Gagliardo-Nirenberg inequality, we have
1G1(, )
< M(IVG (IO G0 ”2")
~ - . 142a
< M(l(p = P)( D122 + IVl ))32) 5 (- 1)l[32 + IVH - H(-,1)[32) 7
1-2a X 1+2a
< M(Co + [Vul, t)l[2ags) = (al B30 o) + IVH - H )20 ) 7
(4.5)
IG2(-, )|z < M(|VGa2(- 1))~ 6)/2’HG( 1))
1+42a (46)

M(IVw(,8)72) T (i, )72 + ol D7) 75,
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1WAl < MW B @) I B gs) ™)
1—2a 1+2a (4.7)
M([Vu(t)| 2 IVWAC B2 ),
IWa(,)]|r < M<|| 2 (DS VW () e ™) ws)

2a 1424
VW2 (- )2 )
Consequently, substituting (4.5))-(4.8)) into (4.4), we can complete the proof. O

Proof of Proposition First, we select two positive numbers ® and ®’ satis-
fying

< M(|[Vw(, 0l

P<P<p+s<p—s<P <p.
Then recall the definition of pg that takes values in [p+ s, p — s]. Thus according to
the time regularity (2.6)), for some positive €, we have p € [p, p] on R3 x [0, . Then,
from the proposition we obtain A(e) < MCF, where M is now fixed. If Cy is
further restricted, we have ® < p < ® on R3 x [0, T, and therefore A(T) < MCJ.
We will establish the required upper bound, since the proof of the lower bound is
parallel. For y € R3, the corresponding particle path z(t) can be defined by

&(t,y) = u(z(t,y),t),
(to, y) = y-
Suppose that there exists a time ¢; < e such that p(x(¢1),%1) = ®'. Then we take
t; minimal and select tg < ¢; maximal such that p(x(to),to) = p — s. Therefore, for
t € [to, t1], p(z(t),t) € [p — s, D']. We consider the following two cases:

Case 1: For tg < t; < T A1, according to the mass equation and the definition
(1.5), we obtain

(2114 X) 2 flo pla(t), 1) — log(p)] + P(p(a(t), 1)) — P = i (a(1),1),

(20 + N) 5 flog pla(t), 1) — log(7)] = ~Ga(a(t) 1)

Integrating over [to,¢1] and simplifying p(z(t),t) to p(t), then we have

(4.9)

tl ~ tl
(204 Nliog pls) ~log(@)fp, + [ [P(s) = Plds =~ [ " Gi(s)ds,  (4.10)
to to
t1
(21 + N)llog p(s) —log(p)llty = — [ Ga(s)ds. (4.11)
to
We will show that
t1 - t1 -~
/ Gi(s)ds < MC{, / Ga(s)ds < MC{, (4.12)
to to

for a constant M which depends on the same quantities as M defined by Proposition

If so, using (4.10) and (4.11)), we have
tl - - -
(24 + \)[log & — log(p — )] < / [P(s) — Pds + MCJ < MICJ,  (4.13)

to
(2u' + N)[log @' — log(p — s)] < MC]. (4.14)

Because p(t) takes values in [p — s,®'] C [p,p], and P is an increasing function
on [p,p], (4.13)-(4.14) hold. But, if Cy is small depending on M, @', and p — s,
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then and cannot hold. Specifying the smallness condition, therefore
we can infer that there is no time ¢; such that p(t1) = p(x(t1),t1) = ®. Due to
the arbitrariness of y € R?, we have p < ® on R3 x [0, ¢]. The method of proving
p > @ is analogous.

To prove , supposing that I' is the fundamental solution of the Laplace

operator in R? and employing (2.12)), we have

/ Gi(ods - / [ pit (9T (al) = ) s

t (4.15)

+/t /Rs(VmF(SE(s) —y)((V x H) x H)(y, s)dyds,
“Gayds= [ [ pily,s) (VLT (as) — ) dyds

’ /to 5@ (4.16)

" /to R3 (VoI'(2(s) — y))w(y,s) dyds.

We notice that the first term in (4.15) is identical to Hoff [8, Lemma 4.2]. Thus,

we can arrive at

| /t 1 /]RS pu(yas)(vzr(z(s) - y)) dy d5|
IV (pu) (5 t1) [ oo (ray 4 [[ VI * (pu) (-, t2) || oo (3)

t ; 4.17
+/0 /R3 [uF(2(s), s) — u*(y, 8)|Taz, (2(5) — y) (pu? ) (y, s) dy ds (4.17)

1

< MCj +MC8/ (u(-,s))¥ds < MCy.
0

The last inequality is derived from Proposmon 1] and Lemma [£.2] Note that

- ) holds for ¢ = 6, therefore if 2 < r < the second integral of - can

be estimated by

q+3 )

[ FaTals) = )9 x 1) x 1))yt
0 R3

<AL [V % H) ¢ )82y + (V¢ H) 5 H)(3) s s

1 (4.18)
< IHFITHE e IVE ] ey

[ IVHE s IO, 5, g 05 < VCG.

Similarly, the terms of (4.16]) can be bounded. Thus we achieve the proof of (4.12)).

L3 7‘(

Case 2: For 1 <ty < t1, similar to case 1, we obtain

%(P(t) = §)+ (2u+A)Tp()(P() = P) = —(2u+ ) p()Ga (1), (4.19)
d

—(p(t) = ) = =(2p" + X)L p()Ga (0). (4.20)
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We multiply the above equations by (p(t) — p) to obtain

2 (olt) ) + (2 ) ( () (p(t) — )° (421)
—(2p+ X)) (p(t) = PG (t),
S olt) — ) = — (2’ + Xrlp(t)(p(t) ~ P)Galt). (4.22)

Here f(t) = (P(t) — P)(p(t) — p)~". Since f(t) > f(to) > 0 on [to,t,], it is easy to
deduce that

20+ 2 FOp(0) (1) — )° > 2+ N f(t)p(p(t) — 7)? for t € [to, ).
Thus integrating (4.21)) and (4.22)) over [tg, t1], we arrive at

t1
(P(12) = 0 = (p00) = 72 < N [ 1GI () ds (423)
0
(p(tr) — §)? — (plto) — p)? < I / 1Gar8) By ds. (4.24)
to
‘We shall show that
t1 B t1 B
/ 161 (-, 8) 2 ds < NIC, / 1Ga (-, )2 ds < NICF. (4.25)
to to
Therefore, from (4.23)) and ( -7 we have
~ t1
& — 52— =5 — 2 <N [ [G1(5)[Beas d, (4.26)
to
~ t1
¥ = 5 = 15— 5= 5 <51 [ Gt 8) ey d. (1.27)
0

By employing similar argument used in Case 1, (4.26)) and (4.27) cannot hold if Cy
is sufficiently small. Because y € R? is arbitrary, we obtain p < ® on R? x [0, ¢].

To prove (4.25)), applying (2.12)) and Lemma we have
t1
| 1619l s

to

t1
< / Upi(-, )22 + [VH - H(-,)|22] ds
t1
+ / pi )2 + [VH - H( 8)||2] ds

ty
< / pi( )22 + [VH - H(, 5)]|2] ds

to

+ / i L2V, )22 + [VH - H()[L2IV(VH - 1), 5)[ 2] ds

to

- 31 1/4 1 3/4
< NCT + (/ |u|2dazds) (/ \vu|2dxds)
1 R3 1 R3
ty 1/4 31 3/4
+ (/ VH - H* da ds) (/ V(VH - )P da ds)
1 R3 1 R3

< MCy,
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and

ty
|16t o) s

to

g/1[\|pw(-,s)||i2+||w(~,s)lliz}ds

to

+/ ot )2 + (-, 5)[[24] ds

to

t1
T . 2 . 2 2 3/2
< MCF + / [, )[RV, )55 + [w (-, )| 35 1V w(-, 8)357] ds
0

5M05+(/t1 A |u'1|2dxds>1/4</tl A |Vu')|2da:ds>3/4
1 3 1 3

+(/1t1 g |w2dxds>1/4(/ltl IR3|VwI2dxds)3/4

< MC§.
The last inequality is derived from the Proposition This completes the proof.

5. PROOF OF THEOREM

The proof is done by constructing the weak solution as the limits of the smooth
solutions. More specifically, provided that the assumptions of Proposition be
valid, and the initial data (po,uo,wo, Ho) of the solution satisfy the assumptions
(L.10)-(1.13) and (1.20). By convolving (po, uo, wo, Ho) with a standard mollify-
ing kernel of width & > 0, we can obtain the smooth approximate initial data
(pg, ug, wg,Hg ). Then using the local existence result of Theorem —
has a unique local solution (p*, us, ws, H¢) on R? x [0,7]. Applying a conventional
energy estimate similar to [26, Theorem 4.1], the local solution (p¢,u¢, w®, H®) can
be extended to any T > 0. We establish the global-in-time existence of smooth
solutions with the initial data satisfying low energy condition . Then

sup (o= o D)) + [, ) e ds €MD) (5.1

0<s<T
By Theorem [2:3] for every £ we have a global solution that satisfies
A(t) < MCj5, and p< pS(x,t) < p. (5.2)

Then (p,u,w, H) of A(t) can be replaced by (p¢,u¢,w¢, H¢) in (3.1). These esti-
mates will offer the compactness needed to extract the required solution (p, w, w, H)
in the limit as £ — 0. Next, we establish the uniform Hoélder continuity away from
t=0.

Lemma 5.1. Taking € > 0, there exists a constant C = C(e) for all £ > 0 such
that
1/2,1/8 1/2,1/8 1/2,1/8 -
()1 S W NS H D)5 < Cacs. (53)
Proof. First, notice that we proved the Hélder-% continuity of u¢ in (3.2). To obtain
the Holder continuity in time, we need to fix x and t3 > t; > ¢,

|u® (2, t9) — u®(z,t1)| < ;/ [0t (2,12) — ul (2, t1)| dz + C(e)CF R
1Br(@)| /B, ()
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u7§ v
< B3ty — 1|12 Sup/ lua (2, OS2 da + C(e)CT R
t>e

< C()CTIR™ 3|ty — t4]"/% + RV,

by the estimates in (5.2). Given R = |to — t1]*/%, we obtain the bound of u¢ in
(5.3). The proofs for w® and H¢ are similar. [l

Compactness of the approximate solutions (p¢,u¢,w, H¢ ) now follows. From
Lemma [5.1] and Ascoli-Arzela Theorem, we obtain

ute wt, H% — u,w, H uniformly on compact sets in R® x (0, c0); (5.4)

for a sequence £, — 0. Then, according to the same sequence from ([5.1)) and based

on the elementary consideration that the weak-L? derivative and the distribution
derivatives are equal, it follows that

Vube (-, t), Vwbe (-, 1), VHS (-, 1), VWS (-, 1), VIVE (-, t)

5.5
— Vu(-,t), Vw(-, 1), VH(-,t), VWi (-, 1), VW3 (-, t) (5:5)
weakly in L?(R3) for every ¢t > 0; and
92080 9 2pse 92 HS 9320t 902Vt 9O PV HE
(5.6)

= 920,02, 012 Hy, 072V 0, 072V b, 992V Hy

weakly in L?(R3 x [0, 00)).

Using [7] and [I4], we can obtain the convergence of approximate densities (5.7)
as
strongly in L2 (R3) for all ¢ > 0.

loc

Proof of Theorem Obviously, the definition of limiting functions (p, u, w, H)
in — inherits the bounds from and (but please notice that there
is no representations in about (-, t), w(-,t) or Hy(-,t)). It is also explicit
from the convergence pattern described in (1.22)-(1.27) that (p,u,w, H) meets the
weak forms (1.16)-(T.19) of the differential equations in —. Furthermore,
the continuity statement ([1.21)) is easily derived from these weak forms and bounds
. Therefore, is achieved.

Next we study the large-time behavior of (p, u, w, H) in . Taking a similar
methods and proofs as for [5] and [8], we have

tlggo lp—pllLirsy =0 (5.8)
for all [ € (2,00). Then, following the same argument as in [5], we take a sequence
ul(t,z) = u(t +1,x),

for all integer {, and (z,t) € R3 x [1,2]. Then by (1.27), we can arrive at

1
lim / HVUZHL2(R3) =0.
l—oo Jo
Similarly, we have
[u!|| 11 (r#) < C uniformly for ¢, 1.

Thus we obtain lim;_, . ||ul||L2(R3) = 0 uniformly for ¢, which indicates

Ji fJu()] 2 @s) = 0. (5.9)
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For ¢ > 1, from Lemma[2:4] it is easy to deduce that

VU)o rs)
< C(IGL(®) | os)) + Wi ()| Lows) + 1(P(p) — P) ()] Lo sy
S CA+[IVGL(t)|lL2@sy + IVWL(D)] L2 (rs)) (5.10)
< CA+[la) | p2@s) + V() rzrs) + [ H - VH| p2(s)
+ IVIH (| L2 rs)) < C.

Taking the summation of (1.27)), (5.9) and (5.10)), we can infer that

tll}n;.lo HU”Wl,v-(RS) = 0, (51].)

for r € (2,6). Similarly, we have

Jim [(w, )= sy = 0, (5.12)

for r € (2,6). Combining (5.8)),(5.11)) and (5.12)), we obtain (1.28)). The proof of

Theorem [T.2]is complete.
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