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STABILITY AND RATE OF DECAY FOR SOLUTIONS TO

STOCHASTIC DIFFERENTIAL EQUATIONS WITH MARKOV

SWITCHING

SHUAISHUAI LU, XUE YANG

Abstract. In this article, we present the almost sure asymptotic stability and

a general rate of decay for solutions to stochastic differential equations (SDEs)
with Markov switching. By establishing a suitable Lyapunov function and

using an exponential Martingale inequality and the Borel-Cantelli theorem,

we give sufficient conditions for the asymptotic stability. Also, we obtain
sufficient conditions for the construction of two kinds of Lyapunov functions.

Finally give two examples to illustrate the validity of our results.

1. Introduction

As an important property of stochastic differential equations (SDEs), the sta-
bility research has been a popular direction. Many results have been achieved on
various stability problems of SDEs, see [2, 15, 16, 24, 26]. For instance, Mao in-
troduced the concept of polynomial decay rate stability into stochastic differential
systems. In the subsequent research, the concept of stability with general decay
rate was extended in [4, 5, 6]. Recently, the concept of the partial practical stability
of SDEs with general decay rate was introduced by [2].

Stochastic differential equation with Markov switching is an important type of
stochastic equations [7, 22]. It plays an important role in prediction model, physics,
ecological engineering, financial stock market, network control, etc., and can be used
to explain the physical process of sudden change of environment or transformation
models under different conditions [19, 21, 25, 28, 34, 38]. Therefore, it is very worth
studying the stability of this kind of equation. The p-moment and exponential
stability of SDEs with Markov switching has been studied in [17, 30, 31, 37]. In
these references, Lyapunov methods are used to study stability. It is interesting
to note that in [17], the theory of M -matrices is used to establish some sufficient
criteria for the exponential stability and these criteria are much easier to determine
than the results obtained using the Lyapunov methods. In the stability theory of
SDEs with Markov switching, the almost sure stability is also very significant, see
[18, 35, 36, 27]. A sufficient condition that the equation is almost sure stability is
given in [35]. The important thing is that the sufficient condition given in [35] is
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independent of the moment stability of the system. In addition, in [11, 14, 32, 33],
some problems of discrete Markov switching systems are studied, and in [9, 10]
the stability is studied for nonlinear stochastic delay systems with asynchronous
Markov switching.

Lyapunov functions are often used to prove the stability of differential systems.
A function is called a Lyapunov candidate function if it has the possibility to prove
the stability of the differential system at an equilibrium. With the development of
Lyapunov’s first and second methods, more and more work is based on Lyapunov
methods to study the stability of differential systems, see [1, 8, 12, 23].

In the analysis of asymptotic stability of stochastic differential systems with
Markov switching, many article study the exponential asymptotic stability of so-
lutions, i.e., if the deterministic or stochastic system is not stable, our goal is to
add a noise term to make the solution path of the stochastic system exponentially
stable. However, this type of results fails to be applied, for instance, when the de-
terministic model is non autonomous. In this case, it may occur that the stability
cannot always be exponential, or even sub exponential or super exponential. This
fact has inspired this article. The main purpose of this article is to extend expo-
nential stability to general decay stability, such as polynomial decay, logarithmic
decay, sub-exponential decay, super exponential decay and so on. Using Lyapunov
method, we establish sufficient conditions for the almost sure asymptotic stability
of equations with the general decay rate. At the same time, this paper discusses two
kinds of Lyapunov functions to prove the rationality of our theorems. Therefore,
this paper generalizes the results in [17].

The structure of this article is as follows: In Section 2 we give the basic concepts
of SDEs with Markov switching and related definitions. In Section 3, the sufficient
conditions ensuring the almost sure asymptotic stability on a general decay rate of
SDEs with Markov switching are given, and the relevant proofs are given by using
Markov inequality, Borel-Cantelli theorem and exponential Martingale inequality.
Then, in Section 4 we present two examples to illustrate the theoretical findings.

2. SDEs with Markov switching

We assume that (Ω,F , {Ft}t≥0,P) is a complete probability space, {Ft}t≥0 is
a filtration in the probability space. Then F0 is right continuous and contains
all the P-null test sets. We’re going to use ‖ · ‖ for the Euclidean norm in Rn.
If A is a matrix or a vector, AT is its transpose. If A is a matrix, the norm is
expressed as ‖A‖ =

√
trace(AAT ). If A is a symmetric matrix, its maximum and

minimum eigenvalues are denoted by λmax(A) and λmin(A) respectively. We use
m ∨ n to represent max{m,n} and m ∧ n to represent min{m,n}. Now consider
the stochastic differential equation with Markov switching

dx(t) = f(x(t), t, r(t))dt+ g(x(t), t, r(t))dW (t), (2.1)

where

f : Rn × R+ × S → Rn, g : Rn × R+ × S → Rn×w,
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and {W (t)}t≥0 is the w-dimensional Brownian motion and r(t)(t ≥ 0) is the right
continuous Markov chain in finite state space S = {1, 2, 3, . . . , N}, whose composi-
tion Γ = (γij)N×N is generated as follows:

P{r(t+ ∆) = j|r(t) = i} =

{
γij∆ + o(∆), i 6= j,

1 + γij∆ + o(∆), i = j,

where ∆ > 0. Here γij ≥ 0 is transition rate from i to state j if i 6= j while

γii = −
N∑
j 6=i

(γij).

Therefore, (2.1) can be rewritten as the result of the following N equations:

dx(t) = f(x(t), t, i)dt+ g(x(t), t, i)dW (t), t ≥ 0, 1 ≤ i ≤ N. (2.2)

In this article we assume that Markov chains r(t) and Brownian motion W (t) are
independent each other. To ensure the existence and uniqueness solutions of (2.1),
the following assumptions are made:

(H1) f and g satisfy the following linear growth conditions and local Lipschitz
conditions:
(1) There is h > 0 such that for all (x, t, i) ∈ Rn × R+ × S,

‖f(x, t, i)‖ ∨ ‖g(x, t, i)‖ ≤ h(1 + ‖x‖);
(2) For each k = 1, 2, 3, . . . , there is an hk > 0 such that

‖f(x, t, i)− f(y, t, i)‖ ∨ ‖g(x, t, i)− g(y, t, i)‖ ≤ hk‖x− y‖,
for all t ≥ 0, i ∈ S and x, y ∈ Rn with ‖x‖ ∨ ‖y‖ ≤ k.

It is known [20, Theorem 3.16 and Lemma 4.1] and [17, (H)]) that if system (2.1)
satisfies (H1), then for any initial value x0 ∈ Rn, there exists a unique continuous
solution x(t, t0, x0), denoted by x(t), and for any p > 0,

E[sup{‖x(s)‖p : t0 ≤ s ≤ t}] <∞, t ≥ t0.

Definition 2.1. Let C2,1(Rn×R+×S;R+) represent the family of all non-negative
functions on Rn × R+ × S that are twice differentiable in x and continuously dif-
ferentiable in t. Suppose V (x, t, i) ∈ C2,1(Rn × R+ × S;R+) has the following:

Vt =
∂V (x, t, i)

∂t
, Vx =

∂V (x, t, i)

∂x
, Vxx = (

∂2V (x, t, i)

∂xi∂xj
)n×n.

Then we define an operator L acting on V (x, t, i) and LV : Rn × R+ × S → R,
where

LV (x, t, i) = Vt(x, t, i) + Vx(x, t, i)f(x, t, i)

+
1

2
trace[gT (x, t, i)Vxx(x, t, i)g(x, t, i)] +

N∑
j=1

γijV (x, t, j).

Definition 2.2. Let α(t) > 0 be such that α(t) → ∞ as t → ∞. A non-trivial
solution x(t) of system (2.1) is almost sure asymptotic stable with decay function
α(t) and order at least γ > 0, if its generalized Lyapunov exponent is less than or
equal to −γ with probability one, i.e.,

lim sup t→ +∞ ln(‖x(t)‖)
lnα(t)

≤ −γ, a.s. (2.3)
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The following lemmas will play important roles in our derivation.

Lemma 2.3. Assume (H1) and that f(0, t, i) = 0 and g(0, t, i) = 0. Then for all
x0 ∈ Rn, such that x0 6= 0, we have

P(x(t, t0, x0) 6= 0,∀t ≥ t0) = 1.

The proof of the above lemma can be found in [17, Lemma 2.1]. We require that
the assumptions of Lemma 2.3 hold for the rest of this article, i.e., assume that for
all t ∈ R+ and i ∈ S,

f(0, t, i) ≡ 0, g(0, t, i) ≡ 0.

Lemma 2.4 (Exponential Martingale inequality). Let F (t) ∈ L2(R+,Rn) and T ,
ε, η be any positive numbers. Then

P[sup{Y (t) : 0 ≤ t ≤ T} > η] ≤ e−εη,
where

Y (t) =

∫ t

0

F (s)dW (s)− ε

2

∫ t

0

‖F (s)‖2ds.

The proof of the above lemma can be found in [18, Theorem 1.7.4]. With the
above preparations, the main result of this paper is to seek sufficient conditions
about the almost sure asymptotic stability on a general decay rate of SDEs with
Markov switching.

3. Almost sure asymptotic stability of SDEs with Markov switching

In this section, based on the research in [17] on SDEs with Markov switching, we
discuss the almost sure asymptotic stability on a general decay rate of stochastic
differential systems with Markov switching. We are in a position to state the first
result.

Theorem 3.1. Assume (H1) and that there exist a function V ∈ C2,1(Rn ×R+ ×
S;R+) a continuous function G(t) > 0, constants p ∈ N+, β > 0, σ > 0, m ≥ 0,
M ≥ 0, such that for all t ≥ 0, x ∈ Rn and i ∈ S, the following conditions hold:

(1) LV (x, t, i) ≤ −βV (x, t, i);

(2) α(t)m‖x‖p ≤ G(t)V (x, t, i) and limt→+∞
lnG(t)
lnα(t) = a, a ∈ R;

(3) lim supt→+∞
t

lnα(t) = M ;

(4) ‖Vx(x, t, i)g(x, t, i)‖2 ≤ σ‖V (x, t, i)‖2.
Let x0 ∈ Rn(x0 6= 0). Then

lim sup
t→+∞

ln(‖x(t)‖)
lnα(t)

< −γ∗, a.s.,

where γ∗ = m+βM−a
p .

Furthermore, if γ∗ > 0, the solution x(t) of (2.1) is deemed to converge to zero
with decay function α(t) and order at least γ∗ with probability one.

Proof. Since system (2.1) satisfies condition (H1), without loss of generality, we
assume that the initial moment is t0 = 0, so for any initial value x0 ∈ Rn(x0 6= 0),
there exists a unique continuous solution x(t) of system (2.1). And Lemma 2.3
states that almost all sample paths of x(t) will never arrive at the origin, i.e.,
x(t) 6= 0 almost surely for any t ≥ 0.
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For each n ≥ 1, we define a stopping time

τn = inf{t ≥ 0 : ‖x(t)‖ > n}.

The condition (H1) is satisfied, which means that the solution process of system
(2.1) is non-explosive, and we can get τn → ∞ as n → ∞. Next, we use the
generalized Itô formula to study eβtV (x(t), t, r(t)), then we obtain

E[eβ(t∧τn)V (x(t ∧ τn), t ∧ τn, r(t ∧ τn))]

= E[V (x(0), 0, r(0))] + E
∫ t∧τn

0

eβs[βV (x(s), s, r(s)) + LV (x(s), s, r(s))]ds

≤ D,

where D = E[V (x(0), 0, r(0))]. Letting n→∞, we have

E[V (x(t), t, r(t))] ≤ De−βt. (3.1)

For all continuous functions V (x, t, i) ∈ C2,1(Rn×R+×S;R+), by the generalized
Itô formula we have

V (x(t), t, r(t)) = V (x(0), 0, r(0)) +

∫ t

0

LV (x(s), s, r(s))ds

+

∫ t

0

Vx(x(s), s, r(s))g(x(s), s, r(s))dW (s)

≤ V (x(0), 0, r(0)) +

∫ t

0

Vx(x(s), s, r(s))g(x(s), s, r(s))dW (s).

Hence we obtain that for any k ≥ 1, δ ∈ (0, 1
32σ ),

E
(

sup
δ(k−1)≤t≤δk

V (x(t), t, r(t))
)

≤ E(V (x(δ(k − 1)), δ(k − 1), r(δ(k − 1))))

+ E( sup
δ(k−1)≤t≤δk

∫ t

δ(k−1)
Vx(x(s), s, r(s))g(x(s), s, r(s))dW (s)).

An application of the Burkholder-Davis-Gundy inequality leads to

E
(

sup
δ(k−1)≤t≤δk

∫ t

δ(k−1)
Vx(x(s), s, r(s))g(x(s), s, r(s))dW (s)

)
≤
√

32E
(∫ δk

δ(k−1)
‖Vx(x(s), s, r(s))g(x(s), s, r(s))‖2ds

)1/2
≤
√

32σE
(∫ δk

δ(k−1)
‖V (x(s), s, r(s))‖2ds

)1/2
≤
√

32σδE
(

sup
δ(k−1)≤t≤δk

V (x(t), t, r(t))
)
,

(3.2)

which yields

E
(

sup
δ(k−1)≤t≤δk

V (x(t), t, r(t))
)
≤ 1

1−
√

32σδ
E(V (x(δ(k−1)), δ(k−1), r(δ(k−1)))).
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Then by (3.1) we have

E
[

sup
δ(k−1)≤t≤δk

V (x(t), t, r(t))
]
≤ D

1−
√

32σδ
e−βδ(k−1).

By Markov’s inequality, for any given time t ≥ 0 and any % ∈ (0, βδ), we obtain

P
{
ω : sup

δ(k−1)≤t≤δk
{V (x(t), t, r(t))} > e(%−βδ)k

}
≤ De−βδ(k−1)

(1−
√

32σδ)e(%−βδ)k
=

Deβδ

(1−
√

32σδ)
e−%k.

(3.3)

Since
∑∞
k=1 e

−%k <∞, we have

∞∑
k=1

P{ω : sup
δ(k−1)≤t≤δk

{V (x(t), t, r(t))} > e(%−βδ)k} < +∞.

Then we apply the Borel-Cantelli lemma to obtain that, for almost all ω ∈ Ω,
∃k̄ > 0, where k̄ only related to ω ∈ Ω, with

P
{
ω : sup

δ(k−1)≤t≤δk
{V (x(t), t, r(t))} > e(%−βδ)k

}
= 0, ∀δ(k − 1) ≤ t ≤ δk, k ≥ k̄,

i.e.

V (x(t), t, r(t)) ≤ e(%−βδ)k, a.s.

Further

V (x(t), t, r(t)) ≤ e(%−βδ)k ≤ e
(%−βδ)

δ t, ∀δ(k − 1) ≤ t ≤ δk, k ≥ k̄. (3.4)

By (3.4), when ∀δ(k − 1) ≤ t ≤ δk, k ≥ k̄, we obtain

α(t)m(‖x(t)‖p) ≤ G(t)V (x(t), t, r(t)) ≤ G(t)e
(%−βδ)

δ t,

which implies

m lnα(t) + ln(‖x(t)‖p) ≤ lnG(t) +
(%− βδ)

δ
t.

Further
ln(‖x(t)‖p)

lnα(t)
≤ −m+

(%− βδ)
δ

t

lnα(t)
+

lnG(t)

lnα(t)
.

Now letting k → +∞ yields

lim sup
t→+∞

ln(‖x(t)‖p)
lnα(t)

≤ lim
t→+∞

(−m+
(%− βδ)

δ

t

lnα(t)
+

lnG(t)

lnα(t)
).

By conditions (2), (3) and the property of α(t), we have

lim sup
t→+∞

ln(‖x(t)‖)
lnα(t)

≤ −
m+ (β − %

δ )M − a
p

, a.s.

Let %→ 0 and γ∗ := m+βM−a
p , we have

lim sup
t→+∞

ln(‖x(t)‖)
lnα(t)

≤ −γ∗, a.s. �
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Remark 3.2. (1) Assuming that all the conditions of [17, Theorem 3.2] hold, with
m = 0, G(t) = 1

c1
, a = 0, M = 1, and β = λ

c2
, we have that Theorem 3.1 holds and

the Lyapunov exponent is less than or equal to γ∗ = m+βM−a
p = λ

pc2
, which is the

same as the conclusion of [17]. In other words, we can obtain the same result and
decay rate. Hence Theorem 3.1 is a generalization of the results in [17].

(2) The two important questions of the above Theorem are: one is the selection
of the decay function, and the other is whether the Lyapunov function used in
the theorem exists. The first question is generally easy to solve. For example, we
can choose α(t) = O(et) or α(t) = O(ln(t + 1)), so we can get the almost sure
exponential stability or the almost sure logarithmic stability. The key question is
the selection of Lyapunov functions. In the following, we will construct suitable
Lyapunov functions.

It is rare to find the Lyapunov functions satisfying Theorem 3.1 when judging the
stability of the system. However, in this article it is not complex to determine the
stability of (2.1) with V (x, t, i) = (xTQix)

p
2 (1 ≤ i ≤ N) and p > 0. For instance,

let p = 1, x ∈ Rn and Qi are n-dimensional symmetric positive-definite matrices.
From definition 2.1, we have

Vt(x, t, i) = 0, Vx(x, t, i) = (xTQix)(−1/2)xTQi,

Vxx(x, t, i) = (xTQix)(−1/2)Qi −
1

2
(xTQix)(−3/2)Qixx

TQi,

1

2
trace[gT (x, t, i)Vxx(x, t, i)g(x, t, i)] =

1

2
(xTQix)(−3/2) trace[gT (x, t, i)Qig(x, t, i)]

− 1

4
(xTQix)(−3/2)‖xTQig(x, t, i)‖2;

therefore,

LV (x, t, i) = Vt(x, t, i) + Vx(x, t, i)f(x, t, i)

+
1

2
trace[gT (x, t, i)Vxx(x, t, i)g(x, t, i)] +

N∑
j=1

γijV (x, t, j)

= (xTQix)(−1/2)xTQif(x, t, i)

+
1

2
(xTQix)(−1/2) trace[gT (x, t, i)Qig(x, t, i)]

− 1

2
(xTQix)(−3/2)‖xTQig(x, t, i)‖2 +

N∑
j=1

γij(x
TQjx)1/2.

(3.5)

Corollary 3.3. Consider (2.1). Assume (H1) and let p = 1 in Theorem 3.1. In
addition, for all t ≥ 0, x ∈ Rn and i ∈ S, assume the following conditions hold:

(1) Z(x, t, i) ≤ −λ‖x‖2, where

Z(x, t, i) = xTQif(x, t, i) +
1

2
trace[gT (x, t, i)Qig(x, t, i)]

− 1

2
(xTQix)(−1)‖xTQig(x, t, i)‖2

+ (xTQix)(
1
2 )

N∑
j=1

γij(x
TQjx)1/2;
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(2) lim supt→+∞
t

lnα(t) = M ;

(3) ‖xTQig(x, t, i)‖2 ≤ σ‖xTQix‖2.
Then the conclusion in Theorem 3.1 holds.

Proof. Let V (x, t, i) = (xTQix)1/2. We know that the specified Lyapunov functions
V are not differentiable when the spatial variable (denoted x) is zero. However, by
Lemma 2.3, we just need the Lyapunov function to be differentiable in Rn\{0} with
respect to the variable x. Let Rn0 := Rn \ {0}, so it is obvious that (xTQix)1/2 ∈
C2,1(Rn0 × R+ × S;R+). Because matrix Qi is symmetric positive-definite matrix,
we obtain

λmax(Qi) ≥ λmin(Qi) > 0.

Therefore, for all (x, t, i) ∈ Rn × R+ × S,

[min{λmin(Qi) : 1 ≤ i ≤ N}]1/2‖x‖ ≤ (xTQix)1/2 ≤ [max{λmax(Qi) : 1

≤ i ≤ N}]1/2‖x‖,

and we have the following conclusions:

(1) V (x, t, i) ≤ [max{λmax(Qi) : 1 ≤ i ≤ N}]1/2‖x‖.
(2) (xTQix)1/2 ≥ [min{λmin(Qi) : 1 ≤ i ≤ N}]1/2‖x‖.

For Theorem 3.1, we can make G(t) = [min{λmin(Qi) : 1 ≤ i ≤ N}](− 1
2 )α(t)m, so

G(t)(xTQix)1/2 ≥ α(t)m‖x‖.

Further

lim
t→+∞

lnG(t)

lnα(t)
= m.

Corresponding to Theorem 3.1, we obtain a = m.

(3) From condition (1) in this theorem, we obtain

LV (x, t, i) = (xTQix)(−1/2)xTQif(x, t, i)

+
1

2
(xTQix)(−1/2) trace[gT (x, t, i)Qig(x, t, i)]

− 1

2
(xTQix)(−3/2)‖xTQig(x, t, i)‖2 +

N∑
j=1

γij(x
TQjx)1/2

≤ − λ

max{λmax(Qi) : 1 ≤ i ≤ N}
(xTQix)1/2,

(3.6)

which implies β = λ
max{λmax(Qi):1≤i≤N} .

Summing up, from the analysis of (1), (2) and (3) we see that V (x(t), t, i) =
(xT (t)Qix(t))1/2 satisfies all the conditions of Theorem 3.1, so

lim sup
t→+∞

ln(‖x(t)‖)
lnα(t)

≤ −γ∗, a.s.

By Theorem 3.1, we can take δ ∈ (0, 1
32σ ), thus γ∗ = βM . If M > 0, the solution

x(t) of (2.1) converges to zero with decay function α(t) and order at least βM with
probability one. �
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Remark 3.4. (1) If (H1) and Lemma 2.3 hold, we know that almost all sample
paths of any solution of system (2.1) beginning from a nonzero state will never arrive
at the origin, so we only need Lyapunov functions V ∈ C2,1(Rn0 × R+ × S;R+) in
Theorem 3.1 and Corollary 3.3. The following Theorem 3.5 and Corollary 3.7 are
equally applicable.

(2) The above proof process shows that when analyzing the almost sure as-
ymptotic stability of a stochastic differential system with Markov switching, the
qualified matrices Qi(1 ≤ i ≤ N) can be selected to construct the Lyapunov func-
tion according to Theorem 3.1. If it is a one-dimensional system, we need to choose
Qi as N positive numbers, and the proof process is the same as Corollary 3.3.

In the following section, we will further extend the application of Theorem 3.1.
In Theorem 3.1, the condition (1) we want to ensure is LV (x, t, i) ≤ −βV (x, t, i),
and then our main task is to generalize this condition to LV (x, t, i) ≤ h1(t)V (x, t, i)
where h1(t) ∈ R for any t ∈ R+. To ensure the well-posedness of the above system,
the following assumptions are made:

(H2) f and g satisfy
(1) There is a nonnegative function φ1(t) such that for all (x, t, i) ∈ Rn ×

R+ × S,

‖f(x, t, i)‖2 ∨ ‖g(x, t, i)‖2 ≤ φ1(t)(1 + ‖x‖2);

(2) There is a nonnegative function φ2(t) such that for all t ≥ 0, i ∈ S
and x, y ∈ Rn,

‖f(x, t, i)− f(y, t, i)‖ ∨ ‖g(x, t, i)− g(y, t, i)‖ ≤ φ2(t)‖x− y‖.

Then, according to theabove conditions, there exists a unique global solution with
initial values x0 ∈ Rn defined in an interval [t0, T ). Since we study the asymptotic
behavior of solutions, we assume T = +∞.

Theorem 3.5. Assume (H2), there exist continuous functions V ∈ C2,1(Rn0 ×
R+ × S;R+), G(t) ≥ 0, h1(t) ∈ R and h2(t) ≥ 0 for all t ∈ R+, constants p ∈ N+,
m ≥ 0,M ≥ 0, ϑ1 ∈ R, ϑ2 ≥ 0, such that for all t ≥ t0, x ∈ Rn0 and i ∈ S, the
following conditions hold:

(1) α(t)m‖x‖p ≤ G(t)V (x, t, i) and limt→+∞
lnG(t)
lnα(t) = a, a ∈ R;

(2) LV (x, t, i) ≤ h1(t)V (x, t, i) and lim supt→+∞

∫ t
0
h1(s)ds

lnα(t) ≤ ϑ1;

(3) ‖Vx(x, t, i)g(x, t, i)‖2 ≥ h2(t)V 2(x, t, i) and lim inft→+∞

∫ t
0
h2(s)ds

lnα(t) ≥ ϑ2;
(4) lim supt→+∞

t
lnα(t) = M .

Let x0 ∈ Rn(x0 6= 0). Then

lim sup
t→+∞

ln(‖x(t)‖)
lnα(t)

≤ −γ∗, a.s.,

where

γ∗ =

{
1
p (m− ϑ1 −M − a), M > 1

2ϑ2,
1
p (m− ϑ1 − a+ 1

2ϑ2 −
3
2

√
Mϑ2), M ≤ 1

2ϑ2.
.

Further, if γ∗ > 0, the solution x(t) of equation (2.1) is almost sure asymptotic
stable with decay function α(t) and order at least γ∗ with probability one.
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Proof. Since system (2.1) satisfies condition (H2), for any initial value x(t0) = x0 ∈
Rn(x0 6= 0) there exists a unique continuous solution x(t, t0, x0).

Applying the Itô formula to ln V (·) along the trajectory x(·) for (2.1), for any
t ≥ t0,

ln (V (x(t), t, r(t))) = ln (V (x(t0), t0, r(t0))) +Mt +

∫ t

t0

LV (x(s), s, r(s))

V (x(s), s, r(s))
ds

− 1

2

∫ t

t0

‖Vx(x(s), s, r(s))g(x(s), s, r(s))‖2

V 2(x(s), s, r(s))
ds,

(3.7)

where

Mt =

∫ t

t0

Vx(x(s), s, r(s))g(x(s), s, r(s))

V (x(s), s, r(s))
dW (s)

is a continuous martingale.
The next main task is to study Mt. We choose the standard initial value x(t0) =

x0 and guarantee that E |x0|2 <∞. According to exponential Martingale inequality,
letting T = k, ε = ε, η = k−1

ε , and ε ∈ (0, 1), k ∈ N+(k > 1). Then by Lemma 2.4
we have

P
[

sup
0≤t≤k

{Mt − Y (t, ε)} > k − 1

ε

]
≤ e−(k−1),

where

Y (t, ε) =
ε

2

∫ t

t0

‖Vx(x(s), s, r(s))g(x(s), s, r(s))‖2

V 2(x(s), s, r(s))
ds.

Since
∑∞
k=2 e

−(k−1) < ∞, by Borel-Cantelli Lemma, we obtain that for almost all
ω ∈ Ω,

P
[

lim inf
t→+∞

( sup
0≤t≤k

{Mt − Y (t, ε)}) ≤ k − 1

ε

]
= 1.

In other words, there exists k̃ > 0 where k̃ only related to ω ∈ Ω such that for all
k − 1 ≤ t ≤ k(k ≥ k̃), we have

Mt ≤
ε

2

∫ t

t0

‖Vx(x(s), s, r(s))g(x(s), s, r(s))‖2

V 2(x(s), s, r(s))
ds+

k − 1

ε
, a.s.

Using (2)–(4), it follows that by (3.7),

ln (V (x(t), t, r(t))) ≤ ln (V (x(t0), t0, r(t0))) +
t

ε
+

∫ t

t0

h1(s)ds− (1− ε)
2

∫ t

t0

h2(s)ds.

Further, for all k − 1 ≤ t ≤ k(k ≥ k̃), when k → +∞ we obtain

lim sup
t→+∞

ln V (x(t), t, r(t))

ln α(t)
≤ ϑ1 −

(1− ε)
2

ϑ2 +
1

ε
M. (3.8)

By condition (1), we have

m lnα(t) + p ln(‖x(t)‖) ≤ lnG(t) + ln (V (x(t), t, r(t)));

further
ln ‖x(t)‖
lnα(t)

≤ 1

p

[
−m+

ln (V (x(t), t))

lnα(t)
+

lnG(t)

lnα(t)

]
.

By (3.8) and the property of α(t), letting k →∞ yields

lim sup
t→+∞

ln(‖x(t)‖)
lnα(t)

≤ −1

p
(m− ϑ1 +

(1− ε)
2

ϑ2 −
1

ε
M − a). (3.9)
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Let γ(ε) = 1
p (m− ϑ1 + (1−ε)

2 ϑ2 − 1
εM − a), which shows that the order of decay

depends on the parameter ε. The next main task is to find the optimal valued
γ∗ = sup

ε∈(0,1)
γ(ε).

Obviously we can obtain that

dγ(ε)

dε
=

1

p
(

1

ε2
M − 1

2
ϑ2),

which implies that

γ∗ =
1

p
(m− ϑ1 −M − a), M >

1

2
ϑ2,

γ∗ =
1

p
(m− ϑ1 − a+

1

2
ϑ2 −

3

2

√
Mϑ2), M ≤ 1

2
ϑ2.

Thus if γ∗ > 0, we obtain

lim sup
t→+∞

ln(‖x(t)‖)
lnα(t)

≤ −γ∗, a.s.,

where

γ∗ =

{
1
p (m− ϑ1 −M − a), M > 1

2ϑ2,
1
p (m− ϑ1 − a+ 1

2ϑ2 −
3
2

√
Mϑ2), M ≤ 1

2ϑ2.

�

Remark 3.6. It should be noted that the Lyapunov function constructed accord-
ing to Theorem 3.1 is independent of time t. Let Q : R+ → Rn×n be a C1

positive-definite function with Q(t) = Q(t)T [29]. We take the Lyapunov function
as V (x, t, i) = xTQi(t)x, where x ∈ Rn.

Corollary 3.7. Consider (2.1) and let f be C1(Rn0 × R+ × S;R+) in x. There
exist continuous functions V ∈ C2,1(Rn0 ×R+ × S;R+), G(t) ≥ 0, ϕ1(t), ϕ2(t) ∈ R
and h2(t) ≥ 0, constants p = 2, m ≥ 0, ã ∈ R, M ≥ 0, ϑ1 ∈ R, ϑ2 ≥ 0. For all
t ≥ t0, x ∈ Rn0 and i ∈ S, the following conditions hold:

(1) Q̇i(t) + ∂fT (x,t,i)
∂x Qi(t) +Qi(t)

∂f(x,t,i)
∂x ≤ ϕ1(t)Qi(t);

(2) trace[gT (x, t, i)Qi(t)g(x, t, i)] +
∑N
j=1 γijV (x, t, j) ≤ ϕ2(t)xTQi(t)x,

h1(t) := ϕ1(t) + ϕ2(t) and lim supt→+∞

∫ t
0
h1(s)ds

lnα(t) ≤ ϑ1;

(3) ‖xTQi(t)g(x, t, i)‖2 ≥ h2(t)‖xTQi(t)x‖2 and lim inft→+∞

∫ t
0
h2(s)ds

lnα(t) ≥ ϑ2;
(4) lim supt→+∞

t
lnα(t) = M and lim inft→+∞

lnQi(t)
lnα(t) ≥ ã.

where ‖Qi(t)‖ is the determinant of the matrix Qi(t) at time t. Then the conclusion
in Theorem 3.5 holds.

Proof. Let V (x, t, i) = xTQi(t)x. It is obvious that V (x, t, i) ∈ C2,1(Rn0 × R+ ×
S;R+). And by Definition 2.1, we obtain

Vt(x, t, i) = xT Q̇i(t)x,

Vx(x, t, i)f(x, t, i) = xTQi(t)f(x, t, i) + fT (x, t, i)Qi(t)x,

Vxx(x, t, i) = Qi(t),
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and

LV (x, t, i) = Vt(x, t, i) + Vx(x, t, i)f(x, t, i)

+
1

2
trace[gT (x, t, i)Vxx(x, t, i)g(x, t, i)] +

N∑
j=1

γijV (x, t, j)

= xT Q̇i(t)x+ xTQi(t)f(x, t, i) + fT (x, t, i)Qi(t)x

+ trace[gT (x, t, i)Qi(t)g(x, t, i)] +

N∑
j=1

γijx
TQj(t)x.

(3.10)

Analyzing the above equality, we have

LV (x(t), t, i) = xT (t)Q̇i(t)x(t) + xT (t)Qi(t)[f(x(t), t, i)− f(0, t, i)]

+ [f(x(t), t, i)− f(0, t, i)]TQi(t)x(t)

+ trace[gT (x(t), t, i)Qi(t)g(x(t), t, i)]

+

N∑
j=1

γijx
T (t)Qj(t)x(t).

Since f be C1(Rn0 × R+ × S;R+) in x, by Lagrange Mean Value Theorem, there
exists εt ∈ (0, x(t)) such that

f(x(t), t, i)− f(0, t, i) = fx(εtx(t), t, i)x(t),

which implies that

LV (x(t), t, i) = xT (t)Q̇i(t)x(t) + xT (t)Qi(t)fx(εtx(t), t, i)x(t)

+ xT (t)Qi(t)f
T
x (εtx(t), t, i)x(t)

+ trace[gT (x(t), t, i)Qi(t)g(x(t), t, i)]

+

N∑
j=1

γijx
T (t)Qj(t)x(t).

By conditions (1) and (2), we have

LV (x(t), t, i) ≤ (ϕ1(t) + ϕ2(t))x(t)TQi(t)x(t)

= h1(t)V (x(t), t, i), ∀1 ≤ i ≤ N.

We can make G(t) = α(t)m

Qi(t)
. To sum up, Corollary 3.7 satisfies all conditions of

Theorem 3.5, which allow us to conclude that

lim sup
t→+∞

ln(‖x(t)‖)
lnα(t)

≤ −γ∗,

where

γ∗ =

{
1
2 (ã− ϑ1 −M), M > 1

2ϑ2,
1
2 (ã− ϑ1 + 1

2ϑ2 −
3
2

√
Mϑ2), M ≤ 1

2ϑ2.

�
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4. Examples

To illustrate the validity of our main results, we provide two examples.

Example 4.1. Let W (t) be a standard Brownian motion on (Ω,F , {Ft}t≥0,P).
We consider the following one-dimensional stochastic differential equation with
Markovian switching,

dx(t) = f(x(t), t, r(t))dt+ g(x(t), t, r(t))dW (t), (4.1)

with initial value x0 ∈ Rn0 and r(t) be a right-continuous Markov chain takingvalues

in S = {1, 2} with its generator Γ =

(
−2 2
3 −3

)
. Let

f(x, t, i) =

{
−3x, i = 1,
1
2x, i = 2,

g(x, t, i) =

{
3x, i = 1,

5x, i = 2,
V (x, t, i) =

{
x2, i = 1,

4x2, i = 2.

By Corollary 3.3, we can define a Lyapunov function (V (x, t, i))1/2, which implies
Q1 = 1 nd Q2 = 4. Let α(t) = 2tet, m = 0 and p = 1, which shows that M = 1,
G(t) = 1 and a = 0. By computing the Itô operator, we have

Z(x, t, 1) = xf(x, t, 1) +
1

2
‖g(x, t, 1)‖2 − 1

2
‖x‖(−2)‖xg(x, t, 1)‖2

+ ‖x‖(γ11 + 2γ11)‖x‖
= −‖x‖2,

Z(x, t, 2) = 4xf(x, t, 2) + 2‖x‖(γ21 + 2γ21)‖x‖ ≤ −2‖x‖2;

then, for each i ∈ S, we have

Z(x, t, i) ≤ −‖x‖2,

which implies λ = 1.
In addition, we have

‖xTQ1g(x, t, 1)‖2 = 9x4,

‖xTQ2g(x, t, 2)‖2 = 400x4.

Let σ = 100, so we obtain ‖xTQig(x, t, i)‖2 ≤ 100‖xTQix‖2. Then it is not hard
to show that β = λ

max{λmax(Qi):1≤i≤N} = 1
4 by Corollary 3.3, i.e., all conditions

of Corollary 3.3 and (H1) are satisfied. Therefore, the solution of system (4.1)
converges to zero with decay function 2tet and order at least 1/4 with probability
one.

Example 4.2. To show the validity of Theorem 3.5, let us consider the equation

dx(t) = f(x(t), t, r(t))dt+ g(x(t), t, r(t))dW (t), (4.2)

where r(t) be a right-continuous Markov chain taking values in S = {1, 2} with its

generator Γ =

(
−1 1
2 −2

)
. Let

f(x, t, i) =

{
k1tx, i = 1,
1
2e
−tx, i = 2,

g(x, t, i) =

{
k2t

1/2x, i = 1,

k3t
1/2x, i = 2,
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with initial value x0 ∈ Rn0 and define a Lyapunov function

V (x, t, i) =

{
tx2, i = 1,

x2, i = 2.

From the above definition, we can obtain that system (4.2) satisfies the condition
(H2) and the assumptions of Lemma 2.3. We will be interested in analyzing the
asymptotic behavior of solutions. Assuming initial time t0 ≥ 2. It is clear that
Q1(t) = t when i = 1, hence we have

Q̇1(t) +
∂fT (x, y, 1)

∂x
Q1(t) +Q1(t)

∂f(x, y, 1)

∂x
= (

1

t
+ 2k1t)Q1,

trace[gT (x, t, 1)Q1(t)g(x, t, 1)] +

N∑
j=1

γ1jV (x, t, j) = (
1

t
+ k22t− 1)tx2.

By Corollary 3.7, for t sufficiently large, we obtain

LV (x, t, 1) ≤ (
2

t
− 1 + 2k1t+ k22t)tx

2 ≤ (2k1t+ k22t)V (x, t, 1).

When i = 2, we know Q2 = 1 and this shows that

LV (x, t, 2) = 2xf(x, t, 2) + g2(x, t, 2) + 2tx2 − 2x2

= (e−t − 2 + 2t+ k23t)x
2 ≤ (2t+ k23t)V (x, t, 2).

Therefore, h1(t) = (2k1t+ k22t) ∨ (2t+ k23t). We obtain LV (x, t, i) ≤ h1(t)V (x, t, i)
for each i ∈ {1, 2}.

On the other hand, we have

‖Vx(x, t, 1)g(x, t, 1)‖2 = 4k22t
3x4,

‖Vx(x, t, 2)g(x, t, 2)‖2 = 4k23tx
4.

Letting h2(t) = 4k22t ∧ 4k23t, we obtain ‖Vx(x, t, i)g(x, t, i)‖2 ≥ h2(t)V 2(x, t, i) for
all i ∈ {1, 2}.

Taking α(t) = et
2

, m = 1, p = 2, k1 = 1
4 , k2 = 2, k3 = 2 and

G(t) =

{
1
t e
t2 , i = 1,

et
2

, i = 2,

and M = 0, h1(t) = 6t, and h2(t) = 16t. We can check that assumptions in
Theorem 3.5 hold with ã = 0, ϑ1 = 3, ϑ2 = 8, and M ≤ 1

2ϑ2, which implies

γ∗ = 1
2 (ã−ϑ1 + 1

2ϑ2−
3
2

√
Mϑ2) = 1

2 . Hence we deduce that the solution of system

(4.2) is almost sure asymptotic stable with decay function et
2

and order at least 1
2

with probability one.
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