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EXISTENCE OF TWO INFINITE FAMILIES OF SOLUTIONS
FOR SINGULAR SUPERLINEAR EQUATIONS ON
EXTERIOR DOMAINS

JOSEPH IAIA

ABSTRACT. In this article we study radial solutions of Au + K(|z|)f(u) = 0
in the exterior of the ball of radius R > 0 in RV with N > 2 where f grows
superlinearly at infinity and is singular at 0 with f(u) ~ and0<g¢g<1

1
Julga—1u
for small u. We assume K (|z|) ~ |z|~% for large |z| and establish existence
of two infinite families of sign-changing solutions when N + ¢(N —2) < a <
2(N — 1).

1. INTRODUCTION
In this article we are interested in radial solutions of
Au+ K(|z))f(u) =0 on R¥\Br, w=0 ondBgr, u—0asl|z|— oo, (1.1)

when N > 2 and where Bp is the ball of radius R > 0 centered at the origin.
Assuming u(z) = u(|z|) = u(r) the above problem becomes

N-—-1
u' =+ K(r)f(u) =0 for R <r <o, (12)
u(R) =0, lim u(r)=0. (1.3)
rT—00

Numerous papers have proved existence of positive solutions of these equations
with various nonlinearities f(u) and for various functions K(|z|) ~ |z|~* with
a > 0. See for example [T}, 4, (Bl [7, 111 12, [13].

Here we prove existence of two infinite families of solutions including sign-
changing solutions for this equation. We have also proved the existence of sign-
changing solutions in other recent papers [2] 3] 9] [10].

We use the following assumptions:

(H1) f:R\{0} — R is odd, locally Lipschitz, and
f(u) = |uP~ u + g(u) with p > 1
lag(w| _ .

[ul?

for large |u| and lim, oo
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(H2) There exists a locally Lipschitz g; : R — R such that

f(u)zm

(H3) f > 0on (0,00).
Let F(u) = [ f(t)dt. Since f is odd then F is even. Also, since 0 < ¢ < 1
(by (H2)) it follows that f is integrable at 0 and therefore F' is continuous with
F(0) = 0. Also since f > 0 on (0,00) it follows that F'(u) > 0 for v > 0. Since
F(u) is even then F'(u) > 0 for u # 0.

We also assume K (r) > 0 and K'(r) are continuous on [R, c0). In addition, we
assume that

(H4) there exist oy, as and positive K7, Ky, K3 such that

4
K <K< ﬁ and r K]
ro1 ro2 K

where N 4+ ¢(N —2) < ae < a3 <2(N —1).
In this article we prove the following result.

+ g1(u) with 0 < ¢ < 1 for small |u| and ¢1(0) = 0.

< K3 on[R,00), (1.4)

Theorem 1.1. Let N > 2 and assume (H1)-(H4). If R > 0, then there exist two

infinite families u of solutions to -, If R > 0 is sufficiently large then
there are 2 solutions, u,il, with n interior zeros on (R, 00) for all positive integers
n and there is 1 positive solution. If R > 0 is sufficiently small then there is an
ng > 0 such that there are 2 solutions with n zeros on (R,00) for all n > ng and

there is one solution with ng zeros on (R, 00).

We remark that the solutions of - have continuous second derivatives
except at points where u(rg) = 0 because lim, o |f(u)| = co. Solutions, however,
do turn out to be C'[R,0). In addition, we will see in Lemma that if @ > 0
then u(r) and u/(r) cannot both be zero at any r € [R,00). In particular, if
u(z) = 0 then u/(2) # 0 and so by (H2) it follows that 1K f(u) is integrable
at z. Therefore, by a C'[R,c0) solution of (L.2)-(1.3) we mean u € C'[R, )
such that rV=1u/ + [LtVN1Kf(u)dt = RN~1/(R) for r > R, uw(R) = 0, and
lim, o u(r) = 0.

2. PRELIMINARIES

Let R > 0. We begin our analysis of (1.2)-(1.3)) by first making the change of
variables u(r) = v(r>~") = v(t) and obtaining

v (t) + h(t)f(v(t) =0,

where
t2(21\i;vl) K(t2—1N )
O<ht)=—7— =
<0 = gy

Henceforth we denote Ry = R?>~N.
We now attempt to solve the initial value problem
vl + h(t)f(ve) =0 for 0<t< Ry, (2.1)
v,(0) =0, v, (0)=a>0 (2.2)

and then try to find values of a so that
va(R1) = 0. (2.3)
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Let
2(N-1)— _ 2(N—-1)—ay
N—2 = T N_o
It follows from (H4) and the definition of h that there exist positive hq, ha, hs such
that
||

h

oy =

0 < hit™® < h(t) < hot™%2  and < ha, (2.4)

where 0 < a1 < as <1—gq.
First we prove existence of a solution to . on [0, €o] for some ¢y > 0.

To do this we reformulate . ) as an approprlate integral equation. Let us
suppose first that v, is a solution . Integrating on (0,t) gives:
t
vl —|—/ h(z)f(ve(z))dx =a for a > 0. (2.5)
0

Integrating on (0,t) gives

Vg + / / ))dxds =at for a > 0. (2.6)

A bit of care needs to be taken here because we first need to know that the
integral in is defined. To see this notice that if v, is a solution of (2.1))-(2.2)
then for sufficiently small ¢ > 0 we have $¢ < v, < at. In addition, it follows from
(H1) and (H2) that there is a constant f; > 0 such that f(v,) < fi(v, 9+ vP) and
therefore by we have

0< h(O)f () < (g

< f1h2( —|—t75‘2+pap> (2.7)

2 X
= fiho (7t_a2_q + t_o‘2+pap).
a

From we have 1 —dp —¢ >0 and 1 — o + p > 0 so it follows from that
h(t)f(ve) is integrable near ¢ = 0. Thus the integral in is defined and is a
continuous function. It then follows that is also defined.

Now using (H2) we see that is equivalent to

Vg + / / —|— g1 (va)) dx ds = at. (2.8)
Next let v, = tw in which gives

w=a-— f/ / xqwq ) + gl(ﬂcw)> dz ds. (2.9)

We now define
Se ={w e C[0,¢] : w(0) =a >0, and |w—a| < g for all t € [0, €]}.

Here C|0, €] is the set of real-valued continuous functions on [0, €] with the supremum
norm || - ||. We define T': S¢ — C[0, €] by Tw(0) = a and

Tw—a—f// :c‘lwq )—i—gl(mw))dmds for ¢ > 0.
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As mentioned in and it follows that 0 < % < hox~% % and o +q < 1.
Hence z~%74 is integrable on (0, ¢). Then it is straightforward to show T maps S.
into S¢ if € > 0 is sufficiently small. Next let L be the Lipschitz constant for the
function g; defined in (H2) and suppose wy,ws € S. Using the mean value theorem
and the fact that § <w; < a fori = 1,2 on [0, €] we see that

1 t s 2 ~ -
|Twy — Tws| < ?/ / (qhg(f)qﬂx_a"’_q +Lx1_a2)|w1 — we|dxds
0 Jo a
qhg 2 q+1,1_a,—
Sw—w< _ _ Zyrtlyi-aa—g 2.10
o 2| (l—ag—q)(2—o¢2—q)(a) (2.10)

P ).
(2 — 042)(3 - 042)
Since the term in parentheses in (2.10) goes to 0 as t — 0%, it follows that there
exists €g > 0 and a ¢ with 0 < ¢ < 1 so that

|Twy — Tws|| < cljwy —ws| for all w; € S, .

Thus T is a contraction and so by the contraction mapping principle T has a unique
fixed point [8]. Therefore, we obtain a unique solution of (2.6)) on [0, ¢o]. It then
follows that the integral term in (2.6) is differentiable which implies that v, is

differentiable and satisfies (2.5)).

Next we let
12

By = o5+ F(va). (2.11)

Recall from the comments after (H3) that F'(v,) > 0. Therefore from (2.1) and
(2.4) it follows that

I 2| < |& o vl? h3Ea
252" | = oth =t
Thus (ths) < 0 for ¢t > 0 and therefore integrating on (€p/2,t) (with the ¢ in the
proof of existence) gives

Bl =] -

(2.12)

U/2

oF + Fva) = Ea(t) < Cyths < C1RYs,

where C = E,(e0/2).(€0/2)".

Thus v, and v/, are uniformly bounded on a largest interval of the form [ey/2,T] C
[e0/2, R1]. It then follows from this that v, and v}, are defined and continuous on
all of [0, Ry]. In addition, it also follows from this that the v, vary continuously
with respect to a.

Lemma 2.1. Assume (H1)-(H4) and let v, solve (2.1)-(2.2) with a > 0. Then
|va] + |v5] > 0 on [0, Ry].

Proof. First since v,(0) = 0 and v},(0) = a > 0 it follows that v, and v), cannot both
be zero at any t € [0, €] for some € > 0. Suppose now that there is a ¢y € (0, R;]
such that v, (tg) = v.,(to) = 0. Thus E,(t9) = 0 and then from it follows that
(Eqt") > 0 on (t,ty). Integrating this on (¢,to) yields E, < 0 on (¢,tg). Since
E, > 0 it follows then that E, = 0 on [0,%y] and thus v, = v, = 0 on [0, ¢p]. This
however contradicts that v/, (0) = a > 0. Thus the lemma follows. O

Lemma 2.2. Assume (H1)-(H4) and let v, solve (2.1))-(2.2) with a > 0. Then v,
only has a finite number of zeros on [0, Ry].
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Proof. First since v,(0) = 0 and v/,(0) = a > 0 it follows that v, > 0 on (0,€) for
some € > 0. Now suppose Va(2zi) = 0 for 2z € [¢/2, Rq] with 21 < 290 < -+ < Ry.
Then there exists z* with €/2 < z* < Ry such that 2 — z* € [¢/2, Ry] and
va(2*) = 0. In addition, it follows from Lemma [2.1] that v} (z;) # 0 and thus there
exist local extrema, My, with z;, < My < zg41 and v,(Mg) = 0. Thus we see
My, — z* and v),(2*) = 0. But this along with v,(z*) = 0 contradicts Lemma [2.1]
Thus v, has only a finite number of zeros on [0, R;]. O

Lemma 2.3. Assume (H1)—(H4) and let v, solve (2.1)-2.2). Suppose a > 0 is
sufficiently small. Then vg has a local mazimum, M ,, and a zero, z1 4, on (0, Ry).
In addition, z1, — 0, v} (21,4) = 0, and ve(My,4) — 0 as a — 0F. More generally,
if a > 0 s sufficiently small and k > 1 then v, has k zeros, z;,, and k local
extrema, M; o, with0 < My, < 214 < M2 g < 224 < -+ < My 4 < zkq on (0, Ry).
In addition, lim, o+ 2; o = 0,lim,_,q+ v} (2i¢) =0, and lim,_,o+ |ve(M;,q)| =0 for
1< <k.

Proof. From ([2.6) we have

Vg + / / x))dzds = at. (2.13)

Suppose now that v, >0 on (0, R1). Then from (H2) and (H3) there is a constant
f2 > 0 such that f(vy) > fov, 9. In addition, from (2.4)) we see that h(t) > hit~*
and 1 — &3 — ¢ > 0. Substituting into 3)) gives

// f(va(z )dxds>f2h1// %1y (x) dx ds. (2.14)

Also, it follows from and (H3) that when v, > 0 we have v < 0 and so
integrating this inequality twice on (0,t) gives

0 < vg < at. (2.15)
Substituting this into (2.14)) gives
t s
f2h1/ / ™Y, f2h1/ / Mgy ds
o Jo
2.16
fahat?~ 174 (2.16)

Cai(l-dn —q)(2—d1 —q)
Substituting this expression into (2.13)-(2.14) gives
fohit?~0174
at(l—a; —q)(2—a&1 —q)°
However, the right-hand side of (2.17) is zero when
a1 (1 —a; —q)(2— a1 — )\ =313
t= )
fahi
and notice that this value of ¢ is less than or equal to Ry if @ > 0 is sufficiently
small. Thus (2.17) yields a contradiction and therefore v, has a first zero, 21 4, and

0 < 21,4 < Ry if a > 0 is sufficiently small. In addition, the above argument shows
that

0<v, <at-—

(2.17)

a1 —a1 —q)(2—a1 —q)
fah1

1
0< 214 < ( )2’“1"’ -0 asa—0".  (218)
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Thus
li =0. 2.19
g P (2.19)
Next we examine the following identity which is straightforward to establish by

differentiation and ({2.1),

1 ¢ 1
511;2 + h(t)F(v,) + / (—h'(8))F (vq) ds = §a2. (2.20)
0
Evaluating at z1 4 gives
1 1
S (e1) = 50 +/ W (s)F(va) ds. (2.21)
0

Since F(t) = fg f(s)ds it follows from (H1) and (H2) that there is a constant
f3 > 0 such that

F(v,) < fa(vl™ 74+ vP*t)  when v, > 0. (2.22)
Also from (2.4]) we have

t|h _

% < h3 and so |h/| < h2h3t717a2. (223)

Substituting this into the right-hand side of (2.21]) and using (2.15)), (2.22)) gives
Z1l,a Z1l,a .
/ B (5)F (vg) ds < / fahohst 1792 (g} 91— 4 gPT1PTL gt
0 0

—qg. l1l—as— 1-a&
al q1—a2—q aerlZl aOCZer
)

= fahohy (20— + —— 2.24
e\ 5, = T T q s (2249
o 1 aPTIRYT
< fahohaalIRITG2 q( 1 )
= Jahehso l—dy—q 1—dz+p
Thus substituting (2.22)) and (2.24) into (2.21)) gives
1, 1, e pl g 1 aPta Ryt
- <z hahga' R} L) 2.2
2”a(21,a)_20 + fshaohza™ "R, 1—d2—q+1—&2+p —0 (2.25)
as a — 0. Therefore,
lim v)(21,4) = 0. (2.26)
a—0t

Next since v, (0) = v4(21,4) = 0 and v/,(0) = a > 0 it follows that there is a local
maximum, M 4, with 0 < M; , < 21 4. Evaluating (2.20) at M; , gives

1 My o
h(My,q)F(va(Mi,a)) = §a2 +/0 R (t)F(v,) dt. (2.27)

Estimating as in (2.24)-(2.24) but now on [0, M 4] (instead of [0, 21 4]) we again
obtain
1 aPtaghta

Mo )
/ B (t)F(vq) dt < fghghgal_qR}—az—q(
0

Then from (2.27)-(2.28) and (2.4) we obtain

F(ug(My,)) < Jshahga ~0R; T ( : aP Ry
Ua a — ~ ~
L hy l—as—q 1—das+p

). (2.28)

p + o
l—G2—q 1—-dax+p

)0 (229)

as a — 0T. Therefore,
lim wve(Mi,4) =0. (2.30)

a—0t
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In a similar way we can show v, has as many zeros as desired by choosing a > 0
sufficiently small and we can also similarly establish the analogs of -, -,
and - This completes the proof of the lemma.

Lemma 2.4. Assume (H1)-(H4) and let v, solve RI)-[2:2). Ifa > 0 is sufficiently
large then v, has a local mazimum, M o, on (0, Rl)

Proof. Suppose not and so suppose v, is increasing on (0, Ry) for all sufficiently
large @ > 0. Then v, > 0 on (0, R;) and so it follows from that v)) < 0 on
(03 Rl ) .

We now claim that v,(tg) — o0 as a — oo for any fixed ¢y with 0 < ¢ty < R;. So
suppose not. Thus suppose 0 < v, < Cy on (0,tg] where Cy is independent of a.

Using (2.15) and (2.22) we see that
F(va) < fa(vg ™7+ 05™) = fao,79(1 + 0f™9) (2.31)
< favg (1 4+ CE) = f3Cau 1 -

where C5 =1 + C;H'q.
Then using (2.15) in (2.31) we obtain
F(vg) < f3C305" 7 < f3Csa' 9174 (2.32)

Substituting this into (2.20)) and using (2.4) we then have h(t) < hot=%2 and |h'| <
hghgt_d2_1. This gives

t
/ h3 1—qpl—Gs—
B < A q a2—4q
h(t)F(va) +/0 (= (s)F(va) ds < fuhaCs(1+ 1— o — q>a :
— C4a17qt1*5¢2*q

1
<Ca 0042‘1

(2.33)

where Cy = f3hoCj (1 + 1_23 ) Therefore from ) and - we see that

;vf > ; — C4t(1)7&7qa1*q > %aQ — C4R175‘7qa1*q > éaz
for a sufficiently large. Thus v/, > a/2 for a sufficiently large, and integrating this
on (0,%y) gives

Cy > ve(to) > §t0—>oo as a — 0.

Hence we obtain a contradiction. Thus it follows that if v, is increasing on [0, R;]
then v, (tg) — oo as a — oo for every tg with 0 < ¢y < R;.
Next it follows that if v, is increasing on [0, R1] then since f is superlinear (by

(H1)) then
h(t)f(va)

Vq
uniformly on [to, R1] for any to > 0 as a — co. Therefore assuming v, is increasing
on [0, R1] we see that

— 00

h(t o
I, = inf h®)f(va) — 00 as a— o0. (2.34)
[to,R1] Va
Next we rewrite (2.1)) as
h(t) f (va)
1" —
o+ ( > )ua 0. (2.35)
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Assuming v, is increasing on [0, R1], we let y solve
y' '+ 1I,y=0 (2.36)
with y(tg) = va(to) and y'(to) = v} (to). Thus
vl (to) .
y = va(to) cos(v/Ta(t — to)) + ¢(TO) sin(v/To(t — to))

and so it follows that y is 2m/v/I,-periodic. Thus y must have a local maximum
on [tg,to + ;—1] In addition, it follows from ) that [to,to + f] [to, R1]
if @ is sufficiently large. We will now show that v, must have a local maximum
on [tg,to + r] [to, R1] if a is sufficiently large. This is essentially the Sturm

Comparison Theorem [6] but we write out the details because they are brief.
Let a > 0 be sufficiently large so that y has a local maximum M < R; and that

y' > 0 on [tg, M]. Multiplying (2.35)) by v, (2.36]) by v,, and subtracting gives
h(t)f(va)

Vq

(yva —y'va) + ( - Ia)yva =0. (2.37)
Integrating this on [to, M] and using y'(M) = 0, y(to) = va(to), and y'(to) = vy (to)
gives

M
y(M)vl (M) +/ (M — Ia)yva dt = 0. (2.38)
to a
On [tg, M] we have y > 0, v, > 0. In addition, the term in parentheses in
is nonnegative. Thus we see y(M)v (M) < 0 and therefore v/ (M) < 0 since
y(M) > 0. Now if v/ (M) < 0 then since v/, (to) > 0 it follows that v, has a local
maximum, M o, with tg < M7 o < M. On the other hand, if v/,(M) = 0 then from
it follows that v/ (M) < 0 and therefore M is a local maximum for v, and we
set M; , = M. Therefore in both cases we see that v, has a local maximum, M 4,

with 0 < M; , < Ry and v), > 0 on [0, M7 ) if a > 0 is sufficiently large. ]

Lemma 2.5. Assume (H1)—-(H4) and let v, solve (2.1)-(2.2). Suppose a > 0 is
sufficiently large so that v, has a smallest local mazimum M , with v}, > 0 on
[0, M ,4) and M 4 < Ry. Then lim, oo vo(Mi,4) = 00 and lim,_yoo M7 4 = 0.

Proof. We first show that v, (M;,,) — 00 as a — c0. So suppose not. Mimicking
the proof of Lemma suppose there is a C5 > 0 such that v, (M; ) < Cs. Then

using (2.31)-(2.32) and evaluating (2.20)) and (2.33)) at t = M , gives

1 M1 o
§a2 = h(Mi o) F(ve(Mi1,4)) + / (—h'(s))F(v,) ds
0
h3 1—gul—Go—
< q Qa2—q
< f3h205(1+ T d _q)a t (2.39)
= Cea'~TM,| %71
< Coal 1R} 20
where Cs = f3h2C5(1 + 7 ff&_q). Thus

1 -
5a”q < CeRy™ ™71, (2.40)
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However, the left-hand side of goes to infinity as a — oo but the right-hand
side stays finite. Hence we obtain a contradiction and therefore we must have
algr;o Vo (M1,0) = 0. (2.41)
Next we show M; , — 0 as a — oco. By (H1) it follows that
f(vq) > fav? when v, > 0 for some constant fy > 0. (2.42)

We integrate (2.1) on (¢, M7 ,) and estimate using the fact that v, is increasing on
(t,M,4) to obtain:

Ml,a Ml,a
v, = / h(s)f(vy)ds > f4v§/ h(s) ds. (2.43)
t t
Dividing by v?, recalling p > 1, and integrating on (h, M, o) gives
1-p(Mia Miay _ M Mi,a pMia
Yq ( 2 ) > Ua ( ) U 1¢1 >f3/ / ds. (244)
p—1 —1

Since v!/ < 0 it follows that v, is concave and thus va(/\x—i— (I=X)y) > Mg(z)+(1—
Mva(y) for 0 < A < 1. In particular, for = v4(M1,4), y =0, and A = § we obtain
va(MQI’a) > W Then it follows from this and (2.41) that Ua(MZI*“) — 00 as
a — 0o. Since p > 1 it follows then that the left-hand side of (2.44) goes to 0 as
a — oo and thus we must have

lim M, =0. (2.45)

a—r 00

This completes the proof. O

Lemma 2.6. Assume (H1)-(H4) and let v, solve (2.1)-(2.2). Suppose a > 0 is
sufficiently large. Then v, has a zero, z1 4, with My 4 < 21,4 < Ri. In addition,
Vg >0 and v, < 0 on (Mi4,21,4). Further lim, o0 21,4 = 0, limy_y00 Vo (M1,4) =

00, and lim,_, o0 v}, (21,4) = —00. More generally, if a is sufficiently large and k > 1
then v, has k zeros, zi o, and k local extrema, M;,, with 0 < My, < 214 <
Mooy < 224 < -+ < Mpq < zpq on (0,R1). In addition, lim, o 2;q = 0,

limg o0 [0 (2i0)] = 00, and limg_yoo [V (M 4)| = 00 for 1 <i<k.
Proof. Tt follows from Lemma [2.5] that
lim v, (M) = 0. (2.46)

a— o0

Assume now that v, > 0 on (M 4, R1). Then using (2.42) and integrating on
(M 4,t) we obtain

t
> f4v5’/ h(s) ds.
Ml‘a
Dividing by vZ, integrating on (M 4,t), and using (2.4) gives
1—
a

1p>v ”—vlpM1a

_1) 2)dzd
)fa /MM /MM z ds (2.47)

_ - 1);‘43?‘“ (t = My)?.
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Evaluating (2.47) at t = % we see

véfp(Rl +2M1,a> > (p— 1)5431_6‘1 (Rl 72M17a)2

and therefore

(Rt M, 8R{
o ) < ! . 2.48
¢ 2 T (p=Dfa(Ry — Mia)? (2.48)
By ([2.45]) we see then for large a that
M 2RY 2\ 5
Ua(@) < (&)p ' (2.49)
2 (p—1)fs

Using that v/ < 0 when v, > 0 and the mean value theorem we see there is a ¢,

with M 4 < cq < % such that

Ry + Mo\ Ry — M,
3) = e (T
S 71)(/1(R1 + Ml,a) (&)

2 2
Since v}, > 0 on (0, My 4) it follows from (2.41) and (2.49) that the left-hand side
of (2.50) goes to infinity as a — co. And then from (2.45)) and (2.50) it follows that

Ua(Ml,a) - Ua(
(2.50)

R M
g(%) — —00 as a — 00. (2.51)
Since v < 0 when v, > 0 it follows that v/, is decreasing when v, > 0 so:
R Mi R M,
U; < U(’I(L) for t > %
Integrating this on (%, Ry) gives
Ry + M, Ri+M 4 R — M,
va(Ra) < (AT gy (LT LT Ty (g 59)

2 2 2

It follows from ([2.49) that the first term on the right-hand side (2.52]) is bounded.
Then from (2.45) we have M; , — 0 as a — oo and this along with (2.51)) implies

that the right-hand side of becomes negative while the left-hand side stays
positive. Thus we obtain a contradiction and therefore there exists 21 , with M; 4 <
21,0 < Ri such that v,(21,,) =0 and v, > 0 on (M 4, 21,4)-

From the mean value theorem and that v/ < 0 when v, > 0 it follows that there
is a d, such that M; , < d, < 21, and

Va(Mi,a) = [va(21,0) —va(Mi,a)| = |vé(da)”21,a*M1,a| < v (da)| By < ‘U(,z(zl,a”Rl
and since the left-hand side goes to infinity by (2.46|) it then follows from the above
inequality that

lim v/ (21,4) = —00. (2.53)

a—r o0

Next it follows from evaluating (2.47)) at % that we obtain

_ —aq _ 2
Ul_p(MLa"er,a) > (p—1)faRy (Ml,a Zlva) _ (2.54)

2 2 2
Since v/ < 0 when v, > 0 it follows that v, is concave. Then it follows from this
and (246) that v, (FhefEie) > va(ﬂ;[l’a) + v“(zzl’“) = v“(A;[I’“) — 00. Thus we see
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the left-hand side of (2.54) goes to 0 as @ — oo and therefore z; , — My, — 0.
Since M; 4 — 0 by Lemma we see then that
lim 2z, =0. (2.55)

a— o0

In a similar way we can show that v, as many zeros as desired on (0, R;) by
choosing a > 0 sufficiently large, and we can obtain the analogs of (2.46)), (2.53)),
and (2.55)). This completes the proof. O

Lemma 2.7. Assume (H1)-(H4) and let v, solve (2.1)-2:2) with a > 0. If Ry is
sufficiently small then there are values of a > 0 such that v, > 0 on (0, Ry). Also,
if Ry is sufficiently large then v, has at least one zero on (0,Ry) for all a > 0.
Similarly, if Rqw > 0 is sufficiently large then v, has at least k zeros on (0, Ry) for
all a > 0.

Proof. We prove the second part first. It follows from (H1)-(H3) that there is a
constant f; > 0 such that @ > f5 for all v # 0. In addition, we know from
that h(t) > hyt=% > hy Ry ®. Thus MOM0e) > Lo

Next we consider 1

<h
w” + (Q)w =0,
R
w(0) = 0,w'(0) = a.
Thus:

Jsh1 x)

w = csin ( o
Ry

for some ¢ > 0, and so w has a zero on [0, 4/ Jlilhll 7]. It follows then from the Sturm

Comparison Theorem [6] that v, has at least one zero on [0, R;] if 4/ ;:(1:1 T < Ry.
That is, if

2 1 N
Ry > ()% = T
! (f5h1) (f5h1)
Similarly, v, has at least k zeros on [0, R;] if
k'2 2 71& k‘2 2 D{\’l—}
R1 > ( s )2 T ( ™ ) 2.
Jsh1 Jsh1

Next we show that if R; is sufficiently small then there is a value of a > 0 such
that v, > 0 on (0, Ry). First since f(v,) > 0 for v, > 0 by (H3) there is a constant
fe > 0 such that f(vs) > fe > 0 for v, > 0. Thus it follows from this and that
h(t)f(ve) > fehit~%1. Suppose now that v, has a zero, z,, on (0, R1). Then there
is an M, with 0 < M, < z, such that v, has a local maximum at M,. Substituting
t = M, into then gives

h Ml—dl Mn, N Ma
Jol M, g/ fohat—5 dt g/ h(t)f(ve) dt = a.
l—a 0 0
It follows from this that
lim M, = 0. (2.56)

a—0t
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Returning to ([2.20) and evaluating at M, we see that

1 Ma
50* = h(Mo)F (v (M) + / (= (£))F (va) dt. (2.57)
0

Then using (2.15)), (2.22)), and (2.4]) we see that

M, M.
/ (—h'(£))F (va) dt < fshahs / (=Ge=L(glagl=a 4 gplply gy
0 0

Rl-G2—q aPtaRl—Gztp (2.58)
= f3h2h3a1’q< L — )
1—az—q¢q l—as+p
Similarly,
h(My)F(va(My)) < fahoa' =9 (Ry™ %4 4 aPTIR*FP), (2.59)
Now substituting (2.58)-([2.59) into (2.57)) gives
1 o .
50" < fsh2a' =0 (CrRy ™ 94 aPTICs Ry 2P, (2.60)

where C7 = (1 + 1_22_,;) and Cs = (1 + 1—2724@) Select a = 1 and we see ([2.60)
becomes
1< 2f3hy (CoRY™ 77 4 CyRY7) (2.61)

Now if R; is sufficiently small we see that this violates (2.61f). Thus if Ry is suffi-
ciently small and if « = 1 then v, > 0 on (0, Ry). This completes the proof. O

3. PROOF OF THEOREM [I.1]

We saw from Lemmathat v, has a finite number of zeros on (0, R;) for a > 0.
Thus there exists an @ > 0 such that v, has the least number of zeros on (0, R;)
among all a > 0. We denote the number of zeros of this particular v, as ng > 0.
(There may be more than one choice of a such that v, has ng zeros on (0, R;) but
choose one such a). Now let

Sne = {a > 0: vy solves (2.1)-(2.2) and has exactly ng zeros on (0, Ry)}.

From the above comments it follows that S, is nonempty and from Lemma @ it
follows that Sy, is bounded above.

Next let a,, = sup Sp,. We now prove that v, has exactly ng zeros on (0, Ry)
and v, (R1) = 0. From the definition of ng it follows that v,,, has at least ng zeros
on (0, Ry). Now if v,, has an (ng + 1)st zero on (0, R;) then by continuity with
respect to initial conditions then so does v, for a close to a,, and a < a,, but if
a < ap, then v, has only ng zeros. Thus v,,,  has exactly ng zeros on (0, Ry). Now
suppose v, (R1) # 0. Without loss of generality suppose that v,, (R1) > 0. Now
if a is close to a,, and a > a,, then by continuity with respect to initial conditions
and the fact that if v,(z) = 0 then v} (2) # 0 it follows that v,(R;1) > 0 and also
vg has ng zeros on (0, R1). But since a > a,, then v, has at least ng + 1 zeros on
(0, R1) and so we obtain a contradiction. Thus it must be the case that v,, (R1) =0
and thus we obtain a solution of —. Then by Lemma it follows that

/

vl (R1) # 0 so let us assume without loss of generality that v;no (Ry) < 0.

Qnyg
In a similar way we now define

Sno+1 = {a > 0: v, solves (2.1))-(2.2)) and has exactly ng + 1 zeros on (0, Ry)}.
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It follows from Lemma [2.6] that S, 41 is bounded from above. For a > an, and a
sufficiently close to a,, it follows again by continuity with respect to initial con-
ditions that v, has an (ng + 1)st zero z,,4+1 < Ri and zp,4+1 is close to Ry. In
addition, since vflno (R1) < 0 it follows that v (zp,+1) < 0. Thus v, has exactly
ng + 1 zeros on (0, Ry) for a > a,, and a sufficiently close to a,,. Therefore S, 41
is nonempty.

Similarly we define an,+1 = sup Sp,+1 and we can similarly show that vg,, .,
has exactly ng + 1 zeros on (0, 1) and v,,, ., (R1) = 0.

Continuing in this way we see that we can find an infinite number of solutions,
Va,,, Where v, has exactly n zeros on (0, Ry) and v,, (R1) = 0 for each n > ny.
Thus we have found one infinite family of solutions of ([2.1))-(2.2]).

Next we let

bp, = inf S, .
By the above comments S,,, is nonempty and by definition S, is bounded below.
Then by, < an, and by a similar argument we can show that vy, —has exactly ng
zeros on (0, R1) and v, (R1) = 0. Now it may be the case that an, = by, so there
may be only one solution with ng zeros. Next we let

bpy 1 = inf Spgi1.

Then we have bny41 < by, < an, < any41 and we can show vy, ., has exactly
no + 1 zeros on (0, Rq) and vy, ., (R1) = 0. Since bpy41 < angi1 it follows that
we have two solutions, v,,, —and v, , with ng + 1 zeros on (0, ;). Continuing in
this way we see that if n > ng we can find a second infinite family of solutions of

(2.1)-(2.2), vs,,, where vy, has exactly n zeros on (0, Ry) and vy, (R1) = 0.
Finally, we let u} (t) = v,, (tﬁ) and u, (t) = vp, (tﬁ) for all n > mng. This
completes the proof of Theorem O
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