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GLOBAL WELL-POSEDNESS FOR CAUCHY PROBLEMS OF
ZAKHAROV-KUZNETSOV EQUATIONS ON
CYLINDRICAL SPACES

SATOSHI OSAWA, HIDEO TAKAOKA

ABSTRACT. We study the global well-posedness of the Zakharov-Kuznetsov
equation on cylindrical spaces. Our goal is to establish the existence of global-
in-time solutions below the energy class. To prove the results, we adapt the
I-method to extend the local solutions globally in time. The main tool in our
argument is multilinear estimates in the content of Bourgain’s spaces. Using
modified energies induced by the I-method, we obtain polynomial bounds on
the H?® growth of global solutions.

1. INTRODUCTION

In this article, we study the Cauchy problem for the Zakharov-Kuznetsov equa-
tion on a cylinder,

Ou+ 0z Au+udu =0, (z,y) eRxT,teR

w(,9,0) = uo(e,y), (2,y) €R X T, (1)

where u = u(z,y,t) is a real-valued function, T = R/(27Z), and A = 92 + 92 is
the Laplacian. This equation was introduced by Zakharov and Kuznetsov [26], as
a model for the propagation of ionic-acoustic waves in magnetized plasma (see also
[14] for the derivation of the equation). This equation is one of the two-dimensional
extensions of the Korteweg-de Vries (KdV) equation

Ot + Opgpu + udyu = 0.

The KdV equation is one of the famous nonlinear dispersive equation, which de-
scribes the behavior of shallow water waves. Another two dimensional generaliza-
tions of the KdV equation is the Kadomtsev-Petviashvili (KP) equations

O0x (04t + Ogaptt + udpu) £ Oyyu = 0,

where the KP-I equation corresponds to minus sign, while the KP-II equation to
plus sign.
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The Zakharov-Kuznetsov equation (|1.1)) has at least two conserved quantities:

1

B0 =5 [ (IVuta. 0P - gute.nt)”) dady

Mu)(t) = /]Rxﬂ‘u(ay,y,t)2 dx dy.

The conservation laws identify H(R x T) as the energy space.

The main purpose of this article is to consider a global well-posedness result of
problem with rough initial data below the energy space.

For the Zakharov-Kuznetsov in the R? setting, Faminskii [7] proved the local well-
posedness in the energy space H!(R?). After this, Linares and Pastor [16] showed
the local well-posedness for s > 3/4, by proving a sharp maximal function estimates.
Griinrock and Herr [10] proved local well-posedness in H*(R?) for s > 1/2, by
using the Fourier restriction norm method and Strichartz estimates. The Fourier
restriction norm method utilizing the X *? spaces was introduced by Bourgain [2} 3]
(also by Kenig, Ponce and Vega [I1]), to prove the local well-posedness for nonlinear
Schrédinger and KdV equations in low regularity Sobolev spaces. At the same
time, Molinet and Pilod [19] showed the local well-posedness in H*(R?) for s >
1/2 using bilinear Strichartz estimates. Observing proofs of global well-posedness,
Shan [24] obtained that the solution exists globally in time to data in H*(R?)
for s > 5/7. Shan used the I-method based on H' conservation laws. The I-
method was introduced for global well-posedness of the KdV equation by Colliander,
Keel, Staffilani, Takaoka and Tao [5]. Recently, Kinoshita [I2] showed the local
well-posedness for s > —1/4, using Loomis-Whitney inequality and an orthogonal
decomposition technique. In [12], the local ill-posedness results for s < —1/4 was
also obtained. This means that the data-to-solution map from the unit ball in
H*(R?) to C([0,T]; H®) fails to be smooth for any 7' > 0. As a corollary from the
result of local well-posedness combining with the L? conservation law, the global
well-posedness in L?(R?) follows.

In the R x T setting, Molinet and Pilod in the same paper as above [19] showed
the global well-posedness in H*(R x T) for s > 1. The strategy is similar to the
case of R? setting, however it is more difficult to make sure the proof because of
the lack of the smoothing effects. In [21], we showed the local well-posedness for
s> 9/10 by refining the bilinear estimates. The main motivation here comes from
the corresponding question of global well-posedness for s < 1.

In the T? setting, the local well-posedness result in H*(T?) has been obtained
by Linares, Panthee, Robert and Tzvetkov [I5]. They showed that the initial value
problem is locally well-posed in H*(T?) for s > 5/3. The proof used short-time
Strichartz estimates. In [23], Schippa improved the local well-posedness to s > 3/2
by using short-time bilinear Strichartz estimates. Moreover, Kinoshita and Schippa
[13] obtained the local well-posedness for s > 1. They estimated the nonlinear
interaction term by short-time trilinear estimates.

Observing related results on the Zakharov-Kuznetsov equation. Yamazaki [25]
showed the stability and instability results for line solitary waves of the Zakharov-
Kuznetsov equations in R x Ty, where Ty, is the torus of length 27 L. The solitary
waves are constructed by hyperbolic functions. The long-time behavior stability of
solitary waves were also studied in [4] and in [22].
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We aim to prove that the initial value problem of the Zakharov-Kuznetsov equa-
tion in H¥(R x T) is globally well-posed for some s < 1. This proof is based on
bilinear estimates developed in [I9] and I-method [5].

The main result of the paper is the following theorem.

Theorem 1.1. The initial value problem of (1.1)) is globally well-posed in H*(RxT)
for s >29/31. In other words, for any ug € H*(R x T), for all T > 0, there exists
a unique solution u of (1.1) such that

we C([0,T): H* (R x T)) N X3/2T.

Moreover, for all 0 < T' < T, there exists a neighborhood U of ug in H*(R x T)
such that the data-to-solution map

U 3o — o(t) € C([0,T7] : HS(R x T)) N X5+

is smooth, where v(t) is a unique solution of (1.1) to the initial data vy. Here
function space X;’b is defined in Section |4

Remark 1.2. By time reversibility, we need to consider only the existence for
positive time.

This article is organized as follows. In Section 2| we recall some harmonic anal-
ysis tools including Littlewood-Paley decompositions of functions. We also reviews
some preliminary results for linear estimates in the Bourgain spaces X*? [2] 3] [T1].
In Section [3| we follow the I-method scheme [5]. We give several lemmas of bi-
linear estimates in conjunction with rescaling argument in [6] and give the local
well-posedness results for rescaled data. In Section [d] we define modified energy
functional E[lu] in term of the H®-norm of the solution for s < 1. Section [5| is
devoted to the proof of main theorem. One of the key steps in the construction of
global solutions is to control the increment of the modified energy. We estimate the
growth of the modified energy and provide a priori estimates for the solutions.

2. NOTATION AND FUNCTION SPACES

In this section, we will introduce some function spaces that will be used through-
out the paper. We denote the absolute value of (£,q) as |(€,q)]? = 362 + ¢°. For
positive real quantities a and b, the notation a < b means that there is a constant
¢ such that a < ¢b. When a < b and b < a, we write a ~ b. Moreover, b+ means
that there exists § > 0 such that b + 4.

Denote Ty = AT = R/(27AZ) for A > 0. Let f(z,y) be a function defined on
R x Ty. The Fourier transform of f with respect to the variables (x,y) is denote
by

2T
FAF(Eq) = / / e HTE) £ (5 ) dyde,
RJO

where (§,q) € R x Z/A. Let inverse Fourier inverse transform be denote by
Y _ 1 i(Ex+qy)
Feq f(xay)—m Z Re W& q)dE
qEZL/ N\

for (z,y) € R x Ty. For simplicity, we abbreviate Fa):‘y and .7-?(11’)‘ by F* and F~1A,
respectively, when no confusion is likely.
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Let u(z,y,t) be a function of R x Ty x R, and let (¢, ¢, 7) be Fourier transform
of u(z,y,t) in a similar manner as well

2T
uME q,7) :/ / e~ ITHRERYD) (1 gy ) dy da dt.
r2Jo

Similarly, we define the inverse Fourier transform
1 ,
“\ _ i(tT+E€x+qy)
W@y t) = ey 2 /R e “u(€, g, 7) dE dr.
qEZL/ N\
We denote o(¢,q) = €3+ &¢°. Let n € C5°(R) satisfy 0 <7 <1, N-1,1 = 1, and
suppn C [~2,2]. For a dyadic number N = 2% with k € N, we denote

6(&) =n() —n(26), on(&q) = d(NT(& q)]),
wN(ga q, 7_) = QS(Nil(T - 0(5; q)))a

where (£,¢,7) € RxZ/AxR. Here, we prepare notation of interval as Iy = supp ¢n
for a dyadic number N. We define the Littlewood-Paley decomposition as

Pyu=F " MNonFru),  Qru= (i)™,

For a,b € R, we denote a A b = min{a, b} and a Vb = max{a,b}. For s € R, we
define the Sobolev spaces H; = H3(R x T)) equipped with the norm

s = (5 & [Ue D P rcara) (21)

qEZ/A

where (z) =1+ |z|. We also use L3 = HY.
We use the restriction operator Ry with respect to the x variable as

Ry f(x) = /]R HEK ) F, (€)™ d

for dyadic number K, where F, is the Fourier transform with respect to the z
variable.
We note that the following properties hold [6]:

2T A
/R / Fay)gle ey =1 3 / P (&, ) Pg(E q) d,

qEZ/ X

and

FMf9)(&q) = (FMf+* FAg) (£,9)
:i 2 /RFAf(ﬁ—ﬁl,q—ql)f*g(fl,ql)dgl.

qQLEL/N
Next, we describe the Bourgain space via the Fourier transform. Following [11],
we introduce a class of function spaces related to Bourgain space Xi’b. Define the

(2.2)

Bourgain space Xf\’b as follows.
Definition 2.1. For s,b € R and T > 0,

— l T—0o 2b 25@ 7_2 7_1/2
e = (5 2 [ = oteap™ € o>t a. P dear) s

||U||X;I; = inf {HHHX;I) | u: R x T,\ — C, E|R><'1TA><[O,T] = u}
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When a norm of u introduced in (2.3)) is bounded, we denote u € Xi’b. We also
use the same notation Li = Xg’o for functions on R x Ty x R as defined before for
one on R x Ty, if there is no confusion.

The space Xf\’bT will be used for proof of the local well-posedness result, that is
under restriction of time on [0, 7.
If A =1, we denote F*, F~1A 2 A HS, Xi’b, X;’I;\ by F, F~L, 75 HS, X5

X;’b, respectively.
Remark 2.2. The space Xf\’b will be characterized by the formula
A
||fo§fb = |le* f||thH§,

where 794 is the operator associated linear Zakharov-Kuznetsov equation on
R x T, described by

FMNe =2 f)(€,q) = e EDFAf(E q).
We summarize some inequalities which were stated in [8], [T11 [19] 2T].
Lemma 2.3. Let s € R and b > 1/2. Then
In()e=%2 Fll o < 1 fllag
for all f € H.
Lemma 2.4. Let s € R and b > 1/2. Then

t
Inte) [ €022 @) o S 1o
for all f € X/S\’bfl,
Lemma 2.5. For any T >0, s € R and for all —1/2 <V <b< 1/2,
£z ST 1 g
for all f € Xi’b.
The polynomial o (&, ¢) which appeared in plays an important role in char-

acterizing of solution. Now, we define the resonance function
H(gla §2a q1, q2) = 0.(61 + 527 Q1+ q?) - 0'(61, ql) - 0-(527 q2)
= 3658 + &) + L4 + 665 +2(6 + &)qge,

which plays an important role in the control of the frequency instability range
between nonlinear interactions.

(2.4)

3. RESCALED SOLUTIONS

Throughout this paper, we assume that A > 1. Recall Ty = AT = R/(27)\Z).

By rescaling
1 ry t
A _
u (x,yvt)*ﬁu(XaXaﬁ)a (31)
we consider the Cauchy problem for the Zakharov-Kuznetsov equation on R x T,
ot + 9, Aur +udut =0, (z,y) ERx Ty, t €R,

. . (3.2)
u™(z,y,0) = ug(z,y) € HY, (z,y) € Rx T,.
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If we construct the solution u*(t) of on the time interval [0, A3T], we have the
solution u(t) of on [0,T].

Let ¢ be a combination of spatial variables, ( = (§,¢) € R x Z/\. Define the
Fourier multiplier operator I, which was originally introduced in [5] to consider
global well-posedness for KAV equation. For N € 2N, define the operator I by

FAF(C) =m(Q)F f(Q),

where m is a smooth, radially symmetric, non-increasing function satisfying

m _ ]_7 (|C| < N)a
(©) {(szr)SI’ (I¢] > 2N).

On the low frequency part |(| < N, the operator I is the identity operator, while
on the high frequency, I is regarded as the integral operator. Remark that I maps
HS functions to H )1\ one.

In this section, we prove the following local well-posedness results on I =1 H}.

Proposition 3.1 (A variant of local well-posedness). Let s > 9/10. The Cauchy
problem is locally well-posed in HS for data u}) satisfying uy € HS. Moreover,
the solution exists on a time interval [0, ] with 6 ~ HIUéHHia and the solution u™(t)
satisfies the estimate

1 yoams S 176y

Next we give several lemmas in conjunction with rescaling argument in [6].

Lemma 3.2 ([I9, Lemma 3.7]). Denote a set A C R x Z/\. Let the projection on
the q be axis contained in a set I C Z/\. Assume that there is a positive constant
C' such that for any fized gqo € INZ/X\ and |AN{(§,q0) | g0 € Z/A}| < C. Then,
Al < AC(I| + 1),

Using this lemma and the mean value theorem, we have the estimates for con-
structing bilinear estimates.

Lemma 3.3 ([19, Lemma 3.8]). Let I and J be two intervals on the real line and
f:J =R be a smooth function. Then

o
infee s|f'(€)]

Lemma 3.4. Let a # 0, b, ¢ be real numbers and I an interval on the real line.
Then

HzeJ[f(z) e}

I|1/2
2 < |
{qg€Z/X | ag® +bg+ceI}| < )\(|a|1/2 + 1).

Proof. Following [19, Lemma 3.9], we only consider the case of a > 0 and b = ¢ = 0.
Put I = [as?, at?] for s,t € R with s? < t? and s,t > 0. From the shape of parabola
curve and distribution of Z/\ points, we can say

{q€Z/N|ag® +bqg+ce I} <2\(|t —s|+1).

Since

= T < o V) A
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we obtain
€Z/XN|ag® +bg+cel <)\7| |1/2+1

which completes the proof. ([
Using these lemmas, we obtain the following bilinear estimates.

Lemma 3.5. Foru, v € Li, we have
1(Pr, Qryw)(Pn,Qrov)llzz S (Ny A No)(La A Lo)'? (| Pr, Qo ull 2 | Pr, Qoo 2,
(3.3)
[ Rk (P, QL u) (P, Qrov)) 22

Ni A No)/2 (3-4)
< B (L A L) (L v L) P, @yl 3 | P, Q3.

Moreover, when N1 A Ny < N1V Na, for 0 < 0 <1 we have
[(Pn, Qryw) (P, Qrov) | 12

Ny A No)1/2 (3.5)
< OO (1 A 1)V 200 1)) P, Qi 1P Qs s,
1P, Qe, ) (P, Q1) 53
< (ViA Nyp)t0)/2 (3.6)

S TNV N (L1 A L)' ? (L1 V Lo)*? | Pr, Q] 13 || P, Qry v 22,

where N1, No, L1, Lo, K are dyadic numbers.

Proof. Estimate (3.6)) follows from the interpolation argument with (3.3)) and (3.5)),

so that we prove (3.3)), (3.5)) and (3.4]) in this order.
Using the Plancherel’s identity ([2.1]), convolution structure (2.2]) and the Cauchy-

Schwarz inequality, we obtain

(P, Qryw) (P, Qr,v) | 13

. ~ /
- (% > 5 |(F*(Pn, Qr,u) +* W(JDJV2Q2L21)))(é‘,q,T)|2dédT)1 i

qEL/ N

sup | Ae.q7 "2 (1Pr, Qe 22 | Pr, Qo vl 22
£,q,7)ERXZ/AXR

S,
where
Aggr = {1, q1,m) ERXZ/AXR| (1, q1)| € Iny, [(€— &1, — @1)| € Ins,
I —o(é,q)l €1r,, |t —m —o(E—&,q—q)| € I, }-
By the definition of A¢ 4, and Lemma [3.2] with || ~ A(Ny A N2), we obtain
|Ag qr| S AN1 A N2)?*(Ly A L),

which is (3.3]).

Next we prove (3.5). By the triangle inequality
|11 —o(€,q) + |7 =711 —0(§—&.,q—aq1)
< |T_U(§17q1) _U(g_glaq_Q1)|
=|r—o(&q) —H(, €= &,q1,9 — a1l
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we obtain
|A€7q77

S (L A L2)|Be gr

)

where

Bg,q,-r = {(51»(]1) eR x Z/A | |(€17q1)‘ € INU |(£ _517(1_‘11” € INza
|T - U(§7q) - H(é-hé- - glaqhq - QI)| 5 Ll \/LQ}
Let us focus on the resonance function H in (2.4). We have

oH
|67£1(§175—517(J17q—(h)’ = |3f%+Q%—(3(5—51)2+(q—Q1)2)| 2 (V1 VN2)2' (3.7)
If we define Eg’w(ql) ={& €R| (&1, q1) € Beg,+} for each g1, Lemmayields
~ L1V Ly
< - 2
‘B&qu((h” ~ (Nl VNQ)Z.

Hence
(Ll Vv L2)(N1 A Ng)
(N1 V Ny)?
Combining this with [A¢ 4,-| < (L1 A L2)|Be,q,7|, we obtain (3.5).
From the Cauchy-Schwarz inequality and the Plancherel’s identity as before, it
holds that

Rk ((Pny Qryu) (P Qrov)) 22

1
57 sup AK 1/2 PN QLU 2 PN QL’U 2,
A\1/2 ({,q,7’)€]R><Z/A><R| §,q,-r‘ ” 1 1 HLAH 2 2 ”LA

| Beg.r| S A

where
A ={E a,m) ERXZIAXR[[E] ~ K, [(&1,01)| € In,,
(€= &0 — @)l € In,, |11 — o (&1, )] € Iiy,
IT—m—o(—¢&,q9—q)| €I, }
Using the triangle inequality, we have
|AE, | S (L1 A Ly)|BE, 1,
where
BE,, ={(,q) eERXZ/N||¢] ~ K, [(é1,q1)| € Iny, [(€ =& q— @)l € In,,
T —0o(&q) —H(E,E—&q1,0— @) S LV Lo}
For the bound of ng,w we calculate the second derivative of H as
0?H
367
for (&1,q1) € ng’,r. Let Eg’(qﬁ(ql) ={& eR| (&,¢1) € ng’T} for each gq;.
Combining with Lemma we obtain

~ (L1 V Ly)'/?
|ng,r(q1)| 5 K1/2 9

(&, =&, q,0— )| =6l¢ ~ K, (3.8)

for all ¢ € Z/A. Finally,

B | < ANAND(E Y L)

34, T ~ K1/2 (3'9)
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and we obtain (3.4) by [Af, | < (L1 A Ls)|B

§q7’|

Next we prove bilinear estimates in I~ 1X1 L/2+

Lemma 3.6. For s > 9/10, we have

||8$I(UU)||X/{,71/2+ < HI'LLHXi,l/2+ HI'U”Xi,l/QJr.

~

Proof. We may assume the functions 2* and 7 are nonnegative, since by the
definition of Xf\’b norm.

Replacing (C)(r — o(¢))"/**m(C)u(¢,7) and (()(r — o(¢))/**m(Q)0(C,7) by

u(¢, ) and v(¢, 1), respectively, and duality argument, one has to show that

_ 51#11,7'1 m(C)
r 2 / ST m(G)m(¢ —Gr)

q,q1€Z/ X

X TNC, )N = Gy T — 1)@, 7) dede drdm
S llullzz [loll Lz lwl 2z,

(3.10)

for w € L3 whose Fourier transform is nonnegative. Here

révanm |£|<C> .
ST (C{(C = Q)T — a2 (1 — o (G)Y*H(T — 71— o(C = G)Y/2F
Using dyadic decomposition, we rewrite J as the following
Lo,L1,L
J = Z I No N1 Na

Ng,N1,No
Lg,L1,Lo

where

T m(¢)
Jhokoks _ 1§ / roan__mO
e qmeZ//\ R* m(C1)m(¢ — 1)
— A (3.11)
XPNlQLlu (¢, 1) Pn, Qr,v (¢ — G, 7 —71)
—_— A
X Pn,Qr,w (&,q,7)dEdEq dT dry.

We decompose again J to five parts in frequencies:

_ Lo,L1,L2 _ Lo,L1,L2
Jop—r = Z INe Ny Ny» JLHSH = Z INe Ny No
N{VNyVNgKN N1<Na~Ng
Lo, L1,Lo No>N

Lo,L1,L2
_ Lo,L1,L2 _ Lo,L1,L>
Jar—n = Z JN01N17N2’ Jun—r = Z JNOuNl,N2’
Ny < Np~Ng No<Nj~Ng
NoZN NiZN
Lo,L1,Lo Lo,L1,L2

Juwsag=J — (oot + Jur—u + Joa—ua + JurL).

Estimate of J;;_.;. In this case, we have

%Nl révam < N1V Ny
m(C)m(C—C1) ST Y Ny AN LY LA LY

We split this case two cases, when N3 A Ny < N7 V N, and Ny A No ~ Ny V No.
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First, we consider the contribution of the case when Ny A Ny < N7V Ns. In this
case, by (3.5) and the Cauchy-Schwarz inequality, we have that the contribution of
the case to Jrr_.1 is bounded by

< Y R
NiVNoVNoKN (Nl /\NQ)LO Ll L2

NiANg<NyVNy
Lg,Ly,L2

X ||(Pnvy Qry ) (Pn, Qrov) | 2 ([ Py Qrowl| 12

1
x oy [1Pny Qryull 2 ([ Pny Qrovl 2 | Pre Qrowl| 2
wronaTgen (NUA No)OF Lot LI Lyt T =i e i T i A T o

Lo,Ly,L2
< gz ol g2 ol 2.
where we use Ny < N7 V Ns.
Second, we consider the contribution of the case when N1 A Ny ~ Nj V Na,
namely N7 ~ N5. Note that Py = PNﬁN for f’N = Pn/2+ Py + Pon. In this case,
the contribution of the case to Jy;_ 1 is bounded by

S E : Ni/\g N21/2+ 1/2+
NjVNoVNg<N (N1 A NQ)LO L1 L2
Np~Ny
Lg,Ly,Lg

X HﬁNO((PNIQLIU)(PN2QL2’U))”L§ ||PN0QL0wHL§\

1
Y WHPNlQLlUJHLi||PN2QL2U||L§||1UHL§

Ni~Ng 1 2

Ly,L2

S llullzz llvllpz [lwl 2z -
Hence
Jrr—r S llullpzllvflzz lwll e
Estimate of Jpy_ . We split this case into two cases that Ny < N < Ny ~ Ny
and that N < N; < Ny ~ Nj.
If Ny < N < Ny ~ Ny, we have
m(¢)
m(¢)m(¢ —¢1)

Applying the Cauchy-Schwarz inequality again with (3.5), we have that the contri-
bution of this case to Jﬁ,g]LVll?VQZ is bounded by

No

~ 1.

< N\LYE [ [ 1(Pn, Qryw) (P, Qry0) | 23 1P Qo wl| 3
1
<
~ N11/2L(1)/2_L(1)+Lg+ ||PN1QL1U||L§\ ||PN2QL21}||L§HPNOQLOWHLZ; (312)

< 1
~ N10+L8+L‘13+Lg+|
If N < Ny < Ny ~ Ny, we have
m(¢) N

~

m(C)m(¢ —¢)  Ni=s

|Prn, Qryull 2 [P, Qrovllnz [Py Qrow| 22 -
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In a similar way to above, we have that the contribution of this case to J ﬁgiﬁﬁi

is bounded by
< NoN;—#
N1N175L3/2—L1/2+L§/2+
1
lefl/gL(l)/Q,L(lH_Lg_,'_ ||PN1QL1U/||L§ HPN2QL2U||L§ ||PN0QL0w||L§\ (313)
< 1 |
~ N{)+L8+L(1]+Lg+

Therefore, by (3.12)) and (3.13]) in conjunction with previous estimate, we have

[(Pn, Qr,u) (Prn, QLov)l 2 [Pne@rowll 2

~

|PNn, Qryull 2 | Py QLo vl 22 |1 P Qrowll 2 -

Jra—u S ullzzlvllzz llwll 2,
which is acceptable.

Estimate of Jy;_. . The proof is same as for J,y_, g, because of the symmetry.

Estimate of Jyg_, 1. By symmetry, we assume Ny < N1 < N,. We separate this
case into two cases that Ny < N < Ny ~ Ny and that N < Ny < Ny ~ Ns.
If Ngo « N <« N1 ~ N, we have

o) NN
m(C)m(¢ —¢1) N2(1=s)

Applying the L3 norm of functions (Pn, Qr,u)(Pn,Qr,w) and Pn,Qr,v, we have

that then the contribution of this case to Jﬁgﬁﬁi is bounded by

< N} 7Ny 5Ng
~ s 1/2— ;1/2+ 1 1/2+
N20-s) NN, LY/ >~ LV* LY

(P, Qryw) (P Qrow) 2 |1 Pn, Qrovl 2

~A
where f (¢, 7) = P(—Q —71). We apply (3.6)) to this and have that the contribution
of this case to Jﬁgﬁiﬁi is bounded by

- NI=SN}-*N2 NSFO2(Lo A L)YV2(Lo v Ly)07?
N N2 Ny N L2 [ L N0
X ||PN1QL1UHL§\ HPNOQLow||L§ HPNzQLz’U”L?\
1
S HPNIQLlunLi||PNOQL0U)||L§||PN2QL2’UHL§’

~ Nl—st*1/2*39/2L8+L(1)+L(2)+
(3.14)
for small 6 > 0.
If N < Ny < Ny ~ Ny, we have

m(¢) Ny N,
m(C)m( —G)  NI=sNy~*
Similarly, the contribution of this case to Jﬁgﬁﬁi is bounded by

1
le—1/2—39/2N1,sL8+L(1)+L(2)+

~

HPNlQLlunLi ”PNOQLow”Li ||PN2QL2UHL§’

(3.15)
for small 6 > 0.
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Summing with respect to Ny, N1, No, Lo, L1, L2, we obtain
Jar—r S vl |vllpz [lwl 2 -

Estimate of Jyy_,y. In this case, we can assume N < Ny ~ N7 ~ Ny and have

m(C) ~ N()lis Ffl,ql,n ~ |§|
m(C)m(¢ —¢1)  Ni=sT TSeT N pl2m pl pl/e
Now, we separate this case into five subcases:
1) [¢l =1,

(ii) [l A€ -Gl ST,

(ili) 1 < [&]AlE=&lAl€land [[C]2 =G PIVIIGE=C=GPIVIIE=GP = ¢? =
NS®(Lo Vv Ly v L)+,

(iv) L&A =&IALEL ISP = IGPIANIGE = IC=GPIANIC =GP = ¢ <
Ng/®(Lo v Ly v L1)** and (l¢] v [&] V € — &) (€] A &] A€ = &) >
NS/®(Lo Vv Ly v L)+,

(v) L&l AlE=&lNE] ISP =GP ATIGE =1¢ =GP =G> = ¢l <
Ng'®(Lo Vv Ly V L1)°* and (€] V &1 V € — &)(€] A & A€ — &) S
NS®(Lo Vv Ly v Ly)°.

Subcase (i). Denote

Lo,L1,Ly __ Lo,L1,L
INoNiNe = 2 INg iy (K)
keN
where
Lo.L1,L a1, m(¢) —— A
JN37N11,]V22 Z / f?q?l 7—1—P)]V162L1’u’ (Cl)Tl)
q’qlez//\ Y (C)m(¢—¢1)
A

X PryQryv (¢ — T — Tl)PJ\:Q\LowA(C,T) dedgydr dm,
Yk = {(£a§17T7 Tl) S R4 | |£| ~ 27]6}

We apply the Cauchy-Schwarz inequality, and we have that the contribution of this

case to J]%,g]Lvllg‘sz(k) is bounded by

2—k
S N1_5N5L1/2_L1/2+L1/2+ ([ Ry-r ((PNlQL1u)(PN2QL2U)) ||L§ ”PNOQLow”Li'
00 1 2

For |£]| ~ 27%, we obtain by (2.4 m
82
e
Using ({3.4)), we obtain
[Ro—x (Pny Qryw) (P, Qr,v)) Iz
S NG (Ly v La) YA (L A L) 2| Py, Quyul 2 || Pry QLo 2.

(’glag glaqlvq Q1)|—6\f|~2 k

Then
JL07L11L2 (k‘)

No,N1,N2
9—3k/4 (3.16)

S N1_3N571/2L0+L0+L0+ ||PN1QL1’U’||L§ HPNzQLzUHLiHPNOQLOwHLi'
0 0 1 2
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Summing with respect to dyadic numbers Ny, N1, No, Lo, L1, Lo and k € N, we have
the desired bound for the contribution of this case to Jgg_g.

Subcase (ii). By symmetry, we may suppose |§ —&;1| < [€1] A 1. First, we calculate
the resonance function (2.4]) as

g%‘(&,f g q) = 366 —26) + alg — 2a1).
1

First we consider the case when |0H /9¢;| 2 €2. We shall use the dyadic decompo-
sition |¢| ~ K. By the Cauchy-Schwarz inequality such as Case (i) above, we have
that the contribution of this case to J[f,(‘)’]LV‘lﬁfQ is bounded by

K
S
~ e 12— 1 1)2% p1/2+
Kean N NOLO/ Ly Ly
X | Rx ((Pny Qryw) (P, Qrov)) ||z |1 R P @rowll 2 -
Recall the proof of Lemma [3.5 we have
[ Rx ((Pn, QL u)(Prn, QL)) 22

1
~ \1/2 sup |A§v‘177'(K)|1/2”PN1QL1UHL§”PNQQLQQ)”Lia
A (&,q,7)ERXZ/AXR

where
Agqr(K) = {(&1,q1,m) ERXZ/AXR|[¢| ~ K, [C1] € In,, [¢ =G| € Ing,
71— 0(C)| € Iy, [T =11 —o((—C1)| € I, }-
From the triangle inequality,
[Ag q,r(K)| S (L1 A L2)|Be g, (K,
where

Begr(K) = {(&1,01) €ERXZ/N| €] ~ K, |G| € Iny, [C = Ci| € I,
‘T_U(C)_H(glag_glaQLQ_ql)lSLI\/LQ}-

Let E&qJ(K, 1) ={& €R | (1 € Beyg,-(K)} for each ¢i. Then combining Lemma
and the bound |0H/0¢;1| 2 &2 ~ K2, we obtain

~ L1V Ly
Bear (Ko s 22052,

Hence, we obtain

(L1 V Lo)(Ni A N)
|BE»qu| S A K2 .
Then,

[ R (Pn, Qryu) (P, @rov)) I

No/(Ly V Lo)Y2(Ly A Lo)V/?

<
~ K

||PN1QL1U||L§ ||PN0QLow||L§\-
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Combining the Cauchy-Schwarz inequality and bilinear estimate, we obtain that
the contribution of this case to J ﬁgf\flﬁfz is bounded by

1
<> 1P, Qryull 12 [P, Qrovll 22 |1 R P @rowll 2
~ N1*5N8_1/2L0+L0+L0+ 1 X N X
K<No 0 o L1 Lo

1
S | Pn, Qo ull 2 [| Pry Qrovll 2 (| P Qrowl| 12 -
N1_8N571/27L8+L?+Lg+ 1 1 2 2 2 2 0 0 2

(3.17)
Again summing with respect to dyadic numbers Ny, N1, No, Lo, L1, Lo, we have the
desired bound for the contribution of this case to Jyg_,g.
Next, we consider the case when |0H /0| < £2. In this case, we have

aj(fl,f —&,q1,9—q1) =386 = &) —3¢6 +q(a—q1) —an

&
=6£(6—&) -3 +q(g— @) —qn
=0(&) -3 +ql¢—q1) — qq-

To satisfy the hypothesis of resonance function |0H/0¢;| < €2, No ~ Ny ~ Ny and

1€ —&| S 1< €], we need g — q1] ~ No, €] < |g| Ala] to set q(q—q1) — qq1 ~ €2
Furthermore we have

lgl ~ la| ~ lg = qul ~ €] ~ No,  3E61(€ — &) ~ O(€?),
(€ —=&)(d* = (¢ —a)?) ~ O(&?).
Let us recall the resonance function H in ,
H(E,E— &, q1,0—q1) =366(E— &)+ (E— &) — (a—a)*) + (g — a)éa(g+q),

If [H( 1,6 —&,q1.0 — q1)| 2 &2, then LoV Ly V Ly 2 €% by (2.4). Hence we
have [¢] < NJT(Lo V Ly V Ly)Y/?~. The same estimate as in (3.13) implies that the
contribution of this case to Jyy_ g is bounded by

Nyt Ny ~*
~ N0N1_3L8+L?+Lg+ H(PNlQLlu)(PNzQLzU)HLiHPNOQLowHLi
1 (3.18)
~ N178N57L8+L?+L(2)+ ”PNlQLluHLi ||PN2QL2,U||L§\||PNOQLOU)||L§'

Summing in dyadic numbers Ng, N1, No, Lo, L1, Lo, we have the bound of this case
to Jurm—u by
S Nullpz vl ez llwll gz ,
as desired.
On the other hand, if [H(£1,& &1, q1,¢—q1)| < &2, it follows that |(¢—q1)&1(q+
@1)| £ O(€%) and then |g + ¢1| < 1. In this case, we use the form

@1 =[] + (1 — [¢1])
and then

g—qa=[+@q-ld)-—a=I[d-(al+(@-ld-a+n]),

where [a] denotes integer part of a € R. Note that ¢1 — [¢1], ¢ —q1 — [¢ — 1] €
Z/AN[0,1). The restriction |¢+q1| < 1 implies |2[g1] + [¢]] < 1. By performing the
same calculation as [2I, Proof of Proposition 3.1] and [I1, Proof of Theorem 2.1],
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we use the Cauchy-Schwarz inequality to have that the contribution of this case to
Jyg_ g is bounded by

S osup I T)ullpz vl 2wl 2
(¢, 7)ERXZ/AXR

where

Ny~
I(C7 7') - Al/QLé/Q,Nl_S

X

/ déy )1/2
le—e<1 (T —0o(Q) —H(&,§ =&, q,0 — @)t ’

where we assume |H(&1,€ — €1,q1,q — q1)| < €2 in the integration of region. Then
it suffices to show that

[2[q1]+[glI<1

sup (¢, 7)? < . (3.19)
(¢,7)ERXZ/AXR

The resonance function is reformulated as
H =366~ &)+ (E— &)@ — (a— 1)) + (e — q)éilg + q),
which is equivalent to a quadratic equation in &7,
3667 — (24 — a1)g +36%)6 — (¢ = (4 — @1)*)E + H =0,

The roots of the quadratic equation are the values of &; as fli, where

ct 2q1 —@)qn — 38 £ \/((2611 —q)g —362)° +12¢% (¢* — (¢ — q1)?) — 126H
1 — 65 .

Using the change of variables, we have

dH
V(@0 — )a— 362 +12€2 (¢ — (- a1)?) — 126

We evaluate integrals using the change of variables as

g =+

/ dé;
le—er <1 (T —0(Q) = H(&1, € = &1, 01,9 — @)
</ dH
~Jr (=0 (Q) — H)F| (21 — q)q — 3€2)° + 1262 (¢2 — (q — q1)?) — 126H[1/2
1
< .
THE2 4 E(r — 0 (0)) + ((2a1 — q)g — 3€2)% /12 4+ €2 (2 — (¢ — q1)?) |/2
Then we have the bound

/ d&, < 1
le—e <1 (T —0(Q) —H(&, 6§ =&, a1, — @)t ™ Nol/2
Therefore,
N}-s 1 \1/2
(T S ———— —
N2Ly T N <2[q1]§q]sl NS/Q)

5 ! g ]-7
[(1)/2 Pfl—sz‘fg 3/4

which is acceptable for ([3.19).
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Subcase (iii). The proof follows from the same as one in [19] (also [2I, Proposition
3.1]). By symmetry, we assume ||C|2 — |¢1|2| = N&/°LI*. Then

OH 6/5
|50 (61,6 = nar,a — )| = [IKP = G| 2 Ny P LG,
&
which modifies the computation appeared in (3.7)) for the proof of (3.5). Hence the
contribution of this case to Jﬁgﬁﬁi is bounded by
- Ni—s Ny2(Ly V Ly)Y/?
N N[ [ IR T \Epor
X [P, Qry vl 22 1P, Qrovl 22 [ Png Qrowll 2 (3.21)
1
S [1Pny Qryull 2 [[Pny Qrovl 2 | Png Qrowll 2

~ N1*5N§_9/10L8+L?+L8+

which is acceptable after taking the sum in dyadic numbers Ny, N1, No, Lo, L1, Lo.

Subcase (iv). We can rewrite resonance function H as

H(&,E— &, q1,0— q1) = 3E6(E— &) + &a° — €63 — 26qq1 + 28qq
= 73561(5 - 51) + P(Svgla Q7q1)7

where
P(£,81,¢,q1) = 66618 + £10° — €47 — 261qq1 + 26qq:.
By the same argument as in [19] (also [21], Proposition 3.1]), we have in this case
M (&, €= & aq1,0 — q)l 2 (€] V &)V IE= D€ A& ALE — &)

€V 1] v [€ = D)€l A L& A L€ = EnIE]
> NP LY (e) 2 €A LSt

VRV

By symmetry we assume Lo = LoV L1V La, which implies [H (&1, —&1,q1,¢—q1)] S
Ly. Combining these estimates in this case, we obtain |¢]| < Lg/u*. We use (3.4)

to have that the contribution of this case to Jf,g]LVll?VZz is bounded by

K Ng/z 1/2 1/2
< E (L1 A L) /#(L1 V Lo)
~ —snrsT /2= 1/2+4 £ 1/2+4 1/4
K<L~ NV NgLy/* ™ Ly L2 KY
X 1P, Qryul[ 2 | Py Qo vl 22 (| R Py Qo wll 12
1

S NT_sNe /007 (07 [0 1Pn, Qryul 13 | Py QLo vl 13 | B Prvg Qo wll 13
0 0 1 2
(3.22)

which is acceptable after taking the sum in dyadic numbers Ny, N1, No, Lo, L1, Lo.

Subcase (v). Finally, we consider this case. We repeat the argument in [I9)]
(also [2I, Proposition 3.1]). Introducing dyadic numbers K;, we have that the
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__— . Lo,Ly1,Lz
contribution this case to Jy "2 "% is bounded by

< 1
~ N1_5N5L3/2—L}/2+L;/2+

X Z KOHRKO((RK1PN1QLlu)(RszNzQsz))||L§\||RK0PN0QL0wHL§\'
Ko,K1,K2

(3.23)
In the proof of (3.4), we modify that in (3.9)
(K1 ANKo)(Ly V L)

|ng,7| S A K% )

which shows
[ R (Ri, Pny Qryw) (Ric, P, Qr,v)) | 12
< (Ki A K2)'2(Ly A Lg)' (L V Ly) '/
S Ké“
Then the left hand-side of is controlled by
< v K34 (K A K2)1/2(1L17/\ Lo)Y2(Ly V Ly)/4
Ko Ko Ko Nl—sNosLO/2 L}/%L;/%

X |1 Pny Qryull 2 [P, Qrovll 2 (| Pre Qrow!| 2,

[P, Qryull 2 ([ P, Qrovll -

where the sum is based on the region (Ko V K1 V K3) (KgAK AKs) < NOG/S(LO v
Ly V L)%+, Since K3/*(Ky A K3)Y2 < NJ/™(Lo v Ly V Ly)*F, we have that the
contribution of this case to J ﬁg@iﬁﬁz is bounded by
S e
N1=sN; LYt LT LYt (3.24)
[Pny Qry Ry ull 12 | P, Qo Ricov| 12 [| Ricy Py Qo wl| 2,
which is acceptable.
We completed the proof of Jgpg_ g, and hence of Lemma O

Proof of Proposition [3.1] Define
1 t !
V() (0) = n(t)e 2+ gatt) [ e 20, (NEP) d.
0

‘We show that the map ¥ defines a contraction in
Voo = {ot € I X532 | 1 1uM| o ee < 20Ty },

for (small) § > 0, where the norm on Yj  is induced by HIu)‘||X1,1/2+, In fact, from
5N

Lemmas [2.3] 2.4] and [2.5] and [3.6] it follows that

19N g1/ < Ol gy + ORI o s/

< Ollug |y + OO0 (u)? ] 1,172+ 3.25)
< C”IU())\”H; + 058”]“)\”?(;,;1/%
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for u* € Y, and choosing small § > 0 which will depend on ||Tu}|| gy Similarly,
1
||I\I/(’LL>\) - I\I/(”U)\)||X;:;/2+ S 5”]’&)\ - I(UAHX;:}\/?-H

for u*, v € Ys.» and small § > 0. Then the contraction mapping theorem tells us
that there is a unique solution u? = ¥(u?) € Y;.5 to the Cauchy problem (3.2)).
The persistence property u* € C([0,6] : H§) and the uniqueness in whole space

Iu* € X1 /2 follow in a similar way to [II, Proof of Theorem 1.5], by using a
variant of , therefore we omit them. O

4. MODIFIED ENERGY

The conserved quantities associated with ([3.2)) are

1 1
B0 =5 [ (Ve - ot en0”) dody,
RXTy 3

2
MA() = / Ay 1) dedy.
RXxTy

From FMud (€, q) = Fug(AE, \q), it is easy to see that

l[uoll 2
173z < lugliey < 7= = o(1) (4.1)

for A > 1. Here the choice of the large parameter N will be made latter, but A > 1
is chosen by

% =o(1), (4.2)
in which
N1-s
IVIuglic: S Sz llwollns = o(1),  [[Tugllsy = o(1). (4.3)
Moreover, we have
(3 : e S AL (@) g < AT )]y - (4.4)

Remark 4.1. By Gagliardo-Nirenberg inequality, the conservation law of L3-norm
and ([4.1]), the solution u*(t) satisfies

IVIu (0172 = Cullugllzs < C2BANIu](2), (4.5)
where constants C7 and Cy are independent of .

Let us introduce the modified energy for proving global well-posedness. Using
the Fundamental Theorem of Calculus, we obtain

[P dBEMIuM(t)
EMIu(6) — EMNTu?)(0) = /0 D



EJDE-2024/05 ZAKHAROV-KUZNETSOV EQUATION ON CYLINDRICAL SPACES 19

for 6 > 0. We continue calculation of the integrand in the right-hand side. Then
dEMIu?) d v 1, yed
—(t) = I Tu® — (I —I dxd
T /Rm(dtvu Viu Q(U)dtu)my

= / (— I0u* ATu® — 11'8tu/\(Iu/\)2) dx dy
RXxTy 2

_ Ay Looane) (L a2 A
_AxTA 8$(1Au + 2I(u ) )(2(Iu )* 4+ Alu )dxdy (4.6)

1
= —7/ IAUPO, ((Tut)? — I(u)?) dzdy
2 RxTy

1
— f/ I(u*)?0, ((Iu)‘)2 = I(u)‘)z) dz dy,
4 RXT)\
where we use the equation in (3.2)). Taking the integral on [0, d], we have
EMIuM(8) — EMIu?)(0)

§
_ _1/ /qur TAWPD, ((Iu*)? — I(u)?) dedydt 4.7)
77// B (1u*)? — I(u)?) da dydt
RxTy

We will estimate two terms on the right hand of (4.7)) with HI w1t by multi-

A
2.
linear estimates associated with the transition of energy in

Lemma 4.2. For s > 9/10, we have
10 (Tulv — I(wv))|| y1.-1/24 S NYOFTuf| raser [ Tv]| g1as2s (4.8)
A A A

~

Remark 4.3. Comparing to the estimate in Lemma [3.6] we have the small factor
at the front of the right-hand, which corresponding to properties such as dispersion
or the smoothing effects.

Proof. We recast the proof of Lemma in the form of formula (4.8). Here we
used the same symbol over as in the proof of Lemma [3.6l By Plancherel identity,
it suffices to show that

fl,ql,n m(C) o) _
Z /]R4 £,q,7 Cl m( )‘—‘(CaChC Cl)

q,q1€Z/>\

)
N (¢, m)ONC = G — )N, ) dédEdrdm

S ”u”Li”U”Liuw”Lia

(4.9)

for u,v,w € Li whose Fourier transform are nonnegative. In (4.9)), we have

1"51711177'1 _ |§|<<>

ST (CY(C = )T = ()2 (1 — o ()2 (T — 11 — (¢ — Cu))/2H
1/10—
E(¢, ¢, ¢—G) = |m(C1)m(¢ — ¢1) —m(Q)].

m(¢)
Note the trivial bound

N1/10—

= o)< .
(C7<17C Cl)w m(C)

(4.10)
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Using dyadic decomposition in a similar way to the proof of Lemma[3.6] we rewrite

J as the following
Lo,L1,L
J = Z INo Ny N

Ng,Ny,Na
Lo,Ly,L2
where
R o pévaT m(¢) -
']Ng,NllJ\/?z - /]R4 ,1q,1 1W‘—‘(C7clac - Cl)

q,qleZ//\
— A
XPNlQLlu (Cl7Tl)PN2QL2U (C_ClaT_Tl)

— A
X Pn,Qrow (£,q,7)dédédr dry.

We repeat the same procedure as one of Lemma [3.6] Decompose again J to five
parts in frequencies:

(4.11)

_ Lo,L1,L> _ Lo,L1,L2
JLL—>L - Z ‘]NO,Nl,N27 JLH—>H - Z JNO,Nl,NQ’
N1VNyVNg&N N1 < Ngy~Ng
Lo,L1,Lo NoZN

Lo,Ly,L2
_ Lo,L1,L> _ Lo,L1,L2
Jur—m = Z INe Ny Ny JHHSL = Z INe Ny No
N3 <Nj~Nog No<Nj~N3
No=N Ni=N
Lg,Ly,L2 Lg,Ly,L2

Jog—spgp =J — (Jopsr +Jur—ug + Jop—u + Jan—L).

We estimate each of them by case analysis.

Estimate of Jpr_, 1. In this region, we have Z(¢,(1,{ — (1) = 0, since by m({) =
m(¢1) = m(¢ —¢1) = 1. Hence Jpzz = 0.

Estimate of Jpy_,m. We split the case into two cases, when N7 = N and when

Ny <« N. When N; 2 N, we use the bound . On the other hand, when

N; < N, the mean value theorem gives
No)N
m(¢m(¢ = 1) = m(Q)] = [m(¢ = ¢1) = m(Q)] S m/ (No) Ny ~ %

By making use of the estimates in (3.12)) and (3.13]), we easily have the desired
bounds for the contribution of this case to Jrg_,g. Indeed, when N; < N, the

computation in (3.12)) with (4.10)) leads the bound

(4.12)

N N1/107
S No NIELE 07 10 195, Qryul 23 | P, @y vl 23 | Prve Qo w13
1

S | Pn, Qr,ull 2 || PNy Qrov|| 2 | Pr QrLow]| 12 -
N](?+Lé/2_L?+Lg+ 1 1 N 2 2 B 0 0 B

While N7 2 N, we have [m/(¢1)m(¢—¢1)—m(Q)| S m(Ny) and then Z(¢, (1,(—(1) S
. the computation in (3. wit . we estimate this contribution
N'/10-_ By the computation in (3-13) with (#.12) i hi ibution by
1

NPL LY
1

<

~ N LTI LY

Then the desired estimate follows.

,S Nl/lo_ ||PN1QL1U’||L§ ||PN2QL2U||L§HPNOQLOU}HL’;’

1Pn, Qryull 2 [P, Qrovll 22 |1 P Qrowll 2 -
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Estimate of Jy_, . We use symmetry arguments as for Jpg_, g to conclude the
proof.

Estimate of Jypg_,r. In this case, we use the bound (4.10). By employing the
same estimates as in (3.14) and (3.15]), we have the desired bounds. Actually, the
computation in (3.14]) will be changed into

Nl/lO—
S N1_8N571/2,39/2L0+L0+L0+ ||PN1 QL1u||L§ ”PNOQLow”Li HPNzQLzU”Li
1 0 1 2
1

1Pn, QLo ull 2 [P Qrowl 2 [Py QLo vll 22 5

~

N12/5*39/2L8+L(1)+Lg+
for small # > 0, while the formula in (3.15]) is changed by the same.

Estimate of Jyy_,g: In this case, we can assume N < Ny ~ N; ~ Ny and then

E(¢, ¢, ¢ — G) SNV
We divide the region into five regions as in the proof of Lemma [3.6] On each case,
we recall the estimates in (3.16), (3.17), (3.18), (3.20), (3.21), (3.22) and (3.24),
by multiplying (¢, ¢1,¢ — ¢1). We see that Jyy—m < [[ullzz||v]lzz wl|rz holds
provided s > 9/10.
In fact, in subcase (i), the estimate corresponding to will be
9—3k/4

< N0 NS NI/ZL0T [0% [0% [Pn, Qryull 2 ([P, Qrovll L2 | Prg Qrowll L2
0 0 1 2

2—3k/4

| Pnv, Qryull 2 [|Pry Qrovl| 12 [| Pre Qrowll 12
~ Ng/S*Lg-i-L(lJ-‘rLg-ﬁ- res by 2wz X 0% 50 N’

which is acceptable after summing over Ny, Ny, No, Lg, L1, Ls.

In subcase (ii), we revisit the estimates in (3.17), (3.18)) and (3.20)). We require
the following estimate corresponding to (3.17

1
ons—1/2—
N1-sN; V27 Lo+ L0+ 19+
1
~ONZT IOt LY
The corresponding estimate to ([3.18) is

< Nl/lO— 1 |
~ N1—3N57L8+L(1)+L(2)+
1
9710
N0 L9+ L0+ L9+
The estimate corresponding to (3.20)) is

S NS 1Pn, Qryull 22 [ Pn, Qrovll p2 ([P Qrowl| 12

1PN, Qryull 2 1 Pny Qrovll 22 [Py @rowlnz -

|PNn, Qryull 2 | Py, Qrovll 22 (|1 Pve Qrowll 2

[Pny Qryull 2 [ Pry Qv 2 | Prg Qrow| 12

1
I(¢,m) S NV <1
) ~ /2— _snrs—3/4 ~
Ly? " Ni=sNg ™/

By a similar proof to one of Lemma [3.6) we have a desired bound.
In subcase (iii), it suffices to show the following estimate corresponding to (3.21)),

NG Ny*(Ly v Ly)*/?
Nl—sLé/Q*L}/2+Lé/2+ Ng/E’Lng

< N1/10—
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X 1PN, Qryul 2 | Py, Qrovl 2 |1 Pre Qrow!| 12

1
S N(())+L8+L(1)+L(2)+ ||PN1QL1u||L§ ||PN1QL2'UHL§ HPNOQLOU}H[&,

which holds for s > 9/10.
In subcase (iv), the corresponding estimate to (3.22)) is

1
Nl—sNg*9/10L8+L?+Lg+

1
S NOFL0F [0F [0F [Py Qryull 2 [[Prvy Qrovll 2 [ R P Qrowl| 2,

which is acceptable for s > 9/10.
Finally, in subcase (v), we need the following estimate corresponding estimate

to (20

< Nl/lo—

< N1/10—

[Py, Qryull 2 [Py, Qrovll 2 | R P Qrow!| 12

1
o ns—9/10
N1=sNg=M0 0+ [0+ [0+
X HPNlQLlRKlunLi||PN2QL2RK2,U||L§||RKOPNOQLOwHL?\

1
~ N(())+L8+L(1)+L(2)+ ||PN1QL1RK1U‘||L§ ||PN2QL2RK2U||L§HRKOPNOQLD’LU”Lia

which is also acceptable for s > 9/10. Hence the proof is complete g

By Lemma we have the following lemma.

Lemma 4.4. For s > 9/10, we have

§
| /0 /Rm [Aud, ((Iu)? — I(w)?) dedydi| < ﬁnmn%im.
Proof. We apply the Parseval’s identity and the Cauchy-Schwartz inequality to get
the bound of the left-hand side by
S HIAU||X(;;,1/2+H8x(IU)2 — I(u)® )HX1 1/2-
S Il o0 100 (T)? = 1)) 1172
Employing Lemma we have the desired bound. ([

Lemma 4.5. For s > 31/40, we have
1
Iu20, ((Iu)? — I(u)?) dxdy dt| < ——— || Tul|[* .
‘/Rx’ﬂ‘)\xR " (( u) (u) ) ray |~ N1/10+H uHxi,l/ZJr

Proof. We apply Parseval’s identity to the left-hand side and use the same argument
as in the proof of Lemma [3.6]
It suffices to show that
4

1 T1,72,T: T’—!
T= 53 [l el B e EEG GG H (Gor) S lullta,  (413)

for u € L} whose Fourier transform is nonnegative. In ({#.13), Y, [ stands for
the sum-integral of (¢;,7;) € RXZ/AXxR (1 < j <4)over &1 + 6o+ &+ & =
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m+ne+m+mu=7m+7m+7m+7=0,and

4
T1,72,73,T4 _ 1
aaaa=1l m(G){Gi)(my — o (G2

j=1

2(C1, G2, G30 Ga) = MG+ ) [m(G)m(Ca) — m(Cs + Ca)| N0
Note the trivial bound

2(C1, G2, (3, Ca) S NV1OT (4.14)
By dyadic decomposition in a similar way to the proof of Lemma we use
(¢j) ~ Nj and (1; — 0(¢;)) ~ Ly, as before,
L1,L2,Ls,L
J = Z JNi,NZJ\?SJ\}:’
N1i,Ng,N3,Ny
Ly,La,L3,Ly

where

4
— A
TN = % > / |63 + &alTE 2T T E (G 20 3y o) [ [ P, Quyw (G y)-
* * j=1

We will show using a the case-by-case analysis.

In case N3V Ny < N, we have Z((1,(2,(3,(4) = 0, which is canceled out
when evaluating . Then we may assume N3 V Ny = N in . Note that
€5+ &af = [§1 + & S (N1 V N2) A (N3 V Ny). We take (Py, Qr,u)(Pn,Qr,u) and
(Pn,Qr,uw)(Pn,Qr,u) in L3 by using (3.3)), respectively. By (4.14)), the contribu-

. . Ly,La,Lg,Ls
tion of this case to Jy, N2 N, N, 18 bounded by

(N1 /\NQ)(N1VN2)11/20 (NS/\N4)(N3\/N4)9/20 .

< NV TT 1Py QL u
~ Nym(Ny)Nam(Ng) L0F LF Naym(Ns)Nam(Ng) LS L0 11 1Py, Qr ull

=1

A
.z%

1
P, Qrull 2
N;)/4O—m(Nj)Lg+ J 3 ILY

<
sl
—

1
W”PNjQLjUHLi,
1 J J

A

J
since the function f(z) = x%4°~m(z) is non-decreasing on [1,00) provided s >
31/40. This is acceptable after taking the dyadic sum on N; and L;. O

The following lemma is not difficult to prove using Lemma [4.5| as in [B] [6].
Lemma 4.6. For s > 31/40(< 29/31),

[
1
I(u)?0, ((Tu)* — I(u)?) drdydt] < ———||Tul|* 11/ .
|/0/R><’]I‘)\ () (( u) (u)) ray |~N1/10+” UHX&'A/+

5. PROOF OF MAIN THEOREM

In this section, we will give the proof of Theorem by the local well-posedness
results of Proposition [3.I] in conjunction with Lemmas [£.4] and The proof
follows the strategy described in [5]. We prove the global well-posedness by the
local well-posedness theory for solution Ju obtained in Proposition [3:1] and by the
upper bound of increment of modified energy from .
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Proof of Theorem [I.1. We consider the Cauchy problem on an arbitrary time
interval [0, T]. We rescale solutions by scaling and consider the rescaled prob-
lem in with initial data
1 T
u(e,y) = zu0 (5. 5).

The goal is to construct rescaled solution u*(t) to the Cauchy problem on the
time interval [0, A3T.

By the local well-posedness result of Proposition [3.1]along with , our solution
u(t) satisfies || Tu 12 <K 1. Applying Lemma andto the computation

of (4.7), we have

)\”Xé

EMIA(6) < BN 0) + ~2H— — o).

N1/10—
By using (4.1) and (4.5), we have
1u* (&)l y = o(1).

We can iterate this process up to N'/1°~ times before doubling (170 (8) ||z -
This process extends the local solution obtained by Proposition to the time
O(N'/19=§). We choose N such that by (%.2)

Nl/lof(; > )\ST ~ N3(175)/(1+5)T’

which may be done for s > 29/31, hence complete the claim of Theorem

Furthermore, replacing A ~ NU1=9)/(+5) and N ~ 7100+5)/(31s=29+ ipy ([{F),
the growth of Sobolev norm of the solution u(t) to the Cauchy problem has a
bound at least

[u(T) e S AF NI NPT || gy S THOU )/ GLem290%,
This completes the proof. O
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