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A BIHARMONIC EQUATION WITH DISCONTINUOUS
NONLINEARITIES

EDUARDO ARIAS, MARCO CALAHORRANO, ALFONSO CASTRO

ABSTRACT. We study the biharmonic equation with discontinuous nonlinear-
ity and homogeneous Dirichlet type boundary conditions

A%u = H(u —a)g(u) in Q,

;:0 on 09, 1)
B—Z =0 on 99,

where A is the Laplace operator, a > 0, H denotes the Heaviside function, ¢
is a continuous function, and € is a bounded domain in RY with N > 3.

Adapting the method introduced by Ambrosetti and Badiale (The Dual
Variational Principle), which is a modification of Clarke and Ekeland’s Dual
Action Principle, we prove the existence of nontrivial solutions to . This
method provides a differentiable functional whose critical points yield solutions
to despite the discontinuity of H(s — a)q(s) at s = a.

Considering Q of class C*7 for some v € (0,1), and the function g con-
strained under certain conditions, we show the existence of two non-trivial
solutions. Furthermore, we prove that the free boundary set Q, = {z € Q :
u(z) = a} has measure zero when u is a minimizer of the action functional.

1. INTRODUCTION
The main objective of this work is to study the existence of solutions to the PDE

Ay = H(u —a)q(u) in Q,

u = O on 89, (1.1)
ou
= 0 on 09,

where A is the Laplace operator, a > 0, H denotes the Heaviside function, ¢ € C(R),
and € is a domain of RY with N > 3.
The action functional associated with (1.1} is given by

J(u) = /Q (Au)® — Q(u)) dx Vu € HF(Q), (1.2)
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where Q(t) := fg H(s — a)q(s)ds, and HZ(2) denotes de Sobolev space of square
integrable functions having square integrable first and second order partial deriva-
tives and vanishing in 0f) together with its first order partial derivatives. Since H
is not continuous at s = a, @) need not be differentiable at s = a, and, therefore,
J need not be differentiable. We bypass this difficulty using the Dual Variational
Principle introduced by Ambrosetti and Badiale (1989) which yields a differentiable
functional even when @ is not continuous.

2. PRELIMINARIES

Throughout this article we assume that ¢ is a continuous function and that
q(s) >0 for all s > 0, ¢ is non-decreasing; (2.1)
q(s) < als| 4+ ¢p, with 0 < a < p1 and ¢q a constant, (2.2)

where 7 is the first eigenvalue of the biharmonic operator with homogeneous
Dirichlet boundary conditions.
Let us consider the multivalued function ¢ defined by

q(s) if s > a,
q(s) == { [0,q(a)] if s =a,
0 if s < a.

Definition 2.1. A function u : Q — R is called a multi valued solution of the PDE
if u e H3(Q) N H*(Q) and u satisfies

A?u € G(u), ae. in Q.
Definition 2.2. Let u a solution of . The set
Qy ={x€Q:ulx)=a}
is called the free boundary.
Letting p(s) = H(s — a)q(s), we rewrite as
A2y =p(u) in Q,

u=0 on 99, (2.3)
ou
e 0 on 0f2.

Definition 2.3. A function u : @ — R is called a solution to the PDE (2.3) if
u € H3(Q) N H*(Q) and u satisfies
A?u =p(u) ae. in Q.
Let us define pp,(s) := p(s) + ms. Note that, for m > 0, the function p,, is
strictly increasing and (2.3)) is equivalent to
A?u+mu = pp(u) in Q,
u=0 on 09,
ou

8771:0 on 0.

Let us consider the multivalued function p defined by

B(s) = {pm(s) if s # a,

(2.4)

[ma, ma + q(a)] if s=a,
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where b = q(a).
Let p* denote the generalized inverse of p given by

pr(w) =5 < w € p(s).

Remark 2.4. The function p* is a continuous though p is a multivalued function,
and
p*(w) =a <= ma <w < ppyla) =ma+q(a).

Defining P*(w) := [, p*(s) ds, we see that P* € C*(R). Also, from (2.2)),
w  co+q(a)

w
< p* < — . .
T - _p(w)_m for all w € R (2.5)
From the above inequalities we obtain
1 2
P*(w) > - w_cwtaa) |w] for all w € R, (2.6)
2m+ « m
w2
P*(w) < 5 for all w € R. (2.7)

Assuming that Q of class C2, for every w € L?(Q) the problem
(A2 +m)v=w inQ,

v=0 on 0,
%20 on 9N

has a unique weak solution v € HZ(Q) N H*(Q). Defining v = G(w), elliptic
regularity theory implies that G is a continuous linear operator from L?(2) into
HZ(Q) N H*(Q)). Moreover,

wl\xr w)lx)axr 1 ’IUQLEI
/Q (2)G(w)(x)dr < /Q (2)d. (2.8)

m+ p1

Next we define f: L%(2) — R by

f(w) ::/ (P*(w) - 1wG(w)) dx.
Q 2
Since P* is a differentiable function, f € C'(L?(9)).

3. MAIN RESULTS

Lemma 3.1. Ifw € L?() is a critical point of f, then u := G(w) is a solution to
[2.3)) in the sense that u € HZ(Q) N H*(Q) and A%u = p(u) a.e. in Q.
Proof. Let w € L?(Q2) be such that f'(w) = 0, then p*(w) = G(w) a.e. in . Hence
u = G(w) € HZ(Q) N H*(Q) and satisfies (A2 + m)u = w. This implies that
p*(w) = u a.e. in Q, and from the definition of p* we obtain that w € p(u), and
hence
A?u+mu € p(u) ae. in Q.

For z € Q\ Q,, i.e.,, when u(x) # a we have p(u(x)) = mu(z) + p(u(x)) and then
A?u(z) = p(u(z)) a.e. € Q\ Q.

Since u is constant a.e. in Q,, A%2u = 0 a.e. in Q,. Therefore,

AU+ pp(u(z)) = mu(z) + H(0)g(a) = ma a.e. in Q.

Thus A%u = p(u) a.e. in ©,. These show that u is a solution of (2.3)). O
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Next we apply the direct method of the calculus of variations to prove the exis-

tence of a solution (2.3)).

Theorem 3.2 (First existence theorem). There exists wg € L?(2) such that

flwg) = min f(w).

weL2(Q)
Fizing ug := G(wo), where ug is a solution of (2.3), the set
Qy ={x € Q:up(z) =a}

has zero measure.

Proof. For w € L*(Q), from (2.8)) and (2.6),

1 1 1 9

F@) 2 3 los = e Il — Clwla. (3.1)
The hypothesis 0 < a < py and the inequality (3.1) implies

lim f(u) = +o0. (3.2)

Hu”L2(Q)_)+OO

That is, f is coercive. Let 1 = inf,,ecr2(q) f(w). From the coercivity of f, we have
m > —oo. This and the compactness of G imply that f attains its global minimum
at some wy. Let ug = G(wp) be a solution of .

Let x denote the characteristic function of ,. This results in

D o +2x) = /Q (0" (wo + £x) — <G (x) — Glwo))x dx

de
:/ p*(wo+6x)dx—5/xG(X)dx—/ ug dx
Qq Q Qa

for every e € R. From G(wg) = up and A%ug = 0 a.e. in §,, it follows that wy = ma
a.e. in €,. Hence, taking 0 < £ < b, one finds that

ma < wg + ex < ma+b=ma+ q(a)
a.e. in . Then p*(wo(z) +ex(z)) = @ a.e. in Q, and

/ p*(w()+sx)dx:/ adx:a|Qa|:/ Uy dX.
Qq Q, Q

a

Since x € L?(2) by the definition of G there exists z € HZ(Q) N H*(Q) such that
z = G(x), it follows that

(G(x) | x) = /Q(ZAzz +m2z?) dx.

The above equalities imply

d
ot en) = —=( [ (822 dxtmlzlag).
If |©2,] > 0, it follows that
d
%f(wo + EX) <0
a contradiction, because wyq is the global minimum of f. ([l

We note that the last arguments of the proof are valid for any local minimum of
f. The next lemma and Lemma[3.5] prove that the graph f satisfies the geometric
hypotheses of the Mountain-Pass theorem.
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Lemma 3.3. For each a > 0 and m > 0, there exists € > 0 and v > 0 such that
if ||ull 2 () < € then f(u) > ’y||uH%2(Q). Hence f attains a strict local minimum at

u=20.

Proof. Let ay € (o, py1). Since p*(s) = ms for all s € (—o0,a], P*(s) = % for any
s € (—o0,mal. Also, from (2.2), there exists ¢; > ma such that

1
P*(s) > ——s® fors>cy. 3.3
(S)_Q(m+a1)s or s > ¢ (3.3)

For v € L*(Q)\{0}, let W = {2 € &sma < v(z) < e1}, v1 = xowv and vy = xw,
where xs denotes the characteristic function of the set S. Thus,

* 1 2
/QP (v1)dx > m/gvl(x)dx. (3.4)

Letting |W| denote the Lebesgue measure of the set W, we have

||U2||%2(Q) . ”UQH%?(W)
m2a2  m2a?

Wl <

Since p*(ma) = a, for s € [ma, c1] we have P*(s) > 2%152. Therefore

© | () < /

2 2
— P*(vg(2))de < —L|W| < L /vzxdz. 3.6
-/ [ Prlatenas < w20 [ e @0

2m3a?

From the definition of j;, we have [, G(vi)vide < ﬁ Jqvide. By regularity
properties of elliptic operators, there exist p > 2 and K > 0 such that

IGWlre) < K()lull ) for all u e L2(S). (3.7)

Hence, for i = 1,2, see ({3.5)),

/QUQ(x)G(vi(J:))dacz / v (2)G (s (2) )

w
1/2
< ||U2||L2(Q)(/ (G(fui))2(x)dx)
w
1/
< ||U2||L2(Q)(/ (G(vi))p(m)dx) p|W|(P—2)/2p (3.8)
w
< K(p)l|vall 20 vill 120y WP ~2/2P

K(p) 2(p—1
< WHUZ||L(£Q))/p||vi||L2(Q)~
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Therefore,
/ v(2)G(v(z))dx
Q

= /Q(le(vl) + v2G(v1) + v1G(v2) + V2G(v2))dx

1
< v %2 —|—/2’UGU + voG(v9))dx
_m+u1” 220 Q( 2G(v1) + v2G(v2))

1
= e + [ (2mGen) + Gl (3:9)
< — 2
omt L)

K(p) 2(p—1)/p
+ WHU?HN Q) (2||U1||L2(Q) + HU2||L2(Q))

1 2(p—1

< o Iz + Clleall ) (lllza) + lozllzee)

with C' > 0 independent of v. Combining (3.4)), (3.6), and (3.9), we have

” 1
f(v) :/Q [P*(v(z)) — §v(x)G(v(x))]d$
Z m“vlniﬂ(ﬂ) + i”’l&”%z(g) - m”’vlnig(n)

2 1
— Cllvall 340y (sl 2@y + vzl 2(@)

2 St anm el + 5o el (3.10)
— Clloal3%0)"? (o1l 22 + w2l o (o)
> yil|vl|32(q) — 2C||v||2ié;; R
> ol (1 - 2 W),
where
1 = min{ = ¢

Tt an)(m + ) 2er

Since p > 2, (3p —2)/p > 0. Hence taking € = (v, /(4C))P/GP=2) and v = 7, /2, the
lemma is proven. O

The next lemmas show that, under suitable conditions on €2 and an appropriate
relationship between a and ¢(a), f possesses a pair of non-trivial critical points: a
negative global minimum and a positive Mountain-Pass critical point.

Definition 3.4. Let U be a domain in RN, k € N, v € [0,1), and € > 0. We say
that U is e-close in C*7-sense to the unit ball B if there exists a surjective mapping
g € C*7(B;U) such that
lg — Id”ckw(ﬁ;ﬁ) <
In 2020 Grunau and Sweers[I3] show that there is e > 0 such that if € is e-close
in C*7-sense to the unitary ball B with € < ey, then the first eigenfunction ¢; for
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the first eigenvalue pq of

Ao =pp inQ,

0 =0 on 909,
2—2:0 on 0f)

is unique (up to normalization), and ¢; > 0 in Q.
Lemma 3.5. Let Q be e-close in C*7V-sense to the unit ball B. If

b
gla) _ b 2 el

1 ) (3.11)
a a ||(701||%2(Q)

then f(bpy) < 0.

Proof. Since 0 < bp;(z) < b and p*(w) < a, for 0 < w < b, it follows that
1
foor) = [ Ppr)ix— 58 [ Glonerdx
Q Q

b2
<b — — 122 -
< balle1llLie) o o172
This and (3.11)) imply f(bp1) < 0. O

Finally, we prove that f satisfies a weak form of (PS) condition.

Lemma 3.6. Let {wy}ren in L2(Q) be such that {f'(wi)}ren converges to 0 and
{f(wg)}ren converges to a real number c, then there exists w € L*(Q) with f(w) =
¢, f(w) =0, and wi, — w.

Proof. The coercivity of the functional f implies, up to subsequences, the existence
of w € L*() such that w,, — w in L?(Q2). From f’(wy) — 0 and the compactness
of G, it follows that G(w,) — v := G(w), strongly in L?(2), and a.e. in Q. Let
F={zxeQ:v(z)=a} and Q3 =Q\T.

Let us begin studying the convergence in ;. Since p € C(R\{a}) and p*(wy) — v
a.e. in Q, hence wy — p(v) a.e. in Q. Clearly, |w| < Cy|p*(w)| + C2; this and the
convergence of {p*(wg)}ren in L?(Q) imply that there exists h € L?(2) such that
|wi| < h for every k € N. Applying the Lebesgue dominated convergence theorem:
wy — p(v) a.e. in L2(). From the uniqueness of the weak limit, one infers that
w = p(v) in L?*(£;). Since p* is asymptotically linear, it follows that

p*(wy) — p*(w) in L*(y), and P*(wy) dx — P*(w) dx. (3.12)
Ql Q1

On the other hand, for a.e. € T', one has w(z) = mov(z) = ma and hence
p*(w(x)) = p*(ma) = a = v(x). This jointly with imply p*(w) = v, which in
turnf’(w)v = 0, hence f'(w) = 0. In a similar way, from and the definition
of P*(s) for s € [ma, ma + b], one finds that

/QP*(wk)dx—>/§2P*(w)dx.

Letting ¢ = [,[P*(w) — 2wG(w)] dx it follows that f(w) = ¢, which completes the

proof. [
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Theorem 3.7. Assume that the domain Q is e-close in C*7V-sense to the unit

ball B. Suppose that (2.1)), (2.2)), and (3.11) hold. Then the problem (2.3) has

two distinct solutions uy # uy, and one of these solutions, obtained through the
minimizer, has a free boundary set of measure zero.

Proof. Let wgy be the global minimum of f given by Theorem [3:2] By Lemma [3.5]
f(wo) < 0. Hence wp # 0 and ug = G(wy) is a non-trivial solution of and the
free boundary 4(ug) = {x € Q : up(x) = a} has zero measure.

Taking p = €/2 > 0 and 8 = v¢/2 > 0 in Lemmal[3.3| we see that f(u) > 8 > 0 for
llullz2() = p > 0. This Lemmas and allow us to apply the Mountain-Pass
Theorem (see [0]), yielding a second non-trivial critical point wy, with f(wy) >
B > 0. Hence u; = G(w;) # 0 is a second non-trivial solution of (2.3). Since
flwo) <0< f(wy), wo # wy and as a consequence ug # U1 .

Finally, the zero measure of Q,(ug) follows from the fact that ug minimizes f
over all functions with zero measure on the set Q,(ug), as proven in Theorem
However, it is possible for the free boundary of u; to have positive measure.

Therefore, by Lemma problem has two different solutions ug # w1,
with the free boundary of ug having zero measure. O
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