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DIRICHLET PROBLEMS WITH ANISOTROPIC PRINCIPAL
PART INVOLVING UNBOUNDED COEFFICIENTS

DUMITRU MOTREANU, ELISABETTA TORNATORE

ABSTRACT. This article establishes the existence of solutions in a weak sense
for a quasilinear Dirichlet problem exhibiting anisotropic differential operator
with unbounded coefficients in the principal part and full dependence on the
gradient in the lower order terms. A major part of this work focuses on the
existence of a uniform bound for the solution set in the anisotropic setting.
The unbounded coefficients are handled through an appropriate truncation
and a priori estimates.

1. INTRODUCTION

The aim of this article is to study quasilinear elliptic equations driven by an
anisotropic differential operator with unbounded coefficients and that have the re-
action term in the form of convection (i.e., it jointly depends on the solution and
its gradient). Specifically, we state the following Dirichlet problem

N
- Z 0:(G;(w)|OulP20;u) = F(x,u, Vu) in Q
i=1 (1.1)

u=0 on o

on a bounded domain Q in RY (N > 2) with a Lipschitz boundary 9. The notation
0; stands for the distributional partial derivative with respect to the variable z;, i.e.,
0; = 0/0y,, and Vu = (d4,...,0N) is the gradient of u. In there are given real
numbers p; € (1,+00) with ¢ = 1,..., N, continuous functions G; : R — [a;, +00),
with a; > 0 for i = 1,..., N, and a Carathéodory function F : O x R x RV — R
(i.e., F(-,t,&) is measurable on § for each (t,&) € RxRY and F(x, -, ) is continuous
on R x RY for almost all z € ). The notation G;(u) means the composition of
the function G; : R — R with the solution u : Q — R.

Set 7 := (p1,...,pn) and denote by Wol’ﬁ(Q) the completion of the set of
smooth functions with compact support C2°(£2) with respect to the norm

N
lull := > |0sul| o
i=1
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Therefore WO1 F(Q) is a reflexive Banach space. This is the natural underlying
space associated to problem (L.I). We mention that the completion of C2°(RY)
with respect to the above norm is the important space DL,

A significant feature of problem is that the differential operator driving
the equation is anisotropic, thus admitting to have unequal p;. This causes lack of
homogeneity and lack of radial scaling. In this respect, the simplest case in is
when G; =1 for all i = 1,..., N, which reads

—Apu=F(z,u,Vu) in

u=0 on Of. (1.2)

The operator in the left-hand side of equation (|1.2) is the (negative) anisotropic
7 -Laplacian —Ag Wolj(Q) — Wol’ﬁ(Q)* defined by

N
<—A7u,v> = Z/Q |Oiu(z)

for all u,v € Wol’? (€2). We emphasize that the operator —A- in has prop-
erties essentially different with respect to its isotropic counterpart which is the
(negative) p-Laplacian —A, : WyP(Q) — W12 (). For example, we point
out the nonexistence of the first eigenvalue in the case of —A5. The known re-
sults on anisotropic elliptic problems concern the case where the driven operator
is —A4 and the reaction term does not depend on the gradient of the solution,
ie., F(z,u,Vu) = f(z,u). Due to these restrictions, a variational approach can
be implemented. For relevant results in this direction we refer to [4} [5 [6, @) [10].
The recent paper [3] deals with anisotropic elliptic problems with a leading operator
more general than —A-;. In addition to the major mathematical interest, there is a
strong physical motivation for such type of problems. We highlight for example the
applications in fluid mechanics involving anisotropic media where the conductivity
depends on the direction (we refer to [I] for a comprehensive description).

The degree of difficulty regarding problem is even higher due to the fact
that the variable coefficients G;(u) may be unbounded. Isotropic problems with
unbounded coefficients complying with have been considered in [7] and [§].
Given a real number p € (1,+00), in [7] it is investigated the problem

Pi=29.u(z)Oyv(x)dx (1.3)

— div(G(u)|VuP~2Vu) = F(z,u, Vu) in Q
u=0 on dfN

for a continuous function G : R — [ag, +00) with ag > 0, whereas [8] is concerned
with the weighted problem

— div(a(z)g(|u)[VulP">Vu) = f(z,u,Vu) in €,
u=0 on 0N

1

for a positive weight a € L.

with ag > 0.
In this article we focus on equation (1.1)) where the anisotropic leading operator
incorporates the unbounded coefficients G;(u). By a weak solution to problem (|1.1)

we mean any element u € I/Volﬁ(ﬂ) such that G;(u(x))|0;u(x)|Pi~20;u(z)d;v(x),

(©) and a continuous function g : [0, +00) — [ag, +00)
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with i =1,..., N, and F(z,u(z), Vu(z))v(z) are integrable on Q, and it holds

> [ Gituta))outa)

for all v € WP ().

The main contribution of this work is to build a coherent approach allowing
for the first time to study equations that are driven by an anisotropic differential
operator with unbounded coefficients and that exhibit a convection term (meaning
to have full dependence on the solution and its gradient). Our main result is
Theorem [2.3] below that provides under verifiable hypotheses the existence of a
weak solution to problem in the sense of . Furthermore, we prove in
Theorem the existence of a uniform bound for the solution set of problem .
An essential fact is that the uniform bound does not depend on the coefficients G;
entering except on the lower bound a; of G; for every i = 1,..., N. The proof
of the main result relies on a truncation argument dropping the unboundedness of
the coefficients G;(u) as well as on related a priori estimates. Another important
tool is an auxiliary problem for which the theory of pseudomonotone operators can
be applied.

The rest of this article is organized as follows. Section 2 presents the hypotheses
and the main result. In Section 3 it is carried out the proof that the solution set
to problem is uniformly bounded. Section 4 deals with an auxiliary truncated
problem and an associated operator. Section 5 is devoted to the proof of the main
result that provides the existence of solutions to problem .

pi—zaiu(x)aiv(x)dx:/S)F(x,u(x),vu(x))v(x)dx (1.4)

2. STATEMENTS OF HYPOTHESES AND MAIN RESULT

For the rest of the paper we assume that

Al
Y =>1 (2.1)
i—1 Pi
Recall the critical exponent
. N
S (2.2)

Zi:lp%*l

If p, = p for all ¢ = 1,...,N, then p* in (2.2) becomes the ordinary Sobolev
critical exponent when N > p. Under assumption (2.1)), there are the continuous
embeddings

WhP(Q) < LI(Q) (2.3)
provided 1 < ¢ < p*, which are compact if 1 < ¢ < p* (see [0, Theorem 1]). We set
p:=max{py,...,pn} and p:=min{p,...,pn}

and further assume that
p<p* (2.4)
In view of , there is a constant 6 > 0 such that

[l < Olful2, Yue WEP (). (2.5)
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To simplify the presentation, for any real number » > 1 we denote v’ :=r/(r —1)
(the Holder conjugate of 7). The strong and weak convergence are denoted by —
and —, respectively.

The Carathéodory function F : Q x R x RY — R describing the reaction term
in is subject to the following hypotheses:

(H1) There exist constants ¢; > 0, ca > 0, ¢c3 > 0, and r € (P, p*) such that

i 1/T/ r—1
pl) + 62|t‘ +c3

N
Fa,t,8) < e (Yl
=1

fora.e. 2 €Q,allt € R, and £ = (&1,...,&y) € RV,
(H2) There exist constants d; > 0 and dy > 0 with d; + N2 1dy6 < a; for all
i=1,...,N, and a function o € L'(2) such that

N
F(a,t,&)t <di Y |G + do|t]2 + o (x)
i=1
for a.e. 2 € Q,allt € R, and £ = (&1,...,&y) € RV,

Next we focus on the Nemytskii operator determined by the function F'.

Proposition 2.1. Assuming (2.1), (2.4) and (H1), the map N : W&’?(Q) —
L’“I(Q) given by

Nu = F(z,u,Vu), Yue€ W&’?(Q),

is well defined, bounded (in the sense it maps bounded sets into bounded sets) and
continuous.

Proof. By (H1) and the convexity of the function ¢t — ™' for t > 0, we obtain the
estimate

N
F(z,u,Vu T/dng / oju
[ 1P v (=]

with a constant C' > 0. Since d;u € LPi(QQ) for all ¢ = 1,...,N and u € L"(2)
(note r < p*) whenever u € Wol’ﬁ(Q), we obtain that Nu € L' (). The obtained

estimate shows that the mapping N : W&’?(Q) — L7 (Q) is well defined and
bounded.

To show the continuity of the mapping A, let u,, — u in WO1 7 (Q). The definition
of the space W(}’?(Q) and the continuous embedding Wol’?(ﬂ) C L™(9) imply that
0i(upn) — Oyu in LPi(Q) for i = 1,...,N, and u, — w in L"(€). Since ' > 1, the
growth condition in assumption (H1) yields

pidx+/ " dz + 1), Yu e Wh7 (),
Q

N
[F(a,t,0) < e Y&l +ealt]™" +e3
=1

for ae. z € Q, allt € R, and & = (&,...,&y) € RY. Taking into account
that u, — v in L™(Q) and 0;(u,) — Q;u in LPi(2) for ¢ = 1,..., N, Krasnoselkii’s
classical theorem concerning the continuity of a Nemytskii operator guarantees that
F(z,upn, Vu,) = F(z,u, Vu) in L (Q). The stated conclusion follows. O
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Corollary 2.2. Assume that conditions (2.1), (2.4) and (H1) are fulfilled. If u,, —
. 1,7
u in Wy P (), then
lim (N (uy,), un, —u) = 0.

n—oo

Proof. We note that by Holder’s inequality,

[N (un), up, — u)| = |/ F(2,tn, Vuy) (u, — u)dz|
)
< | F(@, un, Vun)|| o [[tn — ullLr-

By the continuous embedding ([2.3) we know that u, — u in L"(Q2) while Propo-
sition entails that the sequence F(z,u,, Vuy) is bounded in L (Q). Conse-
quently, the thesis is valid. ([l

Now we state our main result providing the existence of a bounded weak solution

to problem (|1.1)).

Theorem 2.3. Assume that conditions (2.1) and (2.4) hold, G; : R — [a;, +00),
with a; >0 fori=1,...,N, are continuous functions, and F : Q x R x RN — R is
a Carathéodory function satisfying hypotheses (H1) and (H2). Then problem (1.1))

has at least a weak solution u € W&’?(Q) in the sense of (L.4). Moreover, the
solution u is bounded.

The proof of Theorem [2.3]is given in Section 5.

3. UNIFORMLY BOUNDED SOLUTION SET
Our first objective is to estimate the solutions in W, ?(Q)

Lemma 3.1. Assume that conditions [2.1)), (2.4), (H1) and (H2) hold. Then the

set of solutions to problem (1.1)) is bounded in W(}’?(Q) with a bound that depends
on the function G; only through the lower bound a; of G; fori=1,...,N.

Proof. Let u € Wg’?(Q) be a weak solution of ([1.1)). Equality (1.4) with v = u

gives
N
> /Q Gi(u(x))|Dsu(x)

Then hypothesis (H2) yields

pid:c:/F(x,u,Vu)udm.
Q

N N
> aillowull7, < dy Y 10sullf, + dollullze + o o1
i=1 i=1

Using ([2.5)), we obtain

N N
> (ai — dy)l|ul s < dab(> [95ull i )2 + llo]l 1

i=1 i=1

N
< NETVd0 Y (|0pull 5, + o2
i=1
N
< NET'dy0(N + > |0
i=1

ve) Mol
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From the condition dy + N2 1dy6 < @; for all i = 1,..., N, imposed in assumption
(H2), the conclusion is achieved. O

Now we show that the solution set of problem (1.1f) is uniformly bounded.

Theorem 3.2. If conditions (2.1), [2-4), (H1) and (H2) are satisfied, then the
solution set of problem (L1.1)) is uniformly bounded, which means that there exists

a constant Cy > 0 such that ||u||pe < Co for all weak solutions u € Wol’? (Q) to
problem (1.1). The uniform bound Cy depends on the function G; only through its
lower bound a; fori=1,...,N.

Proof. Let u € W&’?(Q) be a weak solution to problem . Writing u = u™ —u~
with ut = max{u,0} (the positive part of u) and v~ = max{—u,0} (the negative
part of u), we are going to prove the uniform boundedness for u™ and u~. Since
the arguments are similar, we only give the proof for u*.

Given an arbitrary number h > 0 we pose uy := min{u™, h}. Corresponding to

any number k > 0 and any integer 1 < j < N, we note that u™ (uy,)*?s € W&’? ().
This follows from

10 (wh (un)*)| = |(un)*0; (u™) + k(up)*'ut0; ()|
< (k4 D)) |0,u®)], fori=1,...,N.

Using u™ (up)*P7 as test function in (T.4) implies

N
Z/ Gi(u)|8iu|p'i_Qaiuai(qu(uh)kpj)da::/F(x7u,Vu)u+(uh)kpjdx. (3.2)
=179 Q2

The following estimate of the left-hand side of (3.2]) holds
N
> / Gi(u)|d;u
i=178

N
= Z/QGi(u)|8iu|p"_28iu(6i(u+)(uh)kpj + kp; (un) P "t 0; (up))de (3.3)
N

Pi=20,ud; (ut (up, )7 ) da

> a; / (up)*Pi|0;(ut)Pidz, for j=1,...,N.
Q

i=1

Using (H1) we estimate the right-hand side of (3.2)) as follows

/ F(x,u, Vu)u™ (up)* d
Q

< Cl/Q ((g@u

+cz/ \u|’“_1(uh)kpfu+dx+03/(uh)kpjquda:.
Q Q

kp;

;D,,) l/r’(Uh) k:’/j ) ((uh)Tu+)d$

Then Young’s inequality under the first integral with any € > 0 provides a constant
¢(g) > 0 such that

/ F(x,u, Vu)u™ (up,)" dx
Q
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<5Z/ 18 (u™) |7 (up ) *P7 da: + (e )/(uh)km(u+)7"dx

Q

ben [ )y de e [ ) ) +19),
Q Q
where (2| denotes the Lebesgue measure of 2. Consequently, we obtain the estimate

/ F(z,u, Vu)u™ (up)*i dx

(3.4)
< 52/ |a |Pw uh)k:wdx + b(/ (uh)kpj (u-‘r)rdx + 1)7
Q
with a constant b > 0.
Combining (3.2)), (3.3) and (3.4) yields
N
(w2 [ ) iostu e < b [ () () do + 1),
i=1 Q 2
If we choose € > 0 small enough, the preceding inequality reads
N
Z/(uh)kr’q@-(w) Pidy < bo(/(uh)kpf (u+)rdx+1), (3.5)
=179 Q
with a constant by > 0.
By (3.1) and (3.5), for each j =1,..., N we infer that
. 1/p;
105t )Y lzes < 0 (k4 D [ () tyde 1) o)
Q

Since r € (p,p*) (see hypothesis (H1)), we are able to choose g € (p;,r) with
(r —pj)g
q—Pj
By means of Hélder’s inequality, (2.3)), and Lemma we then derive the
existence of a constant K > 0 such that

/Q(“h)kpj (u')dz = A(U+)T7pj)((uh)ku+)pfdx

(r—pj)a a7Pj Pi/q
< Y= (g E / + k qd
< K u ()

In view of (3.6)) we find a constant by > 0 for which
19 (u* (un)*) | Lps < br(k + 1) ([lu* (un)*|za + 1),

<p*, forj=1,...,N. (3.7)

thus
lu* (un)* | < 01N (k + D)(Ju* (un)*|| e + 1)
From the continuous embedding ([2.3)) we obtain
o (un)* [ oe < b2k + D)([u* [ Fho, + 1),
with a constant by > 0. Through Fatou’s lemma, letting h — 0 results in
Il N ey = 1) e < bk + 1)l [ iy + 1) (3.8)

Lr*(k+1) La(k+1)
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We note that if there is a sequence k, — oo with ||u™ || @ns+ny < 1 for
all n, then it holds ||u*| L~ < 1 and we are done. It remains to examine two
situations: (a) we have ||u™|| 1) > 1 for all & > 0; (b) there is ko > 0 such that
lut]l ooy < 1 and ||ut| pox 1) > 1 for all k > ko.

If case (a) occurs, (3.8]) reduces to

]| o eeny < (2b2) 7 (k + 1) 57 ||ut || pagesy. Yk > 0.

Taking into account that the function k ~— (k + 1)Y/V**+1 is bounded on (0, +00),
the preceding inequality entails

Hu+||Lp*(k+l) < ct/ k+1||U+HLq(k+1), Vk > 0, (3.9)

with a constant C' > 0. We are in a position to implement the following Moser
iteration:
(kn +1)g = (kp—1 +1)p*, VYn>2, (3.10)

starting with (k1 + 1)g = p*. The successive application of (3.9) produces
+ POy e AT
[u™ | Lo knny < C T | e

The definition of (k,) ensures that k, — +oo and the series > - 1/vk, + 1
converges. The application of Lemma and letting n — oo show that [ju||p~ <
Cy, with a constant Cy > 0 independent on the solution u, thus reaching the desired
conclusion.

If case (b) holds, results in

|| o ey < (2b2) % (k + 1) |Jut || paesny, V> ko,
1 -
[ ]| o= kony < (2b2) %07 (ko + 1) FoT.
Arguing as above, we obtain
||u+||Lp*(k+1) < Cl/ ! k+lHu+||Lq(k+1), Vk > ko, (3.11)

with a constant C' > 0. Now we carry out the Moser iteration (3.10) starting with
(k1 + 1)g = p*(ko + 1). Then the repeated application of (3.11]) leads to

n 1
||U+||LP*<kn+1> <CcT ! m||u+||LP*(’€0+1)-

The same reasoning as in case (a) enables us to conclude that ||u||z~) < Co with
a constant Cy > 0 independent of the solution u.

Summarizing, we have shown that one can find a constant Cy > 0 as stated in
the theorem. A careful reading of the preceding proof reveals that the constant
Cy does not depend on G; except on its lower bound a; for ¢ = 1,..., N, which
completes the proof. O

4. TRUNCATED PROBLEM AND ASSOCIATED OPERATOR

A major difficulty in handling problem ([1.1)) consists in the fact that the co-
efficients GG; are unbounded. This issue is resolved by truncation. In the case of
isotropic problems (possibly with weights) the idea appears in [7] and [§].
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Fix a real number R > 0. For each i = 1,..., N, we truncate the function G;
entering problem as follows
G;(t) if [t| <R
Gir(t) =< Gi(R) ift>R (4.1)
Gi(—R) ift< —R.
Notice that G;g : R — R is a continuous and bounded function and has the range

in [a;, +00) as the function G; does.
With the truncated coeflicients G;r in (4.1]) we state the auxiliary problem

Pi=29,u) = F(z,u, Vu) in

N
—> " 0i(Gir(w)|dsu
i=1

u=0 on 90f.

(4.2)

We associate to problem (4.2)) an operator Ag : Wol’? Q) — VVOI’7 (©)* defined by

Pi=29udvdr,  Nu,v € Wol’?(ﬂ). (4.3)

N
(An(u).v) = 3 /Q Gir(w)|Osu

The next proposition lists the main properties of the operator Ag in (4.3).
Proposition 4.1. Assume conditions (2.1) and (2.4). For each R > 0, the map-
ping Ag : W(}’?(Q) — W(}’?(Q)* is well defined, bounded, continuous, and fulfills
the Sy -property, meaning that if u, — u in Wol’ﬁ(ﬂ) and

lim sup (As (un), ) < 0, (4.4)

n—oo
then u, — u in Wol’?(Q).

Proof. By Hoélder’s inequality, for all u,v € Wol’?(ﬂ) and i = 1,..., N, we note
that

| [, Gl ouiioa] < mas Giloml i 0l (45
Q <
We infer for all u € W&’?(Q) that Ag(u) € Wol’ﬁ(Q)*7 so Ag is well defined.
Moreover, (4.5) shows that the mapping Ag is bounded.
Now we verify that Ag is continuous. To this end, let u,, — u in VVOL7 (©). We

have

[An(un) ~ Ar(0)ll 2.7 -

Pi

HLM*1 (4.6)

N
<D I(Girlun) = Gir(w)|9i(wn) P20 (un)
i=1

K2

P20 (uy) — |0; ()P ~20;(u))

Pi .

s

N
+ Z 1Gir(u)(|0;(un)

Let us notice that

Py
p;—1

Pq
p;—1

1(Gir(un) — Gir ()]0 (un) [P0 (un)

Pide.

< /Q 1Gin(ttn) — G ()] 77 0 ()
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By the continuity and boundedness of the function G;g, in conjunction with u,, —
u in VVO1 P (Q), we are able to apply Lebesgue’s dominated convergence theorem
obtaining

Jim |(Gun(ua) = Gir()IOs(u)l" 20 (un)| e, =0, (47)
i |G 0) (10 w) 20 ) = [01() P 2Du(w)) | (48)

Combining , and shows that Ag(u,) = Agr(u) in Wolj(Q)"‘7 which
establishes the continuity of Ag.

It remains to prove the S, -property. Let u, — u in W, ?(Q) such that is
satisfied. Hence it is assured the validity for

limsup{Ag(un) — Ar(uw), u, —u) <O0. (4.9)
n— o0
‘We observe that

(Ar(un) = Ar(u), un — u)

N
a; —2 i\Up ) — |0; (U pi—2 AN i\Up — U)axr
; /Q Bu(utn) — [9: (1) P*205()) st — ) o

+ Z / e (ttn) — G (1)) (w)|P=205 () (. — )

As for we can prove that
lim [ (Gigr(un) — Gir(w))|0;(w)|P~20;(w)0; (uy — u)dx = 0. (4.11)
Q

n—oo

Then (4.9)), (4.10)), (4.11) and Hoélder’s inequality imply
i , i — |10 vi , pi—l g (w)||Pist) =
Timn (104wl o — 10,0l o) (195 35" — 0,127 = 0
forall i =1,..., N, from which it follows

Since the space LPi(£2) is uniformly convex, we infer the strong convergence w,, — u

in VVO1 ?(Q) The S, -property of the operator Agr ensues, which completes the
proof. ([

The next result points out the properties of the operator Ar — N, with Ag and
N introduced in (4.3 and Proposition respectively.

Proposition 4.2. Assume , ’ and H2) Then, for each real number
R > 0, the mapping Ar — * has the properties:
(i) Agr — N is bounded (z.e., it maps bounded sets into bounded sets).

(ii) Agr — N is pseudomonotone, that is, if up, — u in Wol’?(Q) and

limsup{(Ag — N)(un), un —u) <0, (4.12)
then
lirginf<(AR = N)(up), up, —u) > lin_1>inf<(.AR —N)(u),u —v) (4.13)

for allv e W(}’?(Q),
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(iii) Agr — N is coercive, that is,
(AR — N)(w), u)
lull—o0 il
Proof. (i) This is a direct consequence of Propositions and

(ii) Suppose that u, — u in Wol’?(ﬂ) and (4.12)) is satisfied. Corollary
and (4.12) ensure that (4.4) holds true. We are allowed to apply the Sy-property

in Proposition which provides the strong convergence u, — u in VVO1 ?(Q)
By Proposition and the continuous embedding (2.3) with ¢ = r we know that

N(up) = N(u) in W(}’?(Q)*. In addition, Proposition guarantees Ap(u,) —
Ar(u) in W&’?(Q)*. This enables us to conclude that (4.13) holds true.
(iii) According to hypothesis (H2) and (2.5 we have
((An — N (), )

N

>3 /Q Gin(u)|i(u)

i=1

= +o0. (4.14)

N
Pide —di Yy [|0gulfh, — dallulle = ol
=1

Z (ai —d1 —Nﬂ_ldgﬂ)Haiu

Tvi = NEd20 — ||o| 1.

-

Il
-

(2

Since a; —d; — N27dyf > 0 and p; > 1 for i = 1,..., N, the inequality

N
<(¢4R—N)(U),U> 1 1 Ngdgg-l-”O'”Ll
>N (a; —dy — N2 da0)|| Qs — ———————
[l ; g [l
allows us to establish (4.14]). O

5. EXISTENCE OF SOLUTIONS
First we deal with the solvability of auxiliary problem (4.2]).

Theorem 5.1. Assume that conditions (2.1) and (2.4) hold, G; : R — [a;, +00),
with a; > 0 fori=1,...,N, are continuous functions, and F : @ x R x RN - R
is a Carathéodory function satisfying hypotheses (H1) and (H2). Then, for every

R > 0, problem (4.2) has at least a weak solution ug € Wol’ﬁ(Q) which means

N

3 / Gin(un(@))|su(@) P ~20vu(z)drv(x)dz = / Flo,u, Vayodz  (5.1)
=179 Q

for all v € WOI’?(Q). Moreover, the solution set of problem (4.2) is uniformly

bounded with the bound Cy > 0 in Theorem . In particular, one has ||[ug||p~ <
Co for every R > 0, with Cy > 0 in Theorem [3.3.

Proof. Fix R > 0. We note that auxiliary problem in T/VO1 ?(Q) is equivalent
to the operator equation
(Ag — N)(u) = 0. (5.2)
Proposition entails that the operator Agr — N : Wol’?(Q) — Wol’y(Q)* is
pseudomonotone, bounded and coercive. Hence we are entitled to apply the main
theorem for pseudomonotone operators (see, e.g., [2, Theorem 2.99]) ensuring that
equation admits at least a weak solution ugr € VVO1 7 (Q). Consequently, ug is
a weak solution of auxiliary problem .
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Theorem [3.2]can be applied with G in place of G; for eachi = 1,..., N because
the same set of assumptions is required to be verified. Since the range of G;g is
contained in [a;, +00) as it is the case of G;, we can infer that the solution ug of
fulfills the a priori estimate ||ug||L~ < Cp, where Cy > 0 is the uniform bound
given in Theorem This completes the proof. (I

Finally, we will prove that ugr € W, 7(9) found in Theorem is a weak solu-
tion of the original problem (|1.1]) provided R > 0 is sufficiently large. Consequently,
this will establish Theorem 2.3

Proof of Theorem[2.3 Theorem ensures that the solution set of problem (1.1
is uniformly bounded, thus there is a constant Cy > 0 such that ||u| -~ < Cy for

all weak solutions u € W, 7(Q) to (L.I). As explicitly mentioned in the statement
of Theorem the constant Cj does not depend on the function G; entering
problem except on the lower bound a; for s = 1,..., N. As seen from ,
a; is a lower bound for each truncation G;g, so the solution set of each auxiliary
problem is uniformly bound by the constant Cy, which is independent of R.

In particular, the solution ug € WOI’? (Q) to problem given by Theorem
satisfies up € L*°(Q) with ||ur|/z~ < Cp, where Cy > 0 is the uniform bound in
Theorem 3.2

The preceding reasoning shows that it is allowed to choose R > C because Cj
is independent of R > 0. With such a choice, there holds |ug(z)] < R almost
everywhere on ). In view of we obtain

Gir(up(x)) = Gi(ug(x)) forae ze€Q,andi=1,...,N.

A simple comparison regarding the statements of problems (|1.1}) and (4.2]) confirms

that up € W, ?(Q) is a bounded weak solution for the original problem (1.1f). The
proof is thus complete. O
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