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UNIFORM ATTRACTORS OF NON-AUTONOMOUS

SUSPENSION BRIDGE EQUATIONS WITH MEMORY

LULU WANG, QIAOZHEN MA

Abstract. In this article, we investigate the long-time dynamical behavior of

non-autonomous suspension bridge equations with memory and free boundary

conditions. We first establish the well-posedness of the system by means of
the maximal monotone operator theory. Secondly, the existence of uniformly

bounded absorbing set is obtained. Finally, asymptotic compactness of the

process is verified, and then the existence of uniform attractors is proved for
non-autonomous suspension bridge equations with memory term.

1. Introduction

In this article, we focus on the long-time dynamical behavior of solutions for
the following non-autonomous suspension bridge equations with memory in Ω =
(0, π)× (−l, l) ⊂ R2,

utt + α∆2u+ βut −
∫ ∞

0

µ(s)∆2u(t− s)ds+ f(u(x, y, t)) = g(x, y, t),

(x, y) ∈ Ω, t ≥ τ, τ ∈ R,
(1.1)

with the boundary conditions

u(0, y, t) = uxx(0, y, t) = u(π, y, t) = uxx(π, y, t) = 0, y ∈ (−l, l), t ≥ τ,
uyy(x,±l, t) + σuxx(x,±l, t) = 0, x ∈ (0, π), t ≥ τ,

uyyy(x,±l, t) + (2− σ)uxxy(x,±l, t) = 0, x ∈ (0, π), t ≥ τ,
(1.2)

and initial conditions

u(x, y, t) = uτ0(x, y), ut(x, y, t) = vτ0 (x, y), (x, y) ∈ Ω, t ≥ τ, τ ∈ R, (1.3)

where α, β are positive constant, β is the damping coefficient, 0 < σ < 1
2 is the

Poisson ratio, f is the nonlinear term, g is the external force. Since we have in
mind a long narrow rectangle, that is l � π, it is reasonable to assume that the
forcing term g does not depend on y, see [9] for details. So, we now assume that
g(x, t) = g(x, y, t) and g ∈ L2

loc(R+;L2(Ω)). The assumptions on µ(s), f(u) will be
given in details in the next section.
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We know that the earlier suspension bridge equations are derived from the math-
ematical model of a one-dimensional hinged beam suspended by hangers, which
describes the deflection of the roadbed in the vertical plane, see [15, 17]. As a
new problem in the field of nonlinear analysis in 1990, Lazer and McKenna [16]
introduced the following one-dimensional suspension bridge equation

utt + EIuxxxx + δut + ku+ = W (x) + εf(x, t), (x, t) ∈ (0, L)× R+,

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = 0, t ≥ 0.
(1.4)

In 1998, Ahmed and Harbi [1] made a rigorous mathematical analysis for the cou-
pled suspension bridge equations, they studied the dynamical behavior of system
under the different conditions, which are clamped, hinged and mixed boundary
condition (one end clamped and the other one hinged), respectively, and gave the
relevant numerical simulation and physical interpretation.

A series of important works have investigated around the existence of a global
attractor for suspension bridge equations, see for example [3, 9, 14, 17, 18, 19,
20, 24, 25, 27, 28, 29, 30] and the references therein. Ma and Zhong [18] first
obtained the global attractor of the weak solution for coupled suspension bridge
equations in 2005, and they further studied the existence of strong solution and
strong global attractor for beam-string coupling system in [30]. Bochicchio, Giorgi
and Vuk [3] proved the existence and regularity of the global attractor with finite
fractal dimension for the extensible suspension bridge equation. Park and Kang [25]
studied existence of global attractor for suspension bridge equation with nonlinear
damping in 2011. Recently, Wang and Ma surveyed the long-term behavior of
solutions for the suspension bridge equation with either time delay or state delay,
see [28, 29].

When µ = 0 in (1.1), Ferrero and Gazzola [9] introduced the following model of
suspension bridges

utt(x, y, t) + ∆2u(x, y, t) + αut(x, y, t) + f(x, y, u) = g(x, y, t),

for (x, y) ∈ Ω and t > 0. The above model regards the suspension bridges as a
rectangular plate of length π with the same boundary value conditions as (1.2). They
obtained the well-posedness of the system and analyzed several other boundary
value problems. For further details on mathematical models for suspension bridge,
we refer the reader to the new book [11] published by Gazzola.

More much work related to the above-mentioned rectangular plate models for
suspension bridge can be found in [2, 4, 5, 10, 12, 13, 22, 23, 27] and reference
therein. For example, Messaoudi et al. [23] considered the suspension bridge prob-
lem with memory under the above-mentioned boundary conditions and initial data
in 2016, and established the well-posedness of the system and the existence of global
attractors. Al-Gwaiz et al. [2] studied the bending and stretching energy about the
rectangular plate model proposed in [9]. Berchio et al. [5] investigated the struc-
tural instability of nonlinear plate modeling suspension bridges. In 2019, Wang and
Ma [27] paid attention to the following nonlinear plate modeling suspension bridges
with time delay in Ω = (0, π)× (−l, l) under the same conditions (1.2) as in [9],

∂ttu+ ∆2u+ γ1∂tu+ γ2∂tu(x, y, t− h) + f(u(x, y, t)) = g(x, y, t),

(x, y) ∈ Ω, t ≥ τ, τ ∈ R,
(1.5)
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where γ1 > 0 is the damped coefficient, γ2 ∈ R. ∂tu(x, y, t − h) is the delay term,
h > 0 represents the time delay. The existence of uniform attractors was achieved
for (1.5) and (1.2).

To the best of our knowledge, we do not find any results of non-autonomous
suspension bridge equations with history memory, so we focus on the long-time
dynamical behavior of problem (1.1)-(1.3). For this purpose, as in [8], we shall add
a new variable ηt to the system, which corresponds to the relative displacement
history, that is,

ηt = ηt(x, y, s) = u(x, y, t)− u(x, y, t− s), (x, y) ∈ Ω, s ∈ R+, t ≥ τ, (1.6)

then differentiating with respect to t, it is easy to see that

ηtt(x, y, s) = −ηts(x, y, s) + ut(x, y, t), (x, y) ∈ Ω, s ∈ R+, t ≥ τ. (1.7)

Thus, taking α−
∫∞

0
µ(s)ds = 1, problem (1.1)-(1.3) is equivalent to

utt + ∆2u+ βut +

∫ ∞
0

µ(s)∆2ηt(s)ds+ f(u(x, y, t)) = g(x, t),

(x, y) ∈ Ω, t ≥ τ, τ ∈ R,
ηtt(x, y, s) = −ηts(x, y, s) + ut(x, y, t), (x, y) ∈ Ω, s ∈ R+, t ≥ τ,

(1.8)

with boundary conditions

u(0, y, t) = uxx(0, y, t) = u(π, y, t) = uxx(π, y, t) = 0,

y ∈ (−l, l), t ≥ τ,
uyy(x,±l, t) + σuxx(x,±l, t) = 0, x ∈ (0, π), t ≥ τ,

uyyy(x,±l, t) + (2− σ)uxxy(x,±l, t) = 0, x ∈ (0, π), t ≥ τ,

(1.9)

ηt(0, y, s) = ηtxx(0, y, s) = ηt(π, y, s) = ηtxx(π, y, s) = 0,

y ∈ (−l, l), s ∈ R+,

ηtyy(x,±l, s) + σηtxx(x,±l, s) = 0, x ∈ (0, π), s ∈ R+,

ηtyyy(x,±l, s) + (2− σ)ηtxxy(x,±l, s) = 0, x ∈ (0, π), s ∈ R+,

(1.10)

and initial conditions

u(x, y, τ) = uτ0(x, y), (x, y) ∈ Ω, τ ∈ R,
ut(x, y, τ) = vτ0 (x, y), (x, y) ∈ Ω, τ ∈ R,

ητ (x, y, s) = ητ0 (x, y, s), (x, y) ∈ Ω, s ∈ R+,

ηt(x, y, 0) = 0, (x, y) ∈ Ω.

(1.11)

We denote

z(t) = (u(t), ut(t), η
t(s)), z0 = (uτ0 , v

τ
0 , η

τ
0 ).

The rest of this article is organized as follows. In Section 2, we present some basic
concepts and abstract conclusion. After that we establish the well-posedness of the
system by means of the maximal monotone operator theory, and further obtain the
existence of the uniformly bounded absorbing set and asymptotical compactness;
ultimately, the existence of uniform attractors to (1.8)-(1.11) is proved in Section 3.

All C throughout the paper represent real positive numbers, each C is not exactly
the same in the same line, and C(·) denotes a positive constant depending on the
quantities in parentheses.
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2. Preliminaries

In this section, we will give some preliminaries on the existence and uniqueness
of solutions to our problem (1.8)-(1.11), and recall some definitions and results
concerning the existence of uniform attractors. Firstly, let us introduce the phase
space as in [9]

H2
∗ (Ω) = {w ∈ H2(Ω) : w(0, y) = w(π, y) = 0, ∀y ∈ (−l, l)},

equipped with the inner product and norm

(u, v)H2
∗

=

∫
Ω

[∆u∆v + (1− σ)(2uxyvxy − uxxvyy − uyyvxx)] dx dy,

‖u‖H2
∗

=
[ ∫

Ω

[(∆u)2 + 2(1− σ)(u2
xy − uxxuyy)] dx dy

]1/2
.

It has been proven that ‖ · ‖H2
∗

is a norm on H2
∗ which is equivalent to the usual

H2(Ω)-norm in [9, Lemma 4.1]. Moreover, H2
∗ is a Hilbert space endowed with the

scalar product (·, ·)H2
∗
.

For the new variable ηt, we introduce the weighted L2-space

M = L2
µ(R+;H2

∗ (Ω)) =
{
ξ : R+ → H2

∗ (Ω) :

∫ ∞
0

µ(s)‖ξ(s)‖2H2
∗
ds <∞

}
,

which is a Hilbert space endowed with inner product and norm

(ξ, ζ)M =

∫ ∞
0

µ(s)(ξ(s), ζ(s))H2
∗
ds, ‖ξ‖2M =

∫ ∞
0

µ(s)‖ξ(s)‖2H2
∗
ds,

respectively. Now, the phase space is defined as

H = H2
∗ (Ω)× L2(Ω)×M,

equipped with the inner product and norm

(U, V )H = (u, ũ)H2
∗(Ω) + (v, ṽ) + (w, w̃)M,

‖U‖2H = (U,U)H = ‖u‖2H2
∗(Ω) + ‖v‖2 + ‖w‖2M,

respectively. where ‖ · ‖ = ‖ · ‖L2(Ω), and

U = (u, v, w)T , V = (ũ, ṽ, w̃)T ∈ H.

Next, we assume that the memory and nonlinear term satisfy the following con-
ditions:

(H1) The memory kernel µ(·) ∈ C1(R+) ∩ L1(R+) and satisfies

µ(s) ≥ 0, µ′(s) ≤ 0, ∀s ∈ R+, (2.1)∫ ∞
0

µ(s)ds = k0 > 0, ∀s ∈ R+, (2.2)

µ′(s) + k1µ(s) ≤ 0, for some k1 > 0, ∀s ∈ R+. (2.3)

(H2) The nonlinear function f ∈ C1(R) and satisfies

|f(s1)− f(s2)| ≤ C(|s1|p + |s2|p)|s1 − s2|, ∀s1, s2 ∈ R, p > 0, (2.4)

−c ≤ F (s) ≤ sf(s), ∀s ∈ R, (2.5)

where F (s) =
∫ s

0
f(ν)dν.
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Lemma 2.1 ([9]). Let u ∈ H2
∗ (Ω) and suppose that 1 ≤ p < +∞. Then there

exists a positive constant c∗ = c∗(Ω, p) > 0 such that

‖u‖Lp(Ω) ≤ c∗‖u‖H2
∗(Ω). (2.6)

To obtain the existence of uniform attractors corresponding to (1.8)-(1.11), we
also need the following definitions and abstract results.

Definition 2.2. Let E be a metric space, Σ be a parameter set, and σ ∈ Σ be a time
symbol. A family of two-parameter operators {Uσ(t, τ)} = {Uσ(t, τ)|t, τ ∈ R, t ≥ τ}
is called a process acting on E, if

(i) Uσ(t, s)Uσ(s, τ) = Uσ(t, τ) for all t ≥ s ≥ τ and τ ∈ R;
(ii) Uσ(τ, τ) = I for all τ ∈ R.

Let {T (h)|h ≥ 0} be the translation semigroup on Σ. We say that a family of
processes {Uσ(t, τ)}σ∈Σ satisfies the translation identity if

T (h)Σ = Σ, (2.7)

Uσ(t+ h, τ + h) = UT (h)(t, τ), ∀σ ∈ Σ, t ≥ τ, τ ∈ R, h ≥ 0. (2.8)

Definition 2.3 ([10, 7]). Let E be a Banach space, and B be a bounded subset of E
and Σ be a symbol space. We call a function φ(·, · ; ·, ·) defined on (E×E)×(Σ×Σ) be
a contractive function on B×B, if for any sequence {xn}∞n=1 ⊂ B and {σn}∞n=1 ⊂ Σ,
there are subsequence {xnk}∞k=1 ⊂ {xn}∞n=1 and {σnk}∞k=1 ⊂ {σn}∞n=1 such that

lim
k→∞

lim
l→∞

φ(xnk , xnl ;σnk , σnl) = 0.

We denote the set of all contractive functions on B×B×Σ×Σ by C(B,B; Σ,Σ).

Theorem 2.4 ([26]). Let {Uσ(t, τ)}σ∈Σ be a family of processes satisfying the
translation identity (2.8) on a Banach space E and having a bounded uniformly
(w.r.t.σ ∈ Σ) absorbing set B0 ⊂ E. Moreover, assume that for any ε > 0 there
exist T = T (ε) and φT ∈ C(B0,B0; Σ,Σ) such that

‖Uσ1(T, τ)x− Uσ2(T, τ)y‖ ≤ ε+ φT (x, y;σ1, σ2), ∀x, y ∈ B0, ∀σ1, σ2 ∈ Σ. (2.9)

Then {Uσ(t, τ)}σ∈Σ is uniformly (with respect to σ ∈ Σ) asymptotically compact in
E.

Theorem 2.5 ([10, 26]). Let E be a complete metric space, {Uσ(t, τ)}σ∈Σ be a fam-
ily of processes satisfying the translation identity (2.8) on E. Then {Uσ(t, τ)}σ∈Σ

has a compactly uniform (with respect to σ ∈ Σ) attractor AΣ in E if and only if

(i) {Uσ(t, τ)}σ∈Σ has a bounded uniformly (with respect to σ ∈ Σ) absorbing
set B0 ⊂ E;

(ii) {Uσ(t, τ)}σ∈Σ is uniformly (with respect to σ ∈ Σ) asymptotically compact
in E.

Let X be a Banach space with space. Then Lploc(R+;X) denotes all functions
with spatial values in Banach space X and time variable locally p-power integrable

in the Bochner sense; that is, the norm
∫ t2
t1
‖ · ‖pXds < ∞ for any time interval

[t1, t2] ⊂ R+. Moreover, the space L2
b(R+;X) denotes all translation bounded

functions in L2
loc(R+;X) satisfying

‖σ‖2L2
b(R+;X) = sup

t∈R+

∫ t+1

t

∥∥σ(s)
∥∥2

X
ds < +∞, ∀σ ∈ L2

b(R+;X)
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Now, we define the symbol space so as to obtain the asymptotic behavior of the
solutions to problem (1.8)-(1.11). For an arbitrary function g0 ∈ L∞(R+;L2(Ω))∩
W 1,r
b (R+;Lr(Ω))(r > 1), then we define the symbol space H(g0) as

H(g0) = [g0(x, t+ r)|r ∈ R+]L2,w
loc (R+;L2(Ω)),

where L2,w
loc (R+;L2(Ω)) denotes the space L2,w

loc (R+;L2(Ω)) endowed with local weak
convergence topology, and [ ] denotes the closure of a set in a topological space

L2,w
loc (R+;L2(Ω)). Thus, for any g ∈ H(g0), (1.8)-(1.11) with g0 instead of g pos-

sesses a corresponding process {Ug0(t, τ)} acting on H. The translation semigroup
{T (r)|r ≥ 0} satisfies (2.7) and (2.8), namely,

T (r)H(g0) = H(g0),

Ug(t+ r, τ + r) = UT (r)g(t)(t, τ),

for all g ∈ H(g0), t ≥ τ , τ ∈ R, r ≥ 0.

Proposition 2.6 ([7]). Let E be reflexive separable Banach space. Then the fol-
lowing statements hold:

(i) ‖g‖L2
b(R+;E) ≤ ‖g0‖L2

b(R+;E), for all g ∈ H(g0);

(ii) the translation group T (t) is weakly continuous on H(g0);
(iii) T (r)H(g0) = H(g0), for all r ∈ R.

Proposition 2.7 ([26]). Let σ ∈ L∞(R+;L2(Ω))∩W 1,r
b (R+;Lr(Ω))(r > 1). Then

there exists M > 0 such that

sup
t∈R+

‖σ(x, t+ s)‖L2(Ω) ≤M, ∀s ∈ R+.

Proposition 2.8 ([26]). Let σ ∈ L∞(R+;L2(Ω)) ∩W 1,r
b (R+;Lr(Ω))(r > 1), si ∈

R(i = 1, 2, · · ·), {un(t)|t ≥ 0, n = 1, 2, · · ·} be bounded in H2(Ω) ∩ H1
0 (Ω), and

{unt(t)|n = 1, 2, · · ·} be bounded for any T1 > 0 in L∞(0, T1;L2(Ω)). Then there
exist subsequence {unk}∞k=1 ⊂ {un}∞n=1 and {snk}∞k=1 ⊂ {sn}∞n=1, such that

lim
k→∞

lim
l→∞

∫ T

0

∫ t

s

∫
Ω

(σ(x, τ + snk)− σ(x, τ + snl))∂t(unk − unl)(τ)dxdτds = 0.

3. Well-posedness and uniformly bounded absorbing set

In this section, we will establish the well-posedness of problem (1.8)-(1.11). To
achieve this, we set U = (u, v, ηt)T , where v = ut, initial data Uτ = (uτ0 , v

τ
0 , η

τ
0 )T .

Then problem (1.8)-(1.11) is transformed into

Ut +AU = F (U),

U(τ) = Uτ ,
(3.1)

where

AU =

 −v
∆2u+ βv +

∫∞
0
µ(s)∆2ηt(s)ds

ηts(s)− v

 , F (U) =

 0
−f(u) + g(x, t)

0

 ,

Uτ =

uτ0vτ0
ητ0

 ,
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and the domain of A is

D(A) =
{

(u, v, ηt) ∈ H : u ∈ H4(Ω), v ∈ H2
∗ (Ω), ηt ∈ L2

µ(R+, H4(Ω)),

and (1.9)-(1.10) hold
}
.

To obtain the well-posedness of problem (1.8)-(1.11), we first need to prove the
following statement.

Lemma 3.1. The operator A : D(A) ⊂ H → H is maximal monotone.

Proof. Letting U = (u, v, ηt)T we have

(AU,U)H = (−v, u)H2
∗(Ω) + (∆2u, v) + (βv, v) + (ηt, v)M + (ηts, η

t)M + (−v, ηt)M
= β‖v‖2 + (ηts, η

t)M,

From (H1), we infer that

(ηts, η
t)M =

∫ ∞
0

µ(s)(ηts(s), η
t(s))H2

∗
ds

= −1

2

∫ ∞
0

µ′(s)‖ηt(s)‖H2
∗
ds

≥ k1

2
‖ηt‖M.

(3.2)

Using (3.2), we arrive at

(AU,U)H ≥ β‖v‖2 +
k1

2
‖ηt‖M ≥ 0, (3.3)

thus, A is monotone. Next, we prove that A is maximal, so we need to prove that

R(I +A) = H. We prove that there exists Ũ = (ũ, ṽ, η̃t)T ∈ H such that

U +AU = Ũ (3.4)

has a solution U = (u, v, ηt)T ∈ D(A). Equation (3.4) can be written

u− v = ũ,

v + ∆2u+ βv +

∫ ∞
0

µ(s)∆2ηt(s)ds = ṽ,

ηt + ηts − v = η̃t.

(3.5)

Inserting (3.5)1 into (3.5)2, we obtain

u+ ∆2u+ βv +

∫ ∞
0

µ(s)∆2ηt(s)ds = ũ+ ṽ,

ηt + ηts − v = η̃t,

(3.6)

then, for any U = (u, v, ηt) ∈ V = H4(Ω)×H2
∗ (Ω)×L2

µ(R+, H4(Ω)), problem (3.6)
is equivalent to

L1(U ,U) = L2(U), ∀U = (u, v, ηt) ∈ V,
where L1 : V × V → R is the bilinear operator, L2 : V → R is the linear operator
with the following forms, respectively,

L1(U ,U) = (u, u) + (∆2u, u)H2
∗

+ (βv, v) +

∫ ∞
0

µ(s)(η, u)H2
∗
ds

+ (ηt, ηt)M + (ηts, η
t)M − (v, v),
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L2(U) = ((ũ+ ṽ), u)H2
∗

+ (η̃t, ηt)M.

Obviously, L1 is a bilinear and continuous from on V × V , L2 is a linear and
continuous from on V . Moreover, for some C1 > 0, we have

L1(U ,U) ≥ C1‖U‖2V .
Furthermore, there exist C2, C3 > 0 such that

|L1(U ,U)| ≤ ‖u‖‖u‖+ ‖u‖H2
∗
‖u‖H2

∗
+ β‖v‖‖v‖+ ‖η‖M‖u‖H2

∗

+ ‖ηt‖M‖ηt‖M + ‖ηts‖M‖ηt‖M + ‖v‖‖v‖
≤ C2‖U‖V ‖U‖V ,

|L2(U)| ≤ ‖ũ+ ṽ‖H2
∗
‖u‖H2

∗
+ ‖η̃t‖M‖ηt‖M ≤ C3‖U‖V .

By the Lax-Milgram theorem, equation (3.6) admits an unique (weak) solution
U ∈ V . In addition, from (3.5)-(3.6), we deduce that

v = ut = u− ũ ∈ H2
∗ (Ω),

∆2u = ũ+ ṽ − u− β(ũ− u)−
∫ ∞

0

µ(s)∆2ηt(s)ds ∈ L2(Ω),

ηt − η̃t = −ηts(s) + ut(t) ∈ L2
µ(R+, H4(Ω)).

Then (u, v, ηt) ∈ D(A). Hence, R(I +A) = H, which completes the proof. �

Theorem 3.2. Assume (H1) and (H2) and Uτ ∈ H. Then problem (3.1) has a
unique global solution U = (u, ut, η

t) ∈ C([τ,+∞];H).

Proof. From Lemma 3.1, we know that the operator A is monotone and maximal,
and F obviously satisfies locally Lipschitz from (2.4). Therefore, by the Hille-Yosida
theorem, we obtain the existence of a unique weak local solution for (1.8)-(1.11);
that is,

U = (u, ut, η
t) ∈ C([τ, Tmax],H), for all Tmax > 0.

Next, we prove that the solution is global, namely, Tmax = ∞. For this purpose,
we need to prove that ‖U(t)‖H is uniformly bounded with respect to time. For
simplicity, from now on we set d$ = dx dy. Multiplying the first equation of (1.8)
by ut and integrating over Ω, we have

d

dt

(1

2
‖u‖2H2

∗
+

1

2
‖ut‖2 +

∫
Ω

F (u)d$
)

+ β‖ut‖2 + (ηt, ut)M = (g(t), ut), (3.7)

multiplying the second equation of (1.8) by ηt and integrating over M, we obtain

1

2

d

dt
‖ηt‖2M + (ηts, η

t)M = (ηt, ut)M. (3.8)

Then, by (3.2) and (3.7)-(3.8), we obtain

d

dt
E(t) = −β‖ut‖2 − (ηts, η

t)M + (g(t), ut), (3.9)

where

E(t) =
1

2
‖u‖2H2

∗
+

1

2
‖ut‖2 +

1

2
‖ηt‖2M +

∫
Ω

F (u)d$. (3.10)

By Hölder’s inequality and Young’s inequality, for 0 < ξ ≤ 2β, we have

(g(t), ut) =

∫
Ω

g(t)utd$ ≤ ‖g(t)‖‖ut‖ ≤
1

2ξ
‖g(t)‖2 +

ξ

2
‖ut‖2. (3.11)
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Using (3.9)-(3.11), we deduce that

d

dt
E(t) ≤ −(β − ξ

2
)‖ut‖2 −

k1

2

∫ ∞
0

µ(s)‖ηt(s)‖H2
∗
ds+

1

2ξ
‖g(t)‖2, (3.12)

integrating (3.12) over (τ, t), it is easy to see that

E(t) ≤ E(τ) +
1

2ξ

∫ t

τ

‖g(s)‖2ds. (3.13)

By Proposition 2.6, we know that ‖g‖2
L2
b(Rτ ;L2(Ω))

≤ ‖g0‖2L2
b(Rτ ;L2(Ω))

. Then

E(t) ≤ E(τ) +
1

2ξ
‖g0‖2L2

b(Rτ ;L2(Ω)), (3.14)

and by (2.5), we obtain

E(t) ≥ 1

2
‖u‖2H2

∗
+

1

2
‖ut‖2 +

1

2
‖ηt‖2M − c|Ω|. (3.15)

Thus, for each t ≥ τ , we obtain

E(t) ≥ C4

∥∥(u(t), ut(t), η
t(t))

∥∥2

H − C5. (3.16)

This and (3.14) imply∥∥(u(t), ut(t), η
t(t))

∥∥2

H ≤
1

C4

(
E(τ) +

1

2ξ
‖g0‖2L2

b(Rτ ;L2(Ω)) + C5

)
≤ C6 (3.17)

for all t ≥ τ , which completes the proof. �

Remark 3.3. From Theorem 3.2, we deduce that problem (1.8)-(1.11) generates
a family of processes {Ug(t, τ)}, g ∈ H(g0) in the space H. Then we define a family
of two-parameter operators Ug(t, τ) : H → H given by

Ug(t, τ)(uτ0 , v
τ
0 , η

τ
0 ) = (u(t), ut(t), η

t(s)). (3.18)

where (u(t), ut(t), η
t(s)) is the unique global solution of (1.8)-(1.11) corresponding

to initial data (uτ0 , v
τ
0 , η

τ
0 ), and {Ug(t, τ)}, g ∈ H(g0) satisfies Definition 2.2. More-

over, for all initial data zτ0 = (uτ0 , v
τ
0 , η

τ
0 ) and zτ1 = (uτ1 , v

τ
1 , η

τ
1 ), we let zτ = zτ0 − zτ1 .

Then there exists a positive constant C depending on zτ0 and zτ1 , such that

‖Ug(t, τ)zτ0 − Ug(t, τ)zτ1‖H ≤ eCT (‖zτ‖2H + ‖g1(t)− g2(t)‖2L2
b(Rτ ;L2(Ω))), (3.19)

for τ ≤ t ≤ T . This shows that solutions of (1.8)-(1.11) depend continuously on
the initial data.

Next, we prove the existence of a uniformly absorbing set in H. We need to
introduce a Lyapunov functional

L(t) = PE(t) +QΦ(t), (3.20)

where P,Q are positive constants, which will be defined later, and Φ(t) = (ut, u).

Lemma 3.4. Let Q be small enough and P be large enough. Then there exist θ1

and θ2 > 0 such that

θ1‖(u(t), ut(t), η
t(t))‖2H − c1 ≤ L(t) ≤ θ2‖(u(t), ut(t), η

t(t))‖2H + Pc2. (3.21)
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Proof. Firstly, we prove the left inequality of (3.21). Choosing Q small enough and

then P large enough such that P−Q
2 > 0, P−Qc∗

2 > 0. By (3.15), we obtain

L(t) ≥ P

2
‖u‖2H2

∗
+
P

2
‖ut‖2 +

P

2
‖ηt‖2M − cP |Ω| −

Qc2∗
2
‖u‖2H2

∗
− Q

2
‖ut‖2

≥
(P −Qc2∗

2

)
‖u‖2H2

∗
+
(P −Q

2

)
‖ut‖2 +

P

2
‖ηt‖2M − cP |Ω|

≥ θ1‖(u(t), ut(t), η
t(t))‖2H − c1.

(3.22)

where θ1 = min{P−Qc
2
∗

2 , P−Q2 , P2 }, c1 = cP |Ω|. Moreover, by (2.4), (2.6), (3.17),

and H2(Ω) ↪→ Lp(Ω), (1 ≤ p ≤ ∞), we arrive at∫
Ω

F (u(t))d$ ≤
∫

Ω

|u||f(u)|d$

≤
∫

Ω

|u||f(u)− f(0)|d$ +

∫
Ω

|u||f(0)|d$

≤ C
∫

Ω

|u|2|u|pd$ +
1

2

∫
Ω

|u|2d$ +
1

2
|Ω||f(0)|2

≤ c2∗C
(
‖u‖pL∞(Ω) + 1

)
‖u‖2H2

∗(Ω) + c2.

(3.23)

Applying Young’s inequality, Sobolev’s embedding Theorem and (3.23), we deduce
that

L(t) ≤ P

2
‖u‖2H2

∗
+
P

2
‖ut‖2 +

P

2
‖ηt‖2M + P

∫
Ω

F (u(t))d$ +
Qc2∗

2
‖u‖2H2

∗
+
Q

2
‖ut‖2

≤
(P +Qc2∗

2

)
‖u‖2H2

∗
+
(P +Q

2

)
‖ut‖2 +

P

2
‖ηt‖2M + P

∫
Ω

|u||f(u(t))|d$

≤
(P + c2∗[Q+ 2PC(‖u‖pL∞(Ω) + 1)]

2

)
‖u‖2H2

∗

+
(P +Q

2

)
‖ut‖2 +

P

2
‖ηt‖2M + Pc2

≤ θ2‖(u(t), ut(t), η
t(t))‖2H + Pc2.

This completes the proof. �

Lemma 3.5. The function Φ(t) = (ut, u) satisfies

Φ′(t) ≤
(

1 +
β

2ζ

)
‖ut‖2 +

(
(βζ + 2ζ)

c2∗
2
− 1
)
‖u‖2H2

∗

+
1

2ζ
‖ηt‖2M +

1

2ζ
‖g(t)‖2 + c|Ω|.

(3.24)

Proof. By (1.8)1, we have

Φ′(t) = (utt, u) + ‖ut‖2

= ‖ut‖2 − ‖u‖2H2
∗(Ω) − β(ut, u)− (ηt, u)M − (f(u), u) + (g(t), u).

(3.25)

Using Young’s inequality, Hölder’s inequality, and (2.6), for each ζ > 0, we have

−β(ut, u) ≤ β

2ζ
‖ut‖2 +

βζ

2
‖u‖2 ≤ β

2ζ
‖ut‖2 +

c2∗βζ

2
‖u‖2H2

∗
, (3.26)
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−(ηt, u)M ≤
ζ

2
‖u‖2 +

1

2ζ
‖ηt‖2M ≤

c2∗ζ

2
‖u‖2H2

∗
+

1

2ζ
‖ηt‖2M, (3.27)

(g(t), u) ≤ 1

2ζ
‖g(t)‖2 +

ζ

2
‖u‖2 ≤ 1

2ζ
‖g(t)‖2 +

c2∗ζ

2
‖u‖2H2

∗
. (3.28)

From (2.5), it is easy to see that

− (f(u), u) ≤ c|Ω|. (3.29)

Inserting (3.26)-(3.29) into (3.25), we arrive at (3.24), which completes the proof.
�

Theorem 3.6. Under the assumption of Theorem 3.2, a family of processes
{Ug(t, τ)}, g ∈ H(g0) corresponding to (1.8)-(1.11) possesses a bounded uniformly
(with respect to g ∈ H(g0)) absorbing set B in H.

Proof. From (3.12), (3.20) and (3.24), for P,Q > 0 it follows that

L′(t) = PE′(t) +QΦ′(t)

≤ −Q
(

1− (βζ + 2ζ)
c2∗
2

)
‖u‖2H2

∗
−
(

(β − ξ

2
)P − (1 +

β

2ζ
)Q
)
‖ut‖2

−
(k1P

2
− Q

2ζ

)
‖ηt‖2M +

Pζ +Qξ

2ξζ
‖g(t)‖2 + cQ|Ω|.

(3.30)

where ζ, ξ > 0. Choosing first ζ, ξ small enough such that

1− (βζ + 2ζ)
c2∗
2
> 0, β − ξ

2
> 0,

after that, choosing again Q small enough, and then P large enough such that

k1P

2
− Q

2ζ
> 0, (β − ξ

2
)P − (1 +

β

2ζ
)Q > 0.

Thus, there exist positive constants ϕ1, ϕ2, ϕ3, ϕ4, and ϕ5 such that

d

dt
L(t) ≤ −ϕ1‖u‖2H2

∗
− ϕ2‖ut‖2 − ϕ3‖ηt‖2M + ϕ4‖g(t)‖2 + ϕ5, (3.31)

choosing ϕ = min{ϕ1, ϕ2, ϕ3} yields

d

dt
L(t) ≤ −ϕ

(
‖u‖2H2

∗
+ ‖ut‖2 + ‖ηt‖2M

)
+ ϕ4‖g(t)‖2 + ϕ5. (3.32)

By Lemma 3.4, we claim that

d

dt
L(t) + %L(t) ≤ c3‖g(t)‖2 + c4, (3.33)

where % = ϕ/θ2. Using Gronwall Lemma for (3.33), leads to

L(t) ≤ L(τ)e−%(t−τ) + c3

∫ t

τ

e−%(t−s)‖g(s)‖2ds+ c4

∫ t

τ

e−%(t−s)ds

≤ L(τ)e−%(t−τ) +
c3

1− e−%
sup
t≥τ

∫ t+1

t

‖g(s)‖2ds+ c6

≤ L(τ)e−%(t−τ) +
c5

1− e−%
‖g0‖L2

b(Rτ ;L2(Ω)) + c6.

(3.34)
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If for any bounded set B ⊆ H, and the initial data (uτ0 , v
τ
0 , η

τ
0 ) ∈ B, there exists a

constant CB > 0 such that L(τ) ≤ CB , then we deduce from (3.34) that

L(t) ≤ CBe−%(t−τ) +
c5

1− e−%
‖g0‖L2

b(Rτ ;L2(Ω)) + c6, (3.35)

for any t ≥ t0. It follows that

‖(u, ut, ηt)‖2H ≤
1

θ1
(L(t) + c1) = R2.

This means that a family of processes {Ug(t, τ)} generated by (1.8)-(1.11) has an
uniformly absorbing ballB = B(0, R) = {(u, ut, ηt) ∈ H : ‖(u, ut, ηt)‖2H ≤ R2} ⊆ H
for any g ∈ H(g0), which completes the proof. �

Next, we prove the asymptotic compactness of a family of processes {Ug(t, τ)},
g ∈ H(g0) associated with (1.8)-(1.11) in H. Our main results are as follows.

Theorem 3.7. Assume that (H1) and (H2) hold and g ∈ H(g0). Then a family
of processes {Ug(t, τ)}, g ∈ H(g0) corresponding to (1.8)-(1.11) is uniformly (with
respect to g ∈ H(g0)) asymptotically compact in H.

Proof. Let z1 = (u1, u1
t , η

1) and z2 = (u2, u2
t , η

2) be two solutions of (1.8)-(1.11)
with the initial data z1

0 = (u1τ
0 , v1τ

0 , η1τ
0 ), z2

0 = (u2τ
0 , v2τ

0 , η2τ
0 ) and the symbols g1,

g2, respectively.
Set z = z1 − z2 = (u, ut, η

t), the initial data z0 = z1
0 − z2

0 = (uτ0 , v
τ
0 , η

τ
0 ). Then

(u, ut, η
t) satisfies the equations

utt + ∆2u+ βut +

∫ ∞
0

µ(s)∆2ηt(s)ds+ f(u1)− f(u2) = g1(t)− g2(t),

ηtt(x, y, s) = −ηts(x, y, s) + ut(x, y, t),

(3.36)

with boundary conditions (1.9)-(1.10). We denote

Ẽ(t) =
1

2
‖u‖2H2

∗
+

1

2
‖ut‖2 +

1

2
‖ηt‖2M, (3.37)

L̃(t) = P1Ẽ(t) +Q1Φ̃(t), (3.38)

where Φ̃(t) = (ut, u). Obviously, Ẽ(t) and L̃(t) are equivalent. Then there exist
two positive constants γ1 and γ2 depending on P1, Q1 such that

γ1Ẽ(t) ≤ L̃(t) ≤ γ2Ẽ(t), (3.39)

where P1 > 0 large enough and Q1 > 0 small enough.
First, multiplying (3.36)1 by ut and integrating over Ω, multiplying (3.36)2 by

ηt and integrating over M, then adding them, we have

d

dt
Ẽ(t) ≤ −β‖ut‖2 −

k1

2
‖ηt‖2M +

∫
Ω

(f(u2)− f(u1))utd$

+

∫
Ω

(g1(t)− g2(t))utd$,

(3.40)

according to the proof of Lemma 3.5, there exists ζ > 0 such that

Φ̃′(t) ≤ (1 +
β

2ζ
)‖ut‖2 +

(
(βζ + ζ)

c2∗
2
− 1
)
‖u‖2H2

∗

+
1

2ζ
‖ηt‖2M +

∫
Ω

(f(u2)− f(u1))ud$ +

∫
Ω

(g1(t)− g2(t))ud$,

(3.41)
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combining with (3.40) and (3.41), it is easy to see that

L̃′(t) = P1Ẽ
′(t) +Q1Φ̃′(t)

≤ −Q1

(
1− (βζ + ζ)

c2∗
2

)
‖u‖2H2

∗
−
(
P1β − (1 +

β

2ζ
)Q1

)
‖ut‖2

−
(k1P1

2
− Q1

2ζ

)
‖ηt‖2M + P1

∫
Ω

(f(u2)− f(u1))utd$

+Q1

∫
Ω

(f(u2)− f(u1))ud$ + P1

∫
Ω

(g1(t)− g2(t))utd$

+Q1

∫
Ω

(g1(t)− g2(t))ud$.

(3.42)

First of all, taking ζ small enough such that

1− (βζ + ζ)
c2∗
2
> 0.

After that, choosing Q1 small enough and then P1 large enough, such that

k1P1

2
− Q1

2ζ
> 0, P1β −

(
1 +

β

2ζ

)
Q1 > 0.

Thus, there exists ψ > 0 such that

d

dt
L̃(t) ≤ −ψẼ′(t) + P1

∫
Ω

(f(u2)− f(u1))utd$ +Q1

∫
Ω

(f(u2)− f(u1))ud$

+ P1

∫
Ω

(g1(t)− g2(t))utd$ +Q1

∫
Ω

(g1(t)− g2(t))ud$,

thanks to (3.39), we have

d

dt
L̃(t) + χL̃(t) ≤ P1

∫
Ω

(f(u2)− f(u1))utd$ +Q1

∫
Ω

(f(u2)− f(u1))ud$

+ P1

∫
Ω

(g1(t)− g2(t))utd$ +Q1

∫
Ω

(g1(t)− g2(t))ud$,

(3.43)

where χ = ψ
γ2

. Integrating (3.43) over [τ, t], we conclude that

L̃(t) ≤ L̃(τ)e−χ(t−τ) + P1

∫ t

τ

∫
Ω

e−χ(t−s)(f(u2)− f(u1))utd$ds

+Q1

∫ t

τ

∫
Ω

e−χ(t−s)(f(u2)− f(u1))ud$ds

+ P1

∫ t

τ

∫
Ω

e−χ(t−s)(g1(s)− g2(s))utd$ds

+Q1

∫ t

τ

∫
Ω

e−χ(t−s)(g1(s)− g2(s))ud$ds.

(3.44)
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For each ε > 0, there exists T > τ , such that L̃(τ)e−χ(t−τ) ≤ ε for t ≥ T . Then, by
(3.39) and (3.44), we deduce that

Ẽ(t) ≤ ε+ P1

∫ t

τ

∫
Ω

e−χ(t−s)(f(u2)− f(u1))utd$ds

+Q1

∫ t

τ

∫
Ω

e−χ(t−s)(f(u2)− f(u1))ud$ds

+ P1

∫ t

τ

∫
Ω

e−χ(t−s)(g1(s)− g2(s))utd$ds

+Q1

∫ t

τ

∫
Ω

e−χ(t−s)(g1(s)− g2(s))ud$ds

:= ε+ φT

(
(u1τ

0 , v1τ
0 , η1τ

0 ), (u2τ
0 , v2τ

0 , η2τ
0 ); g1, g2

)
.

(3.45)

Now, we prove φT (·, ·; ·, ·) ∈ C(B,B; Σ,Σ) for every fixed T > τ . By Theorem 3.6,
we know that

∪g∈H(g0) ∪t∈[τ,T ] Ug(t, τ)B

is bounded in H. Let the sequence (uτ0n, v
τ
0n, η

τ
0n) ∈ B, gn ∈ H(g0), n = 1, 2, · · ·.

Because B is bounded, the corresponding sequence of solutions (un, vn, η
t
n) asso-

ciated with the system (1.8)-(1.11) is uniformly bounded in H. Without loss of
generality, we assume that

(i) um → u weak star in L∞(τ, T ;H2
∗ (Ω)),

(ii) umt → ut weak star in L∞(τ, T ;L2(Ω)),
(iii) um → u in L2(τ, T ;L2(Ω)),
(iv) um(τ)→ u(τ), um(T )→ u(T ) in Lk(Ω), k <∞.

Then, applying Proposition 2.7 and (iii), it follows that

lim
n→∞

lim
m→∞

∫ t

τ

∫
Ω

(gn(x, s)− gm(x, s))(un(s)− um(s))d$ds = 0, (3.46)

from Proposition 2.8, we have

lim
n→∞

lim
m→∞

∫ t

τ

∫
Ω

(gn(x, s)− gm(x, s))(unt (s)− umt (s))d$ds = 0. (3.47)

On the other hand, since f(um) → f(u) weak star in L2(τ, T ;H), and exploiting
(ii)-(iii), it follows that

lim
n→∞

lim
m→∞

∫ t

τ

∫
Ω

(f(un(r))− f(um(r)))(unt (r)− umt (r))d$dr = 0, (3.48)

lim
n→∞

lim
m→∞

∫ t

τ

∫
Ω

(f(un(r))− f(um(r)))(un(r)− um(r))d$dr = 0. (3.49)

Therefore, from (3.46) and (3.49), we deduce that φT ∈ C(B,B; Σ,Σ), which com-
pletes the proo. �

Finally, by Theorems 3.6 and 3.7, we conclude the main result of this article.

Theorem 3.8. Assume that (H1) and (H2) hold and g ∈ H(g0). Then a family
of processes {Ug(t, τ)}, g ∈ H(g0) corresponding to (1.8)-(1.11) has a compactly
uniform (w.r.t.g ∈ H(g0)) attractor AΣ in H.
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