Electronic Journal of Differential Equations, Vol. 2024 (2024), No. 23, pp. 1-26.
ISSN: 1072-6691. URL: https://ejde.math.txstate.edu, https://ejde.math.unt.edu
DOI: 10.58997/ejde.2024.23

FORM OF SOLUTIONS TO QUADRATIC TRINOMIAL PARTIAL
DIFFERENTIAL EQUATIONS WITH TWO COMPLEX
VARIABLES

JIN TU, HUIZHEN WEI

ABSTRACT. This article describes the from of entire solutions to quadratic
trinomial partial differential equations (PDEs). By applying the Nevanlinna
theory and the characteristic equation of PDEs, we extend some of the results
obtained in [24] . Also we also provide examples that illustrate our results.

1. INTRODUCTION

In 1995, Wiles and Taylor [I8] [I9] pointed out that the Fermat-type functional
equation (also called Pythagorean functional equation)

™+ y" =1 (1.1)

does not admit non-trivial solutions when m > 3, but it admits non-trivial solutions
when m = 2. Actually, the study of can be tracked back to Montel [12]
and Gross [I]. They proved that the equation f™ 4 ¢g" = 1 has entire solutions
and pointed out that for m = 2, the equation has non-constant entire solutions
f = cosp, g = sin p, where p is any non-constant entire function. Recently, with the
evolution of Nevanlinna theory, many scholars gained plentiful results about these
equations of Fermat-type. Liu, Cao and Cao [8] in 2012 investigated the existence
of entire solutions with finite order of Fermat equations and obtained the following
result.

Theorem 1.1 ([8]). Suppose f is a transcendental entire solution of
P&+ f(z+0? =1, (1.2)

then f must satisfy f(z) = sin(z+ Bi), where B € C and ¢ = 2krw, orc = (2k+1)7
with k an integer.

In 2013, Saleeby [16] generalized the Pythagorean functional equation f%+g% = 1
and studied the quadratic trinomial functional equation

fA+2afg+g*°=1, acC—{1,-1} (1.3)

and obtained the following result.
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Theorem 1.2 ([16]). If equation (1.3)) has a transcendental entire solution, then
f, g must satisfy

Fo 1 ( cosh . sin h ) 1 ( cos h sin h )
V2\Vita Vi—-a/’ g V2\W/1+a V1I-«
or
o —apf? o 1-p?
(011 - 062)57 g (al - 042)57
where h is an entire function, 8 is a meromorphic function and o = —a+va? — 1,

ay = —a—+va?—1.

In 2016, Liu and Yang [9] researched the related properties on the meromorphic
solutions of the following equations, for o # 0, 1,

F2)? +2af(2)f'(2) + f'(2)* = 1, (1.4)

f(2) +2af(2)f(z+0) + f(z+ )" =1. (1.5)

If a2 # 0,1, then (1.4) has no transcendental meromorphic solutions but (1.5) has

transcendental meromorphic solutions with finite order and the order must be equal
to one.

Now, let us mention some previous results about the Fermat-type PDEs with

two complex variables. In 1995, Khavinson [3] pointed out that any entire solution
of the partial differential equations

Ou \ 2 Ou \ 2
— —) =1 1.6
in C? is necessarily linear. Later, Saleeby in [15] extended the result by exploring

the solutions of Fermat-type functional equations ([1.6) and obtain the following
result.

Theorem 1.3 ([I5]). The entire solution of (1.6) must satisfy u(z1,22) = c121 +
Ccozo + ¢, where ¢,c1,co € C and c% + cg =1.

Later, Li et al. discussed equations with more general forms
of \2 af\N2 ..
(5) *+ (5) =1

0f o (Of o (OFV (05VP_

B 5 _p’(azl) +<3z2) =

where n € N*, p, g are polynomials in C? (see [4, [5, 6, [7]). Li in 2005 further
investigated the functional equation of Fermat-type

Ou \ 2 Ou \ 2
—_— — = g 1.
(521) +(8z2) € (1.7)
and obtained the following result.

Theorem 1.4 ([6]). If equation admits an entire solution of f(z) with finite
order in C?, where g is a polynomial, then u is an entire solution of if and
only if

(i) u= f(c121 + c222) or

(i) u= d1(21 +i22) + ¢a(21 —iz2),
where f is an entire solution and f'(ci1z1 + caz2) = ieég('z), c1 and co are two
constants satisfying c1? + c2? = 1, and ¢} (21 + i22) + ¢h(z1 — iz0) = 1e9).
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Recently, Lii [I0] studied the quadratic trinomial partial differential equation
u212 + 2Bu21u22 + u222 = eg(z)’ (18)

where B is a constant and g is a polynomial or an entire function in C2?, and
obtained the following result.

Theorem 1.5 ([10]). Let g be a polynomial in C?, let t; and ty be two different
roots of the equation 1+ 2At +t? = 0(A # £1). Then u is an entire solution of the
partial differential equation if and only if

(1) u(z1,22) = G(z1 + taza + B(z1 + t122)) or

(11) U(Zl, Zg) = (151(2'1 + t122) + ¢)2(Zl + tQZQ),
where G is an entire function in C satisfying

BG"?(z +toza + B(z +t12)) = e971087,
where B € C— {0}, 7 = 4(1 — A?), ¢1 and ¢ are entire functions in C and satisfy
P (21 + trze) = e*TI2) gl (21 ftozp) = Ptz
where a and B are two polynomials such that
az1 + t122) + B(z1 + taz2) = g(z1,22) — log T.

Theorem 1.6 ([10]). Let g be an entire function in C2. Then u is an entire solution
of the partial differential equation (1.8) in C? if and only if

uw(z1,22) = F(z1,22 F21) + f(22 F 21),

where [ is an entire function in C and

F(t,s) = /Ot +te

In 2020, Xu, Tu and Wang [24] researched several Fermat-type PDEs and PDDEs
with two complex variables

g(t,tt+s)
2

dt.

(1o +25) + (10 + 25 =1, (1.9)
(f(z) + %)2 T (f(z) + 822§Z2)2 —1, (1.10)

and obtained interesting results:

Theorem 1.7 ([24]). If equation (L.9) has an entire solution in C?, then

f(z1,22) = ig +ne (71 +22)
or
f(z1,20) = %sin(zz —z1+m)+ %005(22 — 21 + 1) + moe” (1)
where n,m1,n2 € C.

Theorem 1.8 ([24]). If equation (1.10) has an entire solution in C2, then

2
f(ZlaZQ) = ig + 77€z27217

where n € C.
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Other results on Fermat-type PDEs with two complex variables can be found in
[2, B, 20, 1T, 2T, 22, 23], 25 [26]). Inspired by the aforesaid theorems, the following
question raises spontaneously.

What will happen when u,, is superseded by f(z)+ %’ and u,, is
2 2
superseded by f(z)+ 597); or f(z)+ gzjft’ or f(z)+ aigz2 in question

(1.8), where g(z) is a polynomial?

2. RESULTS AND EXAMPLES

Motivated by the above question, we study the solutions of the following qua-
dratic trinomial partial differential equations, utilizing the Nevanlinna theory and
the characteristic equation of partial differential equations:

(F2) + a—f)z +20(f(2) + ﬁ) (1) + ﬁ) + () + a—f)z = o9 (2.1)

321 82’1 822 82’2
2 2
(f(z) + %)2 + 2a<f(z) + g—i) (f(z) + gz‘g) + (f(z) + %)2 =), (2.2)

af \2 of 0% f f \2_ 4

(r)+ 371) +20(f(2) + 371) (1) + azlazz) +(f() + azlazz) = 9(2),
(2.3)
where a? € C — {0,1} and g(z) be a polynomial with the linear form g(z1, z2) =

121 + oz + g, where ag # 0, a0 # 0, € C.
For simplicity, let a? # 0,1, and

RS B PR
Yo/t 2Vi—a YT 2Vita 2VT-a

Our main results read as follows.

(2.4)

Theorem 2.1. Suppose equation (2.1) admits a transcendental entire solution f(z)
of finite order. Then f(z1,z2) must satisfy the following:
(Z) f(zla 22) = Cl (67 o, O, a2)69(2)/2 + 776_(21+22); where

V2(82-1)

iBlar—az)V/I-a’ a1 # g,
G(B,a,ar,as) = i%v oy = ay £ -2,

(B241) (z1422) | (B2=1)(21—22)
2681/2(1+a) 2i8,/2(1-a) ’

a1 = Q0 = —2,

and B, a, a1, as satisfy

(d+ar+a)(B”=1) (a1 —a)(B*+1)

Wl—a«a - Vit a«a
(ii) if B11 = Ba1, B12 = Baa, then (2.1) has no transcendental entire solution
f(2) of finite order, hence B11 = Ba1, B1a = Baa cannot coexist, then

1
f(21,22) = —=Y1(B11, Bz, Ba1, Bao) +ne ™ 772),

V2

where

V1(B11, Bi2, Ba1, B22)
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A—A z A—A z
pigren(® 4 famdigm(z), Bi1 # Bi2, Ba1 # Boa,
_ As—A —
= q (A1z1 + Agzg)em(®) 4 fa=2le7(3)  Byy = By, Byy # B,

ﬁe‘“(” + (Agz1 + A120)e23) | Byy # Bia, Bay = Bao,

moreover, n # 0, v1(2) = Buizi + Bi2z2 + B1,72(2) = B2121 + Bazze + Ba,
Bj1,Bj2, 8; € C(j = 1,2) satisfy
9(2) = 1(2) +72(2) = @121 + @222 + ao,
and Bi1, B12, Ba1, Boo satisfy
A(Bi1 +1) = A1(Biz+1), Ai(Bai +1) = Ay(Bax + 1).

We list several examples to show the forms of solutions in Theorem are
precise.

z1+229

Example 2.2. f(z1,29) = j:\/%eT +ie~(:1+22) is a solution of (2.1)) with
g(z) =21 +229. Here, a =1/2, a1 =1, a0 =2, a9 =0, n = 1.

Example 2.3. f(z1,22) = ige%w +v/2e~(:1722) i5 a solution of (2.1]) with
g(2) = —21 —20+2 Here,a =2, a0 =2, 01 = = —1,n = /2.

—221 —2z5+1

Example 2.4. f(z1,22) = :I:%(zl +z)e 2 4+/2e~(#:1+22) ig a solution of
@.1) with g(z) = —221 — 22+ 1. Here, a =2, g =1, a1 = g = —2, n = /2.
Example 2.5. Let o = 1/2,

V6 — 6 — 3/2i V6 — 6+ 3/2i
= z1 + )

71(2) 6 6 )
V6 — 6+ 3v/2i V6 — 6 — 3v/2i
Ya(z) = 6 z1 + 6 22,

B1 =By =0, and n = ¥%2. Then

2
f(z1,22) =

L (6 \/6—66—3\/51‘21+ \/6—6;3\/51‘ 29 Te \/6—6;3\/§i21+ \/3—66—3\/51' z2>
V2
+ éef(zﬂr@)

2
is a transcendental entire solution of (2.1]) with g(z) = @(z’l + 22).
Example 2.6. Let a = 1/2, y1(2) = —21—22, 72(2) = ‘/5_6;3\/2 21+ \/6_66_3\/§i 29
ﬁlzﬁzzo,ﬂzi. Then

V3 —3i V3 +3i A
f(21,22)=( 6 z1 + 6 22+z>e ! 2+ﬁe

is a transcendental entire solution of (2.1]) with g(z) = ‘/6+3‘6/§i_12 z1+ ‘/6_3\(3/§i_12 zo.

)

1 \/6—6;3\/51‘21_’_ \/5—66—3\/57; s

Example 2.7. Let « = 1/2, v (2) = ‘/676673‘52' 21+ ‘676;3‘/% 29, ¥2(2) = —21—29,
B1=B2=0,n=+/5 Then
1 \/6—6673\/51'211L \/6—66+3\/§i 29

f(z1,22) = \ﬁe

3+ 30 3— 31
+(\[6 zZl \f6 ZzQJr\/g)e*Zl*@
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is a transcendental entire solution of (2.1 with g(z) = */6_3‘6/51'_12 z1+ \/6+3\6/§i_12 Z9.

Theorem 2.8. Suppose equation (2.2) admits a transcendental entire solution f(z)
of finite order, then f(z1,z2) must satisfy the following:
(i) f(21,22) = <2(ﬁvaaal,a2)eg(z)/27 where
2\@([3271) aq 7£ 2a

iBai(2—a1)v/1I—a’
<2(67a7a17a2): :If 2 1 1

2,/2(1+a)’

a1:2,

and B, a, aq, ag satisfy
(a12 + 201 + 8)(62 — 1) (2041 — 0412>(62 + 1)'

Wl —« VvV1+ao

(ii)
1
f(zh 22) = ﬁ [(Al + A2 — AlBll)e'Yl(Z) + (Al + A2 — A2321)672(z)],
wheren # 0, v1(2) = Biiz1+H (22)+ Biaza+p1,72(2) = Ba121—H (22)+ Bag2za+ P,
leijZvﬁj € (C(] = 1,2) satisfy
9(2) = 7(2) +72(2) = o121 + az22 + o,
As(Bii+1) = A1(Bii* +1), Ai(Ba+1) = Ax(B2” +1).

We give several examples to show the results in Theorem are precise to some

extent.

Example 2.9. f(z1,22) = £1e~*72%2 is a solution of (2.2)) with g(z) = —22;+42,.
Here, a =1/2, oy = =2, g = 4, a9 = 0.

Example 2.10. f(z1,292) = iﬁezl‘”z? is a solution of ([2.2)) with g(z) = 2z;+42.
Here, « =1/2, a1 =2, ag =4, ap = 0.

Example 2.11. Let a« = 1/2, By; = 7\/;’”‘71’ and By = ‘/‘g’;’l. Then

3 —vBi-1 3 V3 B s
f(zl,ZQ):?e S z1+22 +Z2+1+?6 il i —22® 22 +3

is a transcendental entire solution of (2.2)) with g(z) = —z1 4+ 229 + 4.

Theorem 2.12. Suppose equation (2.3) admits a transcendental entire solution
f(2) of finite order. Then f(z1,22) must satisfy the following:
(i) f(21,22) = (3(B, o, a1, 009)€9 /2 4 pe=#1522 here

4(8°+1) o
, 1+ag #0,
C3 (Ba «, (g, a?) = /8(0(102:1'{32?71‘1")8)\/2(1""@)

7:5(2«‘,»(11)0(1\/2(176!)7 (&3] + Qg = O7

and B, a, a1, as satisfy
(041042 + 2071 + 8)(ﬁ2 — 1) . (20&1 — alag)(ﬁ2 + 1).
iv1I—a N VIi+ta
(ii) if B11 = Bo1 and Bia = Baa, then does not admit any transcendental
entire solution with finite order, if B1y = B2y and Bi1a = Boy do not coexist, and if
Bi1 + Bi2 # 0, Bay + Bag # 0, then

1
21, %2) = —=U2(B11, Bia, Ba1, Bag) + ne” 1172
f( 1 2) \/i 2( 11, D12, D21 22) n
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where
Ay — Ay + A1 B2 Ay — Ay + AsBoo
V9(B11, Bia, B2, B = e (2) v2(2).
2(Bi1, Bi2, Ba1, B22) By + Bi + Bot + B e ;
if By + B2 = 0, Ba1 + Bz # 0, then
1
f(z1,22) = ¥3(B11, Bi2, Ba1, Bag) + ne” #1772,

V2
where
¥3(Bi1, B2, Ba1, B22)

As—A1+A9Bog v2(2) 71(2) _ A1 —Ay,
_{ Ba1+Ba2 € + 17A26 Bll - A )
As—A1+A>B _ .
(A122 — AQZQ + Alzl)e““(z) + 2 3211+B222 22 672(2:) Bll = —1,

Zf Bll + B12 7£ 0 and BQl + BQQ = 0, then

1
f(z1,22) = —=V4(Bu1, Bia, Bay, Bag) +ne” 1772,

V2

where
Y4(B11, Bi2, Ba1, Baa)

= jl B;Q“J‘rj:llim N T3 2—A1 e, By = AzAzAl’
| A Bren ) 4 (A222 — Ayzp + Apz)e”), By = —1;
Zf Bll + B12 =0 and BQl + BQQ = 0, then

1 —
——14(B11, Bi2, Ba1, Bag) +ne” #1772,

f(ZhZz): \/?

where
V4(Bi1, 31273217322)

A —A Axy—A
e 4 e, Bu = 2572, B = 2207

A2
2A1—As
= (A12’2 — Aozo + A12’1)€71(z) +

QA‘LLAZ e 4 (Agzy — Ay + A2zl)€72( ), By =442 By = —1;

moreover, n # 0, 71(2) = Buiz1 + Bia2a + f1,72(2) = Ba121 + B2z + B2, and
Bj1, Bja, B; € C(j = 1,2) satisfy
9(z) = m(2) + 72(2) = a121 + @222 + o,
As(B11+1) = A1(B11Bi2+ 1), Ai(Bo1 +1) = Aa(B21Baa + 1).

Ag—A
672( ), By =—1,By = =L

Now we give some examples to show that the results in Theorem [2.12|are precise.

Example 2.13. f(z1,22) = 2\9/5 ST 3e=51+22 g g solution of (2.3) with g(z) =
21+ 229. Here, a =1/2, a1 =1, aa =2, ap =0, n = 3.

Example 2.14. f(z1,22) = £3€7%2 +5e~ 1722 is a solution of (2.3) with g(z) =
221 — 229. Here, a =1/2, a1 =2, ag = —2, g =0, n = 5.

Example 2.15. Let a = 1/2, y1(2) = 21 + (=2 + V/3i)2, 72(2) = 321 + (—
%@)22, p1=p2=0,and n= g Then

—3i+ \/§6z1+(72+\/§i)zz + 3t + \/56321*(1+ZT@)22 + gele+22

Flar,22) = —5 2
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is a transcendental entire solution of (2.3)) with g(z) = 42 + (-3 + ‘/5’

)ZQ.
Example 2.16. Let a =1/2, 71(2) = 3_§/§i21 + _32\/@227 vo(2) = 321 + (=1 —
2\/§i)22’ 81 =02 =0,n=0, then

3

23 —3i 3-v3 —3+V3i 31 3 . i

is a transcendental entire solution of (2.3)) with g(z) = g’fi 21+ ’15?@ Zo.

Example 2.17. Let o = 1/2, v1(2) = —21 + 22, 12(2) = 321 + (-1 — 2T\/§i)22,
Blzﬁgzo,n:G,then

is a transcendental entire solution of (2.3)) with g(z) = 221 — 27@22.

Example 2.18. Let o = 1/2, v(2) = 21 + (=2 4+ V3i)22, 12(2) = 3+§/§i21 +
_3_\/§i22, B1 =2 =0,n=1, then

2
-3 3 . 2/3 + 3 . s
f(Z1,Z2) = %6214_(_24_\/&)22 =+ %E%ZH‘%\E

is a transcendental entire solution of ([2.3]) with g(z) = 5+g/§i z1 + *”2‘/:7’" 2.

22 + e—Z1+Z2

Example 2.19. Let a = 1/2, v1(2) = 21 + (=2 + V3i)z2, 12(2) = —21 + 29,
5125220777247“1611

_ —3i+ \/g z21+(—2+V34) 22 \/g +3i
Flor ) = e ¢ (B2

is a transcendental entire solution of (2.3) with g(z) = —1 + v/3iz.

21+i22)6_zl+22 +4e—21+22

Example 2.20. Let a = 1/2, y1(2) = 3_§/§i2’1 + —3-5\/51’22’ Ya(z) = 3+£/§i21 +
=3=VBisy B1 =B =0, 1 = 2i, then

f(Z1,ZQ) _ 2\/:21— 3i63—5/§izl+—3-;\/§7‘,z2 + 2\/{2:- 3ie3+£/§1‘zl+—3—2\/§7‘,

is a transcendental entire solution of (2.3)) with g(z) = 321 — 325.

%2 4 9jem 1t

Example 2.21. Let a = 1/2, y1(2) = —z1 + 22, 72(z) = 3+§/§’iz1 + *3*2\/§iz2,
51:ﬁ2207n:\/§a then

f(z1,22) = (@ @6%21+_33‘/&@ 4 \fBeFita

is a transcendental entire solution of ([2.3]) with g(z) = 1+£/§z z1 + _1_2‘/§i 2.

21 — izz)e_zl+z2 +

Example 2.22. Let a = 1/2, y(2) = 378z 4 =358, yy(2) = —2; + 2,
51 = 62 = 07 n= \/52, then

f(z1,22) = 72\/;_ B i 2 + (ng 3

is a transcendental entire solution of (2.3)) with g(z) = 1—;/51‘21 + —1-;\/51 29.

21 + izz)e_zlJrZ? +V/2ie A1t
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3. PROOF OF THEOREM [2.1]

Proof. Suppose that f(z) is a transcendental entire solution of (2.1)) with finite
order. Let

of 1 of 1
821 \/§(U'+U)7 f( )+8722 E(U_U%

where u and v are entire functions. Thus, we rewrite (2.1 in the form

f2)+ 5=

(1+ a)u® + (1 — a)v? = 9%, (3.1)
Then it follows from (3.1)) that
(\/1 + au>2 n (s/l - av)2 _1

69(2)/2 eg(z)/Q

This formula leads to

<\/1—|—04u \/l—av)(\/l—i—au _MU>:1’

09(2)/2 09(2)/2 922 T pa(2))2

(3.2)

which implies that both e;{fff;‘ + ie;(:)%’ and ;;:ff;‘ -1 Vq1< 7+ have no zeros.
Therefore, in view of [13]-[17], there exist a polynomial p(z) such that

Vitou V1I-—ov

i — eP(2)
e9(2)/2 e9(2)/2 ’ (3.3)
V1+oau \/1 —av .
w2 ez T ¢
We denote
z z
1@ =2 1 pe), ) =22 e, (3.4
Then from (3.3)), we have
of 1
Ae(B) L A, e72(2) .
fe) + 5= \/5( 1T 4 Ay ), (3.5)
of 1
Ao (2) 1 4, e72(2) .
HORE \/5( 267 4 4y (), (3.6)
where Aq, Ay are defined by (12.4] . Thus, from (3.5) and (3.6]) it follows that
of  of 1
- Ay — Ax)em®) 4 (Ay — Ap)e2)), .
9o Do \/5[( 1= Ag)e" + (Ay — Ay)e” ] (3.7)

On the other hand, from and (3.6 . by combining with 62 az2 = af;afZl, we
have

of of 1 [(A o 8%) 71<z>+( O 2%)672@)] (3.8)

871_872_7 921 'Oz 021 0z

Thus, and @ 3.8]) yield
2 2

o o 11(2)=72(2) —
<A1 A= Ayl Ay azg)e = A - Aot AR - TR (39)

Now we consider two cases.
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Case 1. If 71 (3)=72(2) ig a constant, then v, (z) —72(2) is a constant. By combining
with 71(2) — 72(2) = 2p(2), it follows that p(z) is a constant. Let § = e(*), then
equations (3.5)-(3.6)) can be represented as

3f _ 1 kl k2 g(z)/2

f(Z) 0z B \/§<\/17+()4 \/177()é>e ’ (310)
of _ 1 ki ke 9(2)/2

fz) 0z - \/§<\/17—|—()4 \/17_“)6 ’ (3-11)

where k; = 5+25_1, ko = Bffi_l, and k? + k3 = 1. This leads to
Of Of _ V2k2 i

L 3.12

0~ 029 V11—« ( )

On the other hand, differentiating both sides of equations (3.10)) and (3.11) with

respect to zo and 2z, respectively, and combining this with 851 asz = 852 ale, we
deduce that
of _of
521 822

3.13

_ (k0 b 0k %) (31

2V/2\V1+adz1 V1i—adz JI+adz I—adx '
From (3.12) and (3.13) it follows that
4
ke k1 Oy ky 99 k09 ks 99 (3.14)

Vi-a JVitadzn JIi-adxn Vitadz VI—adzn
Since g(z) is a polynomial with the linear form g(z1, 22) = @121 + asz2 + ap, where
a1 #0,as # 0,9 € C. Hence, from (3.14) we deduce that

(4+o1 fag)ky (1 —a)ky

vV1i—«a Vit a
The characteristic equations of (3.12)) are

le 1 dZQ - 1 ﬁ o \@kg eg(z)/Q.

(3.15)

dat 7 At dt JI-a
Using the initial conditions: z; = 0, 20 = s, and f(z1, 22) = f(0,5) := ¢p(s) with
a parameter s. Thus, we obtain the following parametric representation for the

solutions of the characteristic equations: z1 =t, zo0 = —t + s,
t \/ikQ ajt—agttagsta
t,s) = e 2 dt + ¢o(s), 3.16
R —— 60(5) (3.16)

where ¢p(s) is a finite order transcendental entire function in s = z1 + 2.
Subcase 1.1. If a3 — ay # 0, it follows from (3.16]) that

t \/§k2 ajt—agttagstag
2

f(t7 S) = o me dt + ¢O(S)
2V/2k; ait-agttagstag (3.17)
- M(OM — 052)6 ’ + (bl(s),

where
2\/§k2 e a2 S;rﬂo

¢1(s) = do(s) — T—a(or — o)
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is a finite order transcendental entire function in s. Thus, from (3.17)), it follows
that

2\/5]{:2 a1zjtagzotag
, = 2 —+ . 318
f(z1, 22) JT—alon — a2)€ + ¢1(21 + 22) (3.18)

Substituting (3.18]) into (3.10]) or (3.11]), then by combining with (3.15)), it yields
that

¢1(z1 + 22) + ¢ (21 + 22) = 0, (3.19)
which implies ¢1(21 4 22) = me~(*1+22) 5, € C\ {0}.
Subcase 1.2. If a1 — ay =0, it follows from (3.16|) that

¢ \/§k2 ajt—agttagstap

fts) = v 2 dt + o(s) 520)
N )

V-«
where ¢5(s) = ¢o(s) is a transcendental entire function with finite order in s. In

view of (3.20)), we have

\/ik'g ea221+0<2222+0<0
v1i—a«a
From (3.15) and a3 — g = 0, we have ay = ag = —2 or kg = 0.

Subcase 1.2.1. If a; = ay # —2, then we have ko = 0, it follows from (3.21)) that

f(z1,22) = #3(21 + 22). (3.22)
Substituting (3.22) into the (3.10)) or (3.11f) yields

1 az1+aszotag
21+ 22) + ¢5(21 + 22) = F————-c B ,
$3(21 + 22) + P5(21 + 22) T

f(Zl,ZQ) = 21 +¢2(21 +2:2). (3.21)

which implies

V2
2+a)Vi+ta

¢3(21 + 20) =+ eI/ L ppe=(t=) o e C

Subcase 1.2.2. If oy = ay = —2, it follows from that
V2ke  —221-2:5tag
Viealoo
Substituting into the or , yields
ki ke
Vita Vi-a

fz1,290) = z1 + ¢a(z1 + 22). (3.23)

1 —22) 22940
¢4(21+22)+¢/4(21+22)=ﬁ( o —

which implies

Bk
Vita V-«
The proof of Theorem i) is complete.

1
Ga(z1 + 22) = —2( )(21 + 22)ed/2 ppe=(t=) o e C
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Case 2. If ¢71(*)=72(2) is not a constant, then p(z) is not a constant. It follows

from (3.9) that

Ay a2 a0
Lo, 0, (3.24)
072 072 '
A= Ap+ 4,22 2,92 _ g,
1 2+ 155 o 2822

Otherwise, without loss of generality, if A; — Ay — Agg + Ay 871 # 0, we have

A — Ay + A1 3 872 — Ay 2
= O 20 (3.25)
Ay — Ay — Ay 371 + A5t

Since p(z), g(z) are polynomials, the left-hand side of is transcendental,
which contradicts with the right-hand side of (3.25)) is a rational function. Thus,
in view of ([3.24)), we have

2p(z)

AL AL

82’1 62’2 (326)
A 072 _A 072 —As— A

192 2 92 2 1

Next, we prove that v;(z) and y2(z) are linear forms of z1, zo. Similar calcula-

tions to the ones in equation (3.12) can be used to (3.26]); we can obtain
A — Ay

B 1
Y1 = 7142 21 +<,01(2’2 + 4, Zl),
Ay — A Ay
2 = 72141 =21+ a(22 + A, 221).

Since g(z) is a polynomial with the linear form g(z1,22) = v1(2) + 72(2) = @121 +
aaz9 + ap, where a1 # 0, a0 # 0,9 € C, it follows that

Al — As)?
1+ @2 = [a1 — %]21 + a2z + ap.
Let
01 =bps1™ +bp_151™ by, ST =20+ Il21,
2
n n—1 A
w2 =dpse" +dp_152""" + -+ do, 52 _22+A721
1
If m > 2, we have n = m and b; = —d;,j = 2,...,n. Furthermore, if b; # 0 for
j = 2,...,n, we need consider the coefficient of ng_lzl in @1, w9, then it yields
that

A A
Cbm I;zy 21+ Chydi, /Ti 2 =0,

further, we can obtain that

A A

Ay A
this is a contradiction with the required condition of theorems. Thus, we deduce
that m = 1, and the 7y, 2 are linear forms of z1, zo. Without loss of generality,
we set

71 (%) = Biiz1 + Biaza + B1,  72(2) = Baiz1 + Baaza + [a.
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According to equation (3.7), we obtain that the characteristic equations of (3.7))
are
dz1 dzo a1

At At 7 dt V2
Similarly, we obtain
t
1
f(t,s) :/ — (A _AQ)e(Bll_Bl2)t+Bl25+Bl
o Vi

+ (A2 _ Al)e(321—322)t+3223+52]dt + ¢0(3)7

[(Al — Az)e"“ + (A2 — Al)e"’?].

(3.27)

where ¢(s) is a transcendental entire function with finite order in s = 21 + 25.
Subcase 2.1. If Bj; — By # 0, Boy — Bgg # 0, it follows from that
b1
0 V2
+ (Ag — Ay)e(Pr=Ba)td BaastB2] gy 4 g ()

[(Al _ Az)e(Bll—Blz)t+B128+,31

f(t,s) =

- i AL — Ay (B11—Bi2)t+Bi2s+51 (3.28)
V2 [311 —Bis"
As — A ,
+ 7323 — B; 6(321—322)t+3226+62] + (;55(8).
where
1 AL — Ay Bi2s+B1 Ay — A Bazs+p2
i) =0l = Al T E, e BBt
is a finite order transcendental entire function in s. Thus, it follows (3.28)) that
1 A — Ay Ay — Ay R
f(ZI; 22) - % [me'yl(z) + m({m( )] + (255(251 + 22). (329)

Since g(z) is a polynomial with the linear form g(z1, 22) = 11(2) + 72(2) = @121 +
azo + ap, where ap # 0,9 # 0,9 € C. Hence, we deduce from (3.26) that

Az(Bi1 +1) = A1(Bia +1), A1(Ba +1) = Ay(Boz + 1). (3.30)
Substituting (3.29) into (3.5 or (3.6)), then combining this with (3.30]) yields that
¢5(21 + 222) + qﬁg(zl + 222) =0, (3.31)

which implies ¢5(z1 + 22) = n5e~(*1722) | 5 € C.
Subcase 2.2. If By; — Byo = 0 and Bay; — Bos # 0, from ([3.27) it follows that

f(t,s)

t
1 ; — 542
_ /0 (A1 = Ap)ePe T g (g — Ayl Brm BB Rl G0 (s) (g )

1 As — A
— — [(A; — A 6311S+51t+ #6(321*322)t+3225+ﬁ2 + s),
Tl - 2) e ] + o(s)
where LA A
— 2~ 1 Baastfa
s) =¢o(s) — —=—5—F—¢€
9(s) = do(s) V2 Bay — Bay
is a transcendental entire function in s. Thus, in view of (3.32]), we obtain
1 A — A
f(z1,292) = ﬁ [(A1 - A2)671(Z)21 + ﬁe”fz(z)} + ¢(21 + 22). (3.33)
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Also, we deduce from ([3.26)) that
Bll = Blg = —1, Al(BQI + 1) = AQ(BQQ + 1) (334)

Substituting (3.33)) into (3.5) or (3.6)), then by combining this with (3.34)), it yields
that

1
¢6(Z1 + 22) + qf)lﬁ(2’1 + 22) = EAQEM(Z), (3.35)

which implies ¢g(21 + 22) = 5 427 (21 + 22) + mge=17%2), 7 € C.
Subcase 2.3. If B1; — By # 0 and By — Bagy = 0, it follows from (3.27)) that
f(t,s)

t
1
_ / ﬁ [(Al N AQ)S(BufBlz)tJerSﬂLﬁl + (A2 _ A1)6B215+B2]dt + ¢0(5) (3 36)
o .

= i[ A — Ay e(Bi1i—Bi2)t+Bi2s+51 + (A2 _ A1)63215+62t] 4 ¢7($)7

V2'Bi1 — Bia
where

1 A -4 5
s) = §) — — - "= ¢ 125+P81
is a finite order transcendental entire function in s. Thus, from (3.36)), it follows
that

1, A4 —-A
f(Zla Z2) = E [ﬁe’h(ﬂ + (AQ - Al)e'y"’(z)zl} + ¢7(2’1 + 22). (337)
Also, we deduce from ([3.26)) that

Ay(Byy +1) = A (Bys +1), By = Byy = —1. (3.38)

Substituting (3.37)) into (3.10) or (3.11)), then by combining this with (3.38]), it
yields that

1
br(21 + 22) + (21 + 22) = EAW”(Z)? (3.39)

which implies ¢7(z1 + 22) = %AleW(Z)(zl +2z20) + nre—(:1122) o e C.
Subcase 2.4. If By; — B2 = 0 and By — Bos = 0, it follows from ([3.27) that

t
fits) = [ = [(Ay — Ag)ePr2st01 4 (Ay — Ay)eP2 52 ]dt + go(s)
0 V2 (3.40)
_ [(Al B A2)63125+,81 + (AQ _ A1)63128+62}t 4 ¢8(5)7
V2
where ¢g(s) = ¢o(s) is a transcendental entire function with finite order in s. Then
from (3.40) we obtain
1
f(Zl7 22) = E [(Al - Az)eyl(z) + (A2 — Al)e”’?(z)]zl + ¢8(21 + 22). (341)

Also, we deduce from ([3.26) that
By = B2 =—1, By =By =-1,

which leads to p(z) being a constant. By the assumption at the begin of Case 2,
we obtain a contradiction. Thus, the proof of Theorem ii) is complete. O



EJDE-2024/23 SOLUTIONS TO QUADRATIC TRINOMIAL PDES 15

4. PROOF OF THEOREM [2.8|

Proof. Suppose that f(z) is a transcendental entire solution of (2.2)) with finite
order. By using the same discussion in the proof of Theorem we obtain that

of _ 1 i(2) 72(2)
= 1 2(= 1
1)+ \/i(Ale + Ape @), (4.1)
o%f 1
— 71(2) Y2(z)
HORS > ﬁ(Aze + Age ) (4.2)
where Ay, Ay are defined by - Thus, it follows from and (4.2) that
of 0°f 1
L2l = (A — Ay)e" B 4 (Ay — Ap)er )], 4.3
0 022 2 [(Ay 2)e + (A2 1)e ] (4.3)

On the other hand, differentiating with respect to z; on equation (4.1)), in accor-
dance with (4.2), we have

of _ L A IS _ 4,992 ()
azl \/ﬁ [(AQ A1 821 ) =+ (A1 A2 621 )6 } (44)

Differentiating with respect to z; on equation (4.4)) yields

fz) =

of 0% 1 on 071\ 3271 71 (2)
o 02 = Bl ~ MG ) - Mg

4.5
(A 872 A (872) A 8272 )672(2)] ( )
Y9z T on >°922 '
Thus, in line with and , it follows that
o 0 0?
(A1 Ay — Ay A (2 44y ’”) 2p(2)
921 021 022 (16)
ORI B WAL AL 2 _ g, 00 '
1 — A2 18 2 a 2 2 62% .

Now, we consider two cases.

Case 1: p(z) is a constant. Let 3 = e?(*)| then equations (&.1))-(#.2) can be written

as
of _ 1 ( k LERWIBY
16+ g = 5 (gmms + v (4.7)
82f 1 kl kQ (2)/2
10+ 5= e ) .

where k; = B+B_ , ko = 5726_ , and k? + k3 = 1. This leads to

of Of _ V2k2 e

9 97 Via

On the other hand, differentiating with respect to z; on equation (4.7)), and

combining this with (4.8), we have
of 1

f(z)—a—m:\—ﬁ[(l—é) —

(4.9)

k k
1 7(1+ﬂ) 2

9(2)/2 4.1
2 1 —oz]e ( O>
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Differentiating with respect to z; on equation (4.10]), combining this with (4.9)
yields
2 2 2
of _ 875 — L[(ﬂ _ ﬂ)ki 2y ﬂ)L]eg(zw_
0z 02 25 2 Vita 2 4°V1—a
Since g(z) is a polynomial with the linear form g(zl, z9) = aq21 + aaza + a, where
a1 # 0,as # 0,ap € C. Hence, we deduce from (4.9)) and - ) that

2 201 — a2
8+ 2a; +a1k _ 2 alkl. (4.12)

V-« ? VvVi+a
According to (4.7) and (4.10), we deduce that

R O S S G, B 16,
f(21a22)—2\/§[(2 2)\/1+7a zm]eg 2, (4.13)

Subcase 1.1. If o; # 2, combining (4.12)) and - 4.13)) yields
42k
F(z1,20) = \[ 2 9()/2.
a1(2—a1)V1 —«

Subcase 1.2. If o; = 2, combining (4.12)) and - 4.13)) yields

(4.11)

(4.14)

/€1
) =L a=)/2, 415
f(z1,22) 2(1+a)€ (4.15)

where k1 = £1, ko = 0. Thus, the proof of Theorem i) is complete.
Case 2. If p(z) is a non-constant, it follows from (4.6)) that
o O o >n
A haliAs
oo TG 922
02 0722 s
—A —A
6 Z1 2(821 ) 2 Bz%
Otherwise, without loss of generality, if A; — As — As g’“ + A (g’;i )2+ Ay 8;2'? +
0, we have

Al AQ — Ag ) + Al =0,
(4.16)

=0.

Ay — A+ Ay —

Oz g (9122 _ 4. 92y

Ay — AQ_A2<3’>'1 T A (871) +A18822721-
1
Since p(z) and g(z) are polynomials, the left-hand side of (4.17) is transcendental,

which contradicts with the right-hand side of (4.17)) being a rational function. Thus,
we have

e (4.17)

4,0 Al(a’”) — A, P = Ay — Ay,

0z 0z 022
5 “ 5 “ 5 “1 (4.18)
V2 V22 72 _

Avg 2 = Aa(3 2 1) — A, e = Ay — Ay

In view of (4.18)), we obtain that v; and 7, are of the form
71(2) = Bi1z1 + H(22) + Biaza + B1, 72(2) = Bai121 — H(22) + Bagza + B2,
where H(z2) = d,25 + dn_lzg_l + -+ dyz3. Then can be rewritten as
AyBiy — A1 B}y = Ay — As,

) (4.19)
Alel — A2321 = A2 — Al.
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By (4.1) and (4.4) we deduce that

1
f(z1,22) = WG (A1 + Ay — A1 B11)e™®) 4 (A; + Ay — Ay By1)e @], (4.20)

Thus, the proof of Theorem [2.§(ii) is complete. O
5. PROOF OF THEOREM [2.12)

Proof. Suppose that f(z) is a transcendental entire solution of (2.3)) with finite
order. By using the same argument in the proof of Theorem we obtain

0 1
1)+ 5o = 5 (4 + a0, (5.1)
1
0? 1
1)+ = = 5 (Aae ) 9, (52)

where A; and A are defined by (2.4). Thus, it follows from (5.1)) and (5.2)) that
of 0% f 1

82’1 B 82’1822 - ﬁ

On the other hand, differentiating with respect to zo on equation (5.1)), and
combining this with (5.2)), we obtain

[(Al — Ag)e'“(z) + (A2 — Al)eﬂm(z)] . (53)

Fz) - «% - % [(A2 - Al%)e%@ + (A1 - AQZ—Z)eM'z)]. (5.4)
Differentiating with respect to z; on equation , then combining this with
826128);2 = aza:ale yields

2
where
R TR R
021 0z1 Oz9 029071
2
I, = Alg—z - Azg—zg—z - Agaigil.
Thus, on the basis of and , we have
(A — Ap —T1)e?® = A; — Ay + T, (5.6)

Now, we consider two cases.

Case 1.=: p(z) is a constant. Let 8 = eP(*), then equations (5.1)-(5.2) can be
written as

of _ 1/ 'k ks (=)/2
1+ 5 = e ) (5.7)
f 1 ko k (2)/2
F) + 021029 \/§<\/1 +a V11— a>eg ’ (58)

where k; = 5*5_1, ko = ’8726_1, and k? + k3 = 1. This leads to

of  Pf _ 2k gy
0z1 02102 V11—« '
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On the other hand, differentiating with respect to z2 on equation ([5.7)), then in
line with (5.8]), we have
6f 1 (65) kl (6% kg
) e A e B S e
f(z) 923 ﬂ[( 5) o A+ D)=
Differentiating with respect to z; on equation ([5.10)), then combining this with (5.9)
yields

Jes=)/2, (5.10)

or &1

82’1 321822

S L SO S e e L PGV o
V22 4 "1+« 2 4 "V1-« '

Since g(z) is a polynomial with the linear form g(z1, 2z2) = @121 + asz2 + ap, where
a1 # 0,as # 0,ap € C. Hence, we deduce from (5.9 and (5.11)) that
8+ 201 + avyan _ 2001 — o
vV1—«a ? v+« -
From (5.7) and (5.10)), we deduce that
of L of _ [ aoky (a2 + )k es(2)/2
O0z1 9z '2\21+a) 22(1—0) '
The characteristic equations of (5.13)) are
da _y dm_ 4 ok | (et Dka g e
di dt dt— "2\/2(14+0a) 2\2(1-a)

Similarly, we obtain

f(t,s):/ot[ ok (a2 4 Dk €924t + o (s), (5.14)

2,2(1+a) 22(1—a)

where ¢(s) is a finite order transcendental entire function in s = 2z — z1.
Subcase 1.1. If a3 + as # 0, it follows from that
f(t,s)
_ /t [ ok (g +4)ks ]e(al+a2)t2+azs+ao
0 2¢/2(1+a) 2v2(1-a)
_ 2 [ ok N (g + 4) ks ]e(a1+a2)t2+a2s+ao
o t+az 2,/21+a)  2¢/2(1—a)

(5.12)

(5.13)

dt + ¢o(s)

(5.15)

+ ¢o(5),

where

— bn(s) — 2 azky (ag + 4)ky jeastan
o (s) = ¢o(s) 0‘1+0‘2[2\/m+2\/m] ,

It follows ([5.15) that

f(z1,22) = ! |

ok (OZQ + 4)]{32] a1z1tagzotag
a1 + oo

\/2(1 ) + \/2(1 = e 3 + ¢g(z2 — 21). (5.16)
Substituting into the or , then combining this with yields

Po(22 — 21) — Pg(22 — 21) = 0, (5.17)
which implies ¢g(29 — 21) = nge *1+22_ ng € C.
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Subcase 1.2. If a; + ay = 0, then from ([5.14) it follows that

t
azky (ag +4)kg ; (oq+ag)tragstag
ts) = + 2 dt +
169 = [ s * g ol
= ok (g + 4) ko ]6@
2/2(1+a)  2y/2(1-a)

where ¢10(s) = ¢o(s). In view of (5.18)), we have
[ 042]61 (0[2 + 4)]€2 ]602(22*221)+a0
2\/2(1+a 2¢/2(1 - )

Substituting (5 into the . or ., then combining this with ( - 5.12)) yields

(5.18)
t+ ¢10(s),

Z1 + ¢10(ZQ — 21). (519)

f(ZhZZ) =

4k2 ag(za—21)+ag

(72310(22 — Zl) — d)/lo(ZQ — Zl) = ——€ 2 s (520)
a1 2(1 — O()
which implies ¢10(22 — 21) = meg(@ﬂ + mge= T2,y € C. The

proof of Theorem i) is complete.
Case 2. If p(z) is a non-constant, it follows from (5.6) that

om A, 5"71 a’Yl A 9’1

Al — Ay — A =
o 28 21 821 0z Z9 182’2821 (5 21)
072 Ovy2 02 %2 '
A — Ay + A — A, =222 4 0.
Lt Ay Ty 0 20m0m
Otherwise, without loss of generality, if
o On On *1
A — Ay — A + Ay A
e T T A v I
we have
Ovy2 Oy O 9?2 2
€2p(z) — A A2 + Al 7 A 37’;137’;2 - A 6ngz1 (5 22)
2228 )
A — Ay — AQg + A 671 871 + Ay a‘zzglzl

Since p(z) and g(z) are polynomials, the left-hand side of ( n is transcendental,
which contradicts with the right-hand side of (5.22)) being a rational function. In

view of (5.21)), we have

2
AQ%—A %%_Al 0 = Ay — Ao,
821 821 62’2 82282’1
5 5 8 52 (5.23)
72 Y2 072 72
A== — A, == _ 4 = Ay — A;.
! 821 8z1 82’2 2 82282’1 2 !
Next, we discuss the forms of v, and 7,. Set
1=y o) = an(z)A +an1(z2)z ! 4o+ ao(z),
k=0
where @, (22), an—1(22),...,@0(22) are polynomials is zo and notice that zo does

not have a degree n. Differentiating with respect to z; and zs on 77 respectively,
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2
and substituting 2—2, g%; and a‘zzglzl into (5.23)), we have

Ay Z kog(ze)2 ™t — A Z ko (zp) 28t Z o, (29) 27
k=1 k=1

i (5.24)
-4 Z kol (z0)28 71 = Ay — A,.
k=1

Considering the highest degree of z1, if k > 1, then o} (22) = 0, a(22) is a constant.

Otherwise, the left of ([5.24)) is a non-constant polynomial, which contradicts the
right-hand side of ([5.24)) being a constant. Hence, equation (5.24)) can be rewritten

as

A2 Z k‘akzlk_l — A1 Z kakzlk_lag(zg) = Al — Ag. (525)
k=1 k=1

Obviously, ap’(z2) is a constant. Otherwise, considering the coefficients on both
sides of 2z leads to a contradiction. Hence, we let ap’(22) = ¢, where ¢ is a constant.
Further, if £ > 2, then we have

Agkak — Alckak = O, A2a1 — Alalc = A1 — AQ.

The formula above yields A; = Ay which is a contradiction. If k = 0, the left-hand
side of is zero, which contradicts with the right-hand side t of being a
nonzero constant. Hence, k = 1. Whereupon, v; = ag(22) + a121, where ag’(22) is
a constant. Similar to the arguments in 75, we have the same form for v;. Without
loss of generality, we set

71(2) = Bi1z1 + Bi2za + 81, 72(2) = Ba121 + Bogzp + fo.
In view of (5.23)), this can be rewritten as

AsB1y — A1B11Bip = Ay — Ay,

5.26
A1Boy — A3 Bg1 Bay = Ay — Aj. (5:26)

According to equation (5.1)) and (5.4]), we deduce that

of  of 1
—— 4+ === —[(41 — Ay + A1 B13)e™ + (Ay — A1 + A3 Bay)e™]. 5.27
821+822 \/5[( 1 2+ A1Br2)e™ + (A 1+ AsBas)e ] ( )
The characteristic equations of (5.27)) are
dz dz d 1
CT; =1, d7t2 =1, di; = E[(z‘h — Az + A1 Biz)e™ + (Ag — A1 + A2 Bap)e™].

Similarly, we obtain

t
1
t,s) = — (A — Ay + A{B 6(311+312)t+3123+61
f(t,s) /0 \/5[( 1 2 1B12) (5.28)

+ (A2 — A+ A2322)€(321+322)t+3228+62]dt 4 ¢0(5)7

where ¢(s) is a transcendental entire function with finite order in s = 25 — 27.
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Subcase 2.1. If Byy + Bjs # 0, Bay + Bos # 0, it follows from (5.28]) that

t
1
f(t,S) :A ﬂ[(Al — A, +A1B12)6(311+Bl2)t+3128+51

+ (A — Ay + AQBQ2)6(321+322)t+3228+ﬂ2]dt + o(s)

= L [A1 — Ay + A1 B1o e(B11+B12)t+Bl2s+ﬁl (5_29)
\/i Bll + 312
Ay — A1 + A3 By (Boy+Bas)t+Boss+8
e 21 22 228 2 + s :
Bo1 + Baa ] 11(5)
where
. 1 (A —Ay+A1Bis p Ay — Ay + AyByo
hii1(s) = S) — — e 128+061 + 632254_52 .
i) = ol [ Bi1 + B2 Ba1 + Bao ]

V2
Thus, from (5.29)), it follows that

flz1,22) = — [Al — A T A B e Az At AaB e72(?)]
By1 + Biz Bs1 + Baa (5.30)

V2
+ ¢11(22 — 21).
Substituting into or , then combining this with yields
P11(22 — 21) — P (22 — 21) = 0, (5.31)
which implies ¢11(z2 — 21) = n11e” %2, 1 € C.
Subcase 2.2. If By; + Bis = 0, Boy + Bag # 0, then it follows from that

t
1
f(t75) :/0 %[(Al 7A2+A1B12)63128+ﬁ1

+ (A2 — Ay + Ay Byg)el Pt B22)ttB22s4 02 ] gt 1 gy (s)

1 Brasis (5.32)
= ﬁ [(Al — Ay + A1 Byg)e”125TP

Ay — Ay + Ay By (B21+Ba2)t+Bags+f2
e + s),
B + Baz ] $12(5)

where A 1 B
. 1 Ay — A1+ A28y g
h = [ 223+52.
p 112(8) (bO(S) \/g B21 + B22 €
Thus, in view of (5.32)), it follows that
1
21,%22) = —
f( 1 2) \/i
+ ¢12(22 — 21).
Since B11 + B1a =0, Baj + Bag # 0, in view of (5.26)), we can deduce that
A1 — AQ A2 - Al
Bii1=——"=, Bjg= ———
11 Al ) 12 Al )
Thus, there exist several cases as follows.
Subcase 2.2.1. If B;; = A1;1A27 it follows from (5.33]) that
1 Ay — A+ Ay
V2 B+ B

Ay — Ay + A2Bao (%)

Ay — Ay + A Bpy)e Bz 4
(4 2 1B1a)e™ 2 Ba1 + Bao ) (5.33)

or Bll = 71, 312 =1. (534)

B
flz1,22) = 272(2) 4 iy (20 — 21). (5.35)
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Substituting ([5.35)) into the (5.1]) or (5.2)), then combining this with (5.34) yields

1
(2512(2’2 - 21) - qb’12(z2 — 2’1) = ﬁAle'Yl(Z)’

1
P12(z2 — 21) — ¢y (20 — 21) = —=Age” ),

V2

which implies
A2

1
- ~1(2) —z1t22 C
ViA - A4,¢ tmeeTm et

¢12(2’2 - Zl)
Subcase 2.2.2. If By; = —1, it follows from (5.33)) that
Ay — Ay + AaBoo e

1
21,29) = —=[(24; — A5)e" Pz +
fla1,22) 241 = 4) ! By + Bas ) (5.36)

V2

+ ¢13(22 — 21).
Substituting ([5.36)) into the (5.1]) or (5.2)), thencombining this with ([5.34)) yields

1
P13(22 = 21) — Ps(22 — 21) = 72(142 — Ay)en®),

1
P13(22 — 21) — P5(22 — 21) = *2(2142 —24;)em (),
which implies

1
$13(22 —21) = E(AZ — A1)e" ) (2 — 29) + mze” 1+ 3 € C.

Subcase 2.3. If By + B2 # 0 and Ba; + Bas = 0, then it follows from (5.28]) that

t
1
f(t, S) :/O \/i[(Al — Ay +A1312)6(311+312)t+5125+51

+ (A2 — Ay + A3 Baz)eP?2 2] dt + ¢y (s)

(5.37)
_ % [Al — Ay + A1 Bio e(Bi1+Bi2)t+Bi2s+51
2 Bi1 + B2
+ (Az — Ay + A3 Boo)eP? 724] 4 $14(s),
where
1 Ay —A+AB
¢14(5) = ¢0(S) _ E 1 Bll2+ Bl: 12 €B123+51.
Thus, in view of (5.37)), it follows that
]. AI_A2+AIBIQ»Y()
21,%29) = — e 4 (Ay — Ay 4 Ay Bgy)e??(?) 2
fz1,22) \/ﬁ[ B11 + B2 (42 ! 2B22) ! (5.38)

+ h14(22 — 21).

Since By + Bia # 0 and By + Boo = 0, in view of (5.26)), we deduce that
A — A A — A

2 — A1 — 7114 2 or By =—1, Byy = 1.

2

There exists several cases as follows.
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Subcase 2.3.1. If By = A2;2A17 then it follows from (5.38) that

£ ) 1 Ay —Ay+ Ay
21,%2) = —
b V2 Bi1 + B2

Substituting (5.39)) into (5.1)) or (5.2), then combining this with (5.26)) yields

1
29— 21) — dha(29 — 21) = —A e"Yz(Z)7
¢14( 2 1) ¢14( 2 1) \/§ 2

B
12 e'yl(z) + ¢14(22 — 2’1). (539)

1
Pra(ze — 21) — ¢ly(20 — 21) = —= A1),

V2
which implies
1 Ay?

¢14(22 — 21) = Eme’w(z) +n14e—z1+z2n14 cC.

Subcase 2.3.2. If By = —1, then it follows from (5.33)) that

1 A — A+ AiBiy
J— enF) 4 (24, — A 672(’2)2
V3 Bi B (242 = A1) 1 (5.40)

+ d15(22 — 21).

Substituting ([5.40) into the (5.1]) or (5.2)), then combining this with (5.26]) yields

P15(22 — 21) — P5(22 — 21) = %(Al — Ay)e?),

1
P15(22 — 21) — Pl5(22 — 21) = E(QAl — 24,)e723),

f(z1,22) =

which implies

1
(,2515(22 — Zl) = E(Al — A2)6’72(Z)(2’1 — 22) + 771567Z1+Z2, M5 S (C

Subcase 2.4. If By + B12 = 0 and Bs; + Bas = 0, then it follows from (5.28]) that

t
1
f(tv 5) = /() \7@ [(Al — Ao+ A1B12)63125+ﬁ1

+ (A2 — A+ A2322)6B22s+62]dt + ¢0(S)
1
= —[(A1 — Az + A1 Bya)ePr2sthy
NG (4 2 1B12)
+ (Ag — Ay + A3 Bgo)eP2 t02t] + ¢y4(s),
where ¢16(s) = ¢o(s) is a transcendental entire function with finite order in s.
Thus, in view of (5.41)), it follows that

f(z1,22) = \% (A1 — Az + Ay Byp)en® (5.42)
+ (A2 — Ay + A3B22)e? @] 21 + d16(22 — 21).

Since B11 + B = 0, Byy + Boy = 0, in view of , we deduce that

Ay — A Ay — Ay

A 7312=T or Byi=-1, Bia=1;

(5.41)

Bll =
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Ay — Ay AL — Ay
Boy = = Boy = — "% Bo1 = —1, Boy = 1.
21 A, 22 A, or 21 y D22
Thus, there exist several cases, as follows/.

Subcase 2.4.1. If By; = AIA;IAz and By = A?A;;‘l, it follows from (5.42)) that
f(Zl7 ZQ) = ¢16(ZQ — Zl). (543)
Substituting (5.43)) into (5.1)) or (5.2)), and then combining this with (5.26) yields

b16(22 — 21) — P22 — 21) = (Ale%(z) + A2672(z))

3\

P16(22 — 21) — (b/1/6(22 —z1) = (A2e"/1(z) + Ale’yz(z))

S\

which implies

A ®) Ay’ ()
hi _ I e & | ¢-7 I SR -1 -1 —z1+22
phiye(ze — 21) = \[[2141 @ +2A27A€ | +mee )
with N6 € C.
Subcase 2.4.2. If B;; = —1 and By = ‘%A;;h, it follows from ([5.42) that
1
f(z1,20) = E(2A1 — A2)eM Pz 4 r7(ze — 21). (5.44)

Substituting (5.44) into (5.1)) or (5.2)), then combining this with (5.26]) yields

1
Pr7(22 — 21) — Phr(22 — 21) = 7 [(Ag — Ap)em ) 4 Aye> ()],
1
Pr7(22 — 21) — Pi7(22 — 1) = V2 (245 — 24,)e®) 4+ 4,720,
which implies
¢17(22 - Zl) — i [(Az _ Al)e’h(z)(zl _ 22) + A722672(z)] + ?717€_Z1+z2
V2 245 — Ay ’
with 77 € C.
Subcase 2.4.3. If B;; = Al;IAQ and By = —1, it follows from (5.28)) that
1
f(Zl, Zg) = 5(2142 — Al)e'”(z)zl + ¢18(22 — 21). (545)

Substituting ([5.45)) into (5.1)) or (5.2), then combining this with (5.26)) yields
1
P18(22 — 21) — Phg(z2 — 21) = 7 [A1e7 () + (4; — Ay)e” )],

1
¢18(22 — Zl) — ¢/1/8(22 — Zl) = E [A26V1(z) + (2A1 - 2A2)€72(Z)]7

which implies

¢18(Z2 - 21) =

with 715 € C.

Subcase 2.4.4. If B;; = —1 and By = —1, lead to p(z) being a constant. By
the assumption at the begin of Case 2, we obtain a contradiction. The proof of
Theorem ii) is complete. O

A2

1
V2 [mw( Vb (Ar = A9)e P (21 — z9)] + mge” T,
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