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EXISTENCE OF SOLUTIONS TO STOCHASTIC p(t,z)-LAPLACE
EQUATIONS AND APPLICATIONS

CHEN LIANG, LIXU YAN, YONGQIANG FU

ABSTRACT. In this article, we consider a stochastic p(t, z)-Laplace equation.
First we use the Galerkin method toobtain a unique weak solution. Then
we obtain optimal controls for the corresponding stochastic optimal control
problem

1. INTRODUCTION
In this article, we consider the stochastic p(¢, x)-Laplace equation

du — div(|Vu[PE®=2Vu)dt = f(u)dt + g(t)dt + odW, (t,z) € [0,T] x
u(t,z) =0, (t,z)€[0,T]x I% (1.1)
u(0,2) =ug, x€X

where ¥ C R? is a bounded smooth domain, T" € (0,+0c0), p(t,z) > 1, ug, g
are known functions, f is a continuous accretive operator, v : R — RN is a
vector-valued stochastic process, o is a operator-valued function, {W(t)}:cjo,7) is a
FE-valued Q-Brownian motion.

Then we consider the corresponding stochastic control system

du — div(|Vu[PCD72Vu)dt = f(u)dt + g(t)dt + Avdt + odW, t € (0,T]
u(0,x) = ug

where Av is a control item. The cost function is

J(v) = Ef / [Hu(v) — pal|22dt + (Ko, v)v}

where u(v) is the solution of the stochastic control system, H, K are linear operators,
14 is a fixed stochastic process.

The theory of partial differential equations with variable growth has a wide
range of applications in solving non-standard exponential growth nonlinear prob-
lems. Stochastic partial differential equations have a wide range of applications in
financial mathematics, physics, engineering technology. In recent years, with the
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development of stochastic analysis, stochastic partial differential equations have
developed rapidly.
Ahemd [I] studied the case p(t,z) = 2,

du = DAudt + f(z,u)dW, (t,z) € (0,T] x X,
ou/ov =0, (t,x)€ (0,T]x 9%,
u(0,x) =up(z), =e€X.

Ahemd proved that there exists a unique weak solution for a stochastic Laplace
equation under suitable assumptions. Then the existence of optimal controls for
the corresponding stochastic optimal control problem was obtained. Different from
Laplace operator, even though p(t,x) = p # 2, p(t, z)-Laplace is a nonlinear op-
erator. Majee [§] studied p-Laplace equations and obtained the existence of weak
solutions under multiplicative noise. Based on the variational calculus and the
convexity of the costing function, the existence of optimal controls for the corre-
sponding stochastic optimal control problems was obtained. Sapountzoglou and
Zimmermann [I0] [TT] also discussed a stochastic p-Laplace equation and they ob-
tained solutions for the stochastic p-Laplace equation under additive noise and
multiplicative noise.
Zimmermann et al [3] discussed the stochastic p(¢, z)-Laplace equation

du — div (|Vu|p(t’m)_2Vu)dt = h(t,z,uw)dW, (t,z)€ (0,T) x X,
u(t,z) =0, (¢t z)e€ (0,7] x 9%,
u(0,x) =uo(z), ze€X.
By using singular perturbation theory and a fixed point theorem, thy obtained
the existence and uniqueness of solutions for the stochastic p(t, z)-Laplace equa-
tions under additive noise and multiplicative noise. Zimmermann and Vallet [12]

used similar methods to consider stochastic p(w, ¢, x)-Laplace equations and got the
corresponding results which are similar to [3].

2. PRELIMINARIES

In this section, we recall some concepts of variable exponent Lebesgue spaces
and Sobolev spaces and some Banach spaces which involve stochastic variables; see
[9, [6] for details.

Let ¥ C R? be a bounded and smooth domain. p: ¥ — [1, +0c0) is a continuous
function. Let p™ = sup,sp(z), p~ = inf _5p(x). For each function u, the
modular is

Pp(x) (u) = /E ‘U($)|p(m)da?
The variable exponent Lebesgue space is defined by
LPE)(%) = {u is a measurable function : p, () (u) < co}
with the norm
. u
||UHLp(z)(Z) = inf {)\ >0: pp(x) (X) < 1}

Then the space LP(*)(X) is a Banach space. Note

. - + - +
mln{‘|u||ip(:n)(2)7 ||u||ip(a:)(2)} < pp(z) (’U,) g maX{HUHiP(z)(E)a Hu”ip(w)(z)}?
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so norm convergence is equivalent to modular convergence. If the exponent p is
bounded, the conjugate exponent p*(z) = p(pm()zll; when p(x) = 1 the conjugate
exponent is p*(z) = co. If 1 < p~ < pt < +o0, LP(*)(X) is a reflexive Banach

space and its dual space is LP"(*) ().

Definition 2.1. We call an exponent p : ¥ — R a globally log-Hoélder continuous
function if p satisfies the following conditions:

(1) There exists a positive constant «y such that
!
log(e + 1/]z —yl)

Ip(z) — p(y)| <

for all points z,y € ¥;
(2) There exists a positive constant ay such that

(%)

T) — Poo| L ——————~
(%) — Pool log(e + 1))
for all points = € 3.

If the exponent p is globally log-Hélder continuous, C§°(X) is dense in LP(*) ().
The variable exponent Sobolev space is defined by

WPE)(5) = {u € LP(D) : Vu € (LPW(X))7}
with the norm
lullwrre sy = Ul pre ) + VUl pee ))a-

Note that WP(®) (%) is a Banach space. If 1 < p~ < pt < +oo, WHPE)(T) is
reflexive. Wol’p(m) (¥) is the closure of C§°(X) under the norm || - [|yy1.p6) 5y If the
exponent p is globally log-Holder continuous, C§°(¥) is dense in W1P() (%),

Definition 2.2. Let ¥p = (0,7) x ¥, and p,m : X7 — (1,400) be globally
log-Holder continuous. X (37) is defined by

X(Br) = {ue L™ (Sy) : Vu € (L) (Sr))4,
u(t,z) € Wol’p(t’x)(Z) for a.e. t € [0,7]}.

with the norm

lullxsr) = lullpmeo sy + VUl (Loto) 50y

Note that X (X7) is a reflexive Banach space, and C§°(Xr) and C§° ([0, 7], C5° (X))
are dense in X (X7).
For a vector-valued function u = (u1,us,...,ux)", we can define the space

N
(LP@ENY = {u ) il poer ) < 00}
i=1
with the norm

N
[ull Lo sy = D il potor (5
i=1
Similarly, we define the space

(W@ )" = {ue (POE)N: Vu e (PO (£) N}
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with the norm

HU”(WI»P(r)(E))N = ||U||(Lp<z)(z))zv + HVUH(Lp(z)(E))de .

Then we have the vector-valued function space
X(2r) = {ue (L") (50)Y - Vu e (P02 (50)) Y,
u(t,z) € (WPt (NN ae. t €0,7]}
with the norm

lullx () = ||U||(Lm<mw>(2T))N + ||Vu||(LP(tvm)(2T))dXN

Next we will recall some Banach spaces which involve stochastic variables. Let
(2, #, ) be a complete probability space with a filtration .#,co ). Let

L7°(92,X) = {u is Fy adapted X-valued stochastic variable : E[ul|% < oo},
L7 (Q,X) = {uis Fr adapted X-valued stochastic variable : E|ul/% < oo},
L>*(Q) = {5 is measurable R”-valued stochastic variable :

inf{M : (¢ > M) < oo} },
C'([0, 7], (C5°(£))N) = {¢ is a continuous function on L : ¢(t),

de(t) N
— (2 .
= e ()™
For each positive constant p € [1,+00), let

F
Ly ([0,T], X)
T
= {u is a Fyc[o,7) adapted stochastic process : E/ |u(®)|/%dt < 0o}
0

with the norm
T » 1/p
g o = (B [ uto)iat) ™.
When p = 400, we let
LZ([0,7], X)
= {u is a Fco,7) adapted stochastic process : ess SUPe(o,7] Ellu(t)|% < oo}
with the norm
1/2
1wl (fo,17,x) = €8S SuPsefo 1) (Efu@®)lx) "

For any p € [1,+o0], Lf([QTLX) is a Banach space. When p € (1,+00),
Lf([O,T],X) is a reflective Banach space. When p < +oo, Lf([O,T],X) is a
separable Banach space.

Next we define the space LP(*)(Q x )

P x %) = {u : E{/ u|P@)dz)} < +oo}
b

with the norm

[ull ) (@xx) = inf {)\ >0: IE{/ |§|P(z)dm} < +OO}'
s
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Note that LP(*)(Q x X)) is a reflective Banach space. Now we define the space
7
Lp(t,m) (Q X ZT)

= {u is a F¢(0,1) adapted stochastic process : IE{/ |u|p(t7w)dxdt} < —l—oo}
X7

with the norm
. . U t,x
HU”Lf’(Lm)(szT) = inf {/\ >0: E{ /ET ‘X'p( Jdzdt} < —|—oo}.

for 1 < p_ < pt < +oo, Lf(t I)(Q x Xr) is a reflective Banach space. The fol-

lowing theorem gives a relation between almost everywhere convergence and weak
. G
convergence in L;(t o (2 x 7).

Theorem 2.3 ([5]). Let p be a bounded globally log-Holder continuous function with

p(t,z) > 1. If {un} is bounded in L;i@)(Q X Y1) and u, = u a.e. (w,t,z) € QX

Y1, then there exist a subsequence {uy }, such that u, — u weakly in Lit ) (QxX37).

Similarly, the above spaces can be extended to the case of vector-valued function
spaces. Hence we introduce the space L7 (Q, X (27)).

Definition 2.4.
L7 (9, X(S1)) = {u € (L2 1) (@ x 1)V, Vu € (LZ, (@ x 1))V,
u(w,t,z) € X(Xr),ae we N}
with the norm

||U||L9(Q,X(ZT)) = ||U||(L9 @xSr)HN T HVU||(L;@(W)(Q><ET))“N

m(t,z)
Note that L7 (9, X (7)) is a reflective Banach space. In this article we set
m(t,z) = 2. Let E be a separable Hilbert space.

Theorem 2.5 ([7]). Let Q € L (FE) be a symmetric nonnegative operator, TrQ <
00. B is an E-valued Q-Wiener process. For each t € [0,T], y € E we have:

(1) B is E-valued Gauss process and

E(B(1),y)r =0, E(B(t).y)% = tQy.y).
(2) B has the expression

B(t) =3 /A 8,(0)F. 21

where {€;152, is an orthonormal basis of E, {\;}52, is the sequence of
eigenvalues of Q. Bi(t) is a sequence of Brownian motions which are in-
dependent from each other on probability space (Q,ﬁ, @,ﬁte[o’T]), The
series converges strongly to B in L (Q,C([0,T], E)).

(3) Let O be a separable Hilbert space. If o(t) € Z(E,O) (t € [0,T)), then

T oo T
/ o(s)dB(s) = 3 VN, / o(5) (&) dB; (5)- (2.2)
0 = 0

The series converges strongly to fOT o(s)dB(s) in Ly (,C([0,T],0)).

Finally we recall the Crandal-Liggett theorem.
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Theorem 2.6 ([2]). Let % be a Banach space, L is a m-accretive operator, A,, is

(
a partition of [0,T], and |A,] — 0 as n — oo. If ug € D(L), then there exists a
u € C([0,T],%) and a nonlinear operator semigroup {T'(t)}+>0, such that

w(t) = T (t)uo.
If w,, is the implicit interpolation approzimation of u, then
[un(t) —u(t)||lr =0, asn— oo
uniformly on [0,T].

We denote by || - ||z the norm (L?(X2))Y; denote by || - ||p24=y the norm of
(L4 (£))N: denote by || - | 2(@xsy) the norm of (Lg (Q x S7))Y; denote by
I [l Let.o) (@x 3y the norm of (Lp‘%t)x) (Q x 7)Y denote by (-, -)z2 the product
of (L3(%))N.

3. EXISTENCE AND UNIQUENESS OF WEAK SOLUTIONS

Let E be a separable Hilbert space, o(t) be a bounded linear operator from F
to (L3(%))N and
le@®)] < M, Vtelo,T]. (3.1)
Let Q € Z(F) be a symmetric nonnegative operator, {W (t) };c[o,r) be a E-valued
@-Brown motion defined on (Q, F, P, ﬁte[o,ﬂ).
Fix we Q, t € [0,T], f is a continuous accretive operator from (L2‘J(w)(2))N to

((L%@ (E))*)N, where g(x) is continuous and ¢(z) > 1. Additionally, f satisfies
the following conditions:

(H1) There exist ¢; € [0,400) and ¢z € (0, +00), such that
(f(u), U>(L2q<w>)*,L2q<z> < CIHU||2L2 - C2||U||i2q<m)-

(H2) f(u) with respect to u is a completely continuous operator from the space

L5 ([0, 7], (L1 (£))N) to (L5 (0,71, (L) (£)N)) "
(H3) For each u,v € (L2 ()N,
(fw) = f(v),u = v)(r2a01y+ p2ate) <O
Next we give the concept of weak solutions for system .
Definition 3.1. An R¥-valued stochastic process
we L7 ([0,7], (L2(2)N) N L7 (, X (S7)) N Ly ([0, T], (L24(2)N)
is a weak solution of (1.1), if for each ¢ € C1([0,T], (C§°(X))™), u satisfies

T
(WD), ()12 = (w0, o022 = [ (w(t), G2

T
+/ /|Vu|p(t’x)_2VuV<pdxdt
0o Js
T

T
- / (1)) 9) (12 poaordt + / (9(t), (1)) 2t

0 0

+ / (o(6), o (AW (1)) 1
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Under the above conditions, we use Galérkin’s method to prove that equation
(1.1) admits a unique weak solution. The main result of this section reads as follows.

Theorem 3.2. Let p(t, z) be a bounded globally log-Hélder continuous function and
p(t,z) > 1. If (H1)-(H3) and (3.1) hold, then equation (1.1) has a unique weak
solution.

we LZ (10, 7], (L)) 0 L7 (@, X (S0) 0 L5 ([0,7], (229 ()

for any ug € L) (Q, (L2(2))N) and g € LT ([0,T], (L2(2))N).

Proof. This proof is divided into four steps.

Step 1: Uniqueness of a weak solution. Assume that two solutions satisfy
uv e LZ (0,71, (L)) 0 L7 (@, X (20) 1 L (0. 7], (L2 (£)™)

with initial states ug, vg and g1, go. Since u, v satisfy system (1.1]) in the weak sense,
by integrating by parts, we deduce that

t
%Hu — |3, +/ / (|Vu|p(s’w)_2Vu - |Vv\p(s’l)_2VU> (Vu — Vv)dads
0 Jx
1 t
= gllun =l + [ () = F(0). = 0) g gands
0

t t
+/ (91— g2,u — V)2 ds+/ (u—v,0dW);..
0 0
As
t
/ / <|Vu|p(5’z)72Vu - Vv|p(5’z)72V1/) (Vu — Vo)dazds > 0,
0 Jx

by (H2), we have

t

1 1 i
gl vl < Gl — el + [ 01— gpeu—v)adst [ vodw),;
0 0

and further after taking the expectation we have

1 1 g
SEllu = vl < 3Blluo ot +E [ (91— ga.u =) ds.
0

When ug = vy and g1 = g2, we deduce u = v.

Step 2: Existence of solutions for finite dimensional truncated systems. We choose
—— (T ()Y

an orthonormal basis {e;}2°;, such that {e;}32; C (C§*(2))N c U2, Vn( &) ,

where V,, = span{ey,ea,...,e,}. Let {€;} be an orthonormal basis of E, W, is an

n-dimensional Brown motion. We consider the truncation of system ((1.1):

duy, — div (\wnv’(m)*?vun) dt = f(up)dt + gu(H)dt + odWy,  (t,2) € (0,T] x X,
unp(t,2) =0, (t,z)€[0,T] x 0%,

n

un(0,2) = Z(uo,ej)Lzej, x €,
j=1
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where
up(t) = Z%(t)@ja un(0) = Z(UO»%)L‘A‘@J‘ = ZH{;(O)@J-,
gn(t) =) (g(t), e5)r2e5, Walt) =D (W(t),&)Ee;.
J=1 J=1

{6 (t)} are unknown functions. Let L, F and G be n-dimensional vectors, A is a
n X n matrix, whose entries are

n

Li(6) 2 /E | ]il 0i Ve, ‘p(t’m)_z (3 69e;) Veuds,

j=1

Fi(0,) = <f(z 0 e)), €i>(qu<z>)*,L2q<w>’

j=1

n

Gi(t) £ (g9(t),ej)paeir aii(t) £ V(i 08) L2,

j=1
where 1 < 7,7 < n. We consider the n dimensional stochastic system
dé,, = Lo,dt + F(0,)dt + Gdt + AdW,,, t € [0,T] (3.4)

We claim F is a m-accretive operator on R™Y. On one hand, because f is accretive,
we obtain F' is a accretive operator. On the other hand, F' is continuous, according
to [, Appendix D Corollary D.10], we can obtain F is m-accretive. Let Ay = {O =

t) <t} <,...,<tf =T} be the kth uniform partition of [0,T], denote &, = [II;],
the sequence of approximate solutions {6, 1 (t)} is given by

Onie (th) = (I = 0K F) " [Oni (6 ") + 06 LOn s (£7) + 0kG (t)
+A () (Ba () = Ba (7)) ],
where i = 1,2,..., k. By Theorem m there exists 6, € C7¥ ([0, T],R™), such that
O k(t) = 0,(t) strongly in R”,
uniformly on [0,7]. Thus

(3.5)

6, = (6%,6%,...,6m)"

is a solution of (3.4), so u, = Y_7_, #}e; is a solution of the system (3.3).
Step 3: A priori estimate. Integrating by parts on (3.3)) we obtain

t t
El[un (t)]|%2 + E / / |V, PSP dzds + 205 / [t (8) |7 2000y s
0 > 0 (36)

t t
< ElJun(0)]2- + CE / (s [22ds + 2C.E / 19 (3)]12 s
0 0

Since ug € Ly ° (2, (L2(X))N), g € L ([0,T], (L*(£)V),

Ellun (0)]122 = E|| S (uo, ;)25
j=1

:E(

J

(0, ej)L2|2)

1

n
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oo

<E( Y I(uo.e))el?)

j=1

= EHUOH%2 = ||u0||LfO(Q’(L2(Z))N)’
T ) T n 9
E [ om0l =% | I3t el
/ (Z| )oeg)iel? )t
/ (Z| )oeg)iel?) e

T
—E / lg ()2t

2
= HgHL;_?([O,T],(LQ(E))N)’

It follows that the first term and third term on the right=hand side of (3.3]) are
bounded. Then by Gronwall’s inequality, we obtain

Elju, (t)]|%: < C, (3.7)

where C' = C’(||uo||Ly0(Q L2y 9]l 2 (0,17 12y, The,e1,¢2). As T is a fixed positive
2 ) ’

number,
T
IE/ l|un ()]32dt < C.
0
By (3.6), we arrive at
T
[Vun | Lo xsr) < C, E/o [ ()| 20y At < C.
Hence, {u,} is bounded in LZ ([0, 7], (L*(2))Y)NLZ (2, X (Sr))NLs ([0,T), (L21@) (£))N).

By Eberlein-Smulian theorem and Alaoglu theorem, there exists a subsequence (still
denoted by {u,}) and a stochastic process u such that

u, —u  weakly * in LZ ([0,T], (L*(2))V), (3.8)
U, —u weakly in L7 (Q, X (27)), (3.9)
u, — u weakly in Lf([O,T] (L22@) (n)N ) (3.10)

Step 4: Limit process. We prove u is a weak solution of (1.1)) by showing u satisfies
(3:2). For any p € C* (0,71, (C§°(£))V) and £ € L>°(£), from (3.3) we obtain

0 = B{&(,(0), (0) 22} — BLEun(T). D)2} + B [ (ua(0). ) ot}
—]E{f/T/ |Vun|p(t’z)72VunV<pdxdt}

+]E{§/ Un (L2<1(£))* L2q(L)dt} +]E{§/ gn )L2dt}
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T
+E{E [ (oo a(0)12}
0
=L —DL+1I3—-I4+I5+ Is + I7.

Next we analyze the limits of I, ..., I7.
(1) Consider I;. Noting u,(0) is the n-dimensional truncation of «(0), we obtain

luo —un ()22 = || S (uos e5) 2652
j=n+1

(2 Iwne)h)

j=n-+1
oo

< (X I(uwore)eal?)
j=1

= [Juol|7-
Since
1w, (0) — w(0)||32 = 0 asn — oo,
by using dominated convergence Theorem, we obtain
E|w,(0) — u(0)[|32 = 0 asn — oo,

that is
u, (0) = ug  strongly in L3° (Q, (L*E)N).

Since (0) € (CY(Z)N) € LT (Q, (L*(2))N), we derive that
E{&(un(0), 9(0))z2 } — E{&(uo,¢(0))r2} as n — oo. (3.11)
(2) Similarly, for I, we obtain
gn — g strongly in Ly ([0,T], (L*(Z))) .
In view of ¢ € C* ([0, 7], (C§°(2))N) C LT ([0, T], (L*(X))"), we obtain

E{f/OT(gn(t t))padt} — E{g/ t)2dt} asnm—oo.  (3.12)
(3) Consider I3. By
up, —u  weaklyx in LZ ([0, 7], (L*(2))N)
and 2 € C ((0,7], <03°<z>>N) c L7 ([0,T), (L2(%))N), we obtain

E{¢ / (un(0), F) ot} - Efe / ), adt} (3.13)

as m — 0o.
(4) Consider I5. Because

U, — u weakly in L7 (Q, X (27)),
By H(2), we know that
flun) = f(u) strongly in (L5 ([0, T, (L) (2))"))".
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Since ¢ € C* ([0,T7], (Cg°(2))N) ¢ LY ([0, T, (L*®)(£))N), thus we obtain

]E{é/ (un(t)), ©) (12a()) p2a0dE} — E{ﬁ/ ), ) (L2000, p2aoydE }
(3.14)

as n — 0o.
(5) Consider Iy. According to Theorem we know that

W, — W strongly in Ly (Q,C([0,T],E)).
As

]EAT@%ﬂNdW%@DH:=Ezf(@@%§:V6WWQM@UDLQ

and ¢ € C* ([0,T], (C§°(X))™) is a deterministic function, by Theorem (3) we
obtain

E{ﬁ/ ), 0dW, (1))} — E{f/ ),cdW ()} asn — oc. (3.15)
(6) Consider I and I5. Since

E{/ ||Vt [P =2 0, [P ) At } :]E{/ [V, [P dzdt} < C,
ET ET

there exists a subsequence (still denoted by {u,}) and a stochastic process 7, such

that

Vi PG 2T, 5 weakly in (L7, (2 x £7)) "

9

and further

T T
E{¢ / / |V [P 72V, Vpdzdt} — E{¢ / / nVedadt} (3.16)
0o Jz 0o Js
as n — o0. In view of (3.7)), we obtain
E{|lun(T)|Z,} < C.
therefore there exists a function @ € L3 " (2, (L2(2))") such that
un(T) — @ weakly in Ly™ (Q, (L*(2))V).

Now we prove u(T) = . For any 1 € (C5°(2))" and any ¢ € (ct [O,T])N
have

T
0= —(un(T), ¥o(T)) 2 + (un(0),14(0)) > +/0 (un(t)7w(‘ﬁ>L2 @

T T
— / /ZJ |vun|p(t,x)—2vunv¢¢dxdt + / <f(un(t)),’L/J(;5>(qu(x))*,qu(m))dt
0 0

T T
+A(%@W@mﬁ+A(WJ®W@M
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Letting n — oo, we obtain

T
. 00(T)) 1+ (0, 00O+ [ (), 057 o

/ / NV rpdadt + / (), ¥0) 2 Lo dt (317)
; /O (9(t), ) padt + /O (60, oWV (1)),

for any ¢ € (CZ([0,T)))" < (¢*0,T])" and further

T dé T
0:/0 (u(t),wa)mdt—/o /EanSwdxdt

T T T
+ / (F(ult)), ) gaatery» pantordt + / (9(t), ) L2t + / (64, 0dW (1)) 2
0 0 0

A density argument and the definition of derivatives with respect to time in the
distributional sense imply

T dg T
0:/0 (u(t),a)wdt—/o /Zanodxdt
T T T
+/0 <f(u(t)),<P>(qu<m>>*,L2q<z>dt+/0 (g(t),w)mdt+/o (s, 0dW (1))

For each ¢ € (C5°(S7))", du satisfies

wp 12d / / nVedaedt

T
o[
T
[ 09 g ot + / (9(t), @) ol
+ /0 (

®)( ;
QD, O'dW(t))L2

Then we obtain

T T
/ ( ) / /dlvnapdxdt—l—/ (qum) « 2a)dt
0 0
T
/ det-l-/ (p,UdW
0 0

£ (S, ).

Furthermore, for any ¢ € (C5°(£))" and any ¢ € (Cto, T])N7 we obtain

T d¢ T T
[ (s00§) are [ ] aondadt = [ () vl g aco

T T
- / (9(t), ) adlt — / (61, 0dW (£)) 12

0

== [ w005 e = (5.00)
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T T
= _/0 (u(t)ﬂ/J%)Hdt — /0 (%,¢¢)L2dt
= (u(0), 9¢(0)) > — (u(T), 99 (T)) 2.
In view of (3.17)), we obtain w(T") = @ and
un(T) = u(T) weakly in Ly ™ (Q, (L*(Z))V) .
By the weak lower semi-continuity of the norm, we obtain

lim inf (Eflun (T)[|72) < El|u(T)|7. (3.18)
Since (T) € (CHZ)N) € L™ (Q, (LA(2)N),

E{{(un(T), @(T))Lz} — ]E{f(u(T), @(T))Lz} as n — 00. (3.19)
Combining B-11), (3.13), B-14), (3.12), B-15). (3.16), and (3.19), we have

0 = (a0 Oz = D)D)z + [ (u(0), 5E)
T T
—/ /UV(,OdJ?dt‘F/ <f(u(t)),<p>(qu(m>)*’qu(z)dt (320)
0 b)) 0

" / (9n(t), ) pdt + / (.o (AW, (1)) 2.

Next we prove that n = |Vu[P(4®)=2Vu. By (3.20)), we know that u is a weak
solution of the problem

du — divndt = f(u)dt + g(t)dt + odW, (t,z) € [0,T] x X,
u(t,z) =0, (t,z)€[0,T] x 0%, (3.21)
u(0,z) =ug, x€X.

Integrating by parts, on (3.21)) we obtain
1 1 T
0= slluols = a3~ [ [ nudsds
0 by
T T
+ [ GO ) gy ot + [ (a0 e 322

+ /0 (u, o (£)dW () 12.
From

0<E{ / (IVuy [P 72T, — [Vl =20) (Vu, — Va)dedt )
YT
1 2 1 2 ’
= 5E{llun(0)lZ2} = SE{llun(T)I72 } +E{/O (F(un())s un(t)) (L2ae)ye p2aer dt }

T T
+E / (90 (1), wn(1)) 12 At} + B / (n(t), o () AW, (1)) 12 }

+E{ [ |Vu, |2V, Vu — |[Vu[P ) "2V u(Va, — Va)dzdt},
31
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and (3.16]) and (3.20)), we have

1 ) 1 ) T
0 < 5E{Jluoll3e} — SE{Iu(T) |-} +E{ / (F (), ult)) (2ot paacor )
0
T T
+E{/O (g(t),u(t))det}+E{/O (u(t),c(t)dW (t)) 2 }

+E{/ nVudxdt} =0.
X7
Furthermore,
E{ / (|vun|P<t»w>*2vun - |vu|P<t’I>*2vu> (Va, — V) dedt} = 0
Y
as n — +o00o,

E{ [ |Vu, - Vul/"dzdt}
T

< CE{ <|vun|"<tvf)—2wn - |Vu|p(t’x)_2Vu) (Vi — V) dadt}
7

—0 asn— +oo.

Therefore,

Vu, — Vu  strongly in (L7, (2 x ZT))dXN

Thus there exists a subsequence (still denoted by {u,}) such that
Vu, = Vu, a.e.(w,t,x)€QxIp.
Furthermore,
Vi, PO 2T 0, — [VulPO? 72T, ae. (w,t,2) € Q x O
By Theorem we obtain 7 = |Vu[P(t®) =2V,

In summary, for each ¢ € C* ([0, 7], (C§°(X))"), we obtain
T
(WD) D)z = (00O = [ (1 GF) ot

T
+/ / |Vu|Pt®) =2V uV pdadt
0o Jv

T T T
- / (F (1), 0) (12 poatordE + / (9(t), @) ot + / (0, o (AW (£)) 2,
0 0 0
i.e., u is a solution of (1.1)). |

4. EXISTENCE OF OPTIMAL CONTROLS

For a real Hilbert space V, the set ¥ = LZ ([0,7T],V) is the control function
space, and the linear operator A € & (”V,ij ([O,T]7 (LQ(Z))N)) is the control
item. We consider the stochastic control problem

du — div <|Vu\p(t’w)72Vu) dt = f(u)dt + g(t)dt + Avdt + odW, t € (0,T],

u(0,x) = up.
(4.1)
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Define the solution map as follows:
D:v— u(v)
LZ([0.71,v) = LZ (10,7, (L2(2)Y) 0 L7 (@, X (Sr)) n L7 (0. 7], (L7 ()Y)

where u(v) is the solution of (4.1)) called the state of the control problem (4.1]). The
observed state is denoted by H(u(v)) where

HeZ (L7 (Q.X(Er)), Ly ([0.7],(L2(Z)Y))
is a linear operator. A fixed stochastic process pq € Ly ([0, 77, (L*(X))V) is called
the desired state. The cost function is defined as
I =5{ [ ) — pallZact + (K0} ), (42)
where the operator K € Z(V, V) satisfies
(Ko (t),v(t)v = (v(t), Ko(t))v = kllv(®)]I}

for k € [0,400). Let Vog C ¥ be an admissible set. We call vy € V,q the optimal
control if

J(vg) = vrg\ifgd J(v).

Thus, we have the following result.

Theorem 4.1. Let the assumptions in Theorem be satisfied and let V,q is a
compact subset of V. Then stochastic control problem (4.1) with cost function (4.2)
has at least one optimal control vg € Vaq.

Proof. Since V,q is compact, we need only to prove that ® is continuous and J is
lower semi-continuous. Let {v;} € V,q and

U — U in Vpq.

Step 1: & is continuous. Suppose that {ur} and @ are weak solutions of (4.1)).
Then u;, — u satisfies

duy — da + div (|w|p<m>*2w) dt — div <|Vuk\p(t’“")72Vuk)dt
= flup)dt — f(@)dt + Avpdt — Avdt

in the weak sense. After integrating by parts, we obtain

1 t
5 Ellux — )2, + IE/ / <|Vu|p(t’$)_2Vu - \va(tJ)—?w) (Vu — Va) dzds
0 JE

t t
= IE/ (f(ug) — f(@),up — a>(L2q(z))*’L2q(z)d3 + E/ (Avg, — AT, uy, — @) 2ds
0 0

By (H3) and Holder’s inequality, we have

1 t
SEllu —ll3: + IE/ / (|Vu|p(s’x)_2Vu - \Va\ﬁ(m)—zw) (Vu — Vi) dzds
0 b

t 1/2 t 1/2
< (]E/ | Avy, — AEH%zds) (E/ s — ﬂ||%2ds) :
0 0
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Since {ux} is bounded in LZ ([0, 7], (L*(X))Y), there exists a constant M > 0,
such that

max { HQ||L§([O7T],(L2(§]))N), HulHLi([O,T],(L%E))N),
BN ||uk||Lz([0,T])(L2(2))N), . } < M.

Furthermore,

]E(/Ot i 132ds) < C

Hence we have

1 ¢ . .
S Elluk — )2, + IE/ / <|Vu|p(t’”‘)_2Vu - \Va\p(t’“)_QVa) (Vu — Va) dzds
0 JX

t 1/2
< C(E/ [ Avi — Ao3ads)
0
Taking the limit, we obtain

1
lim sup {=E|u — a2,
k—o0 te[0,T) {2 L

t
+ E/ / (IVur©2=2 9 — |Va|")=2Va) (Vu - Va) deds} = 0
0 JXE

which implies

u, — @ strongly in LZ ([0,T], (L*(2))Y) N L7 (Q, X (S1)).

Step 2: J is lower semi-continuous. We deenote

NMZE{AIWMW—MJM@Mﬂ+EHKM&v@M}éJm0+bw)

As

T
Ji(v) = ]E{/O IHia(v) = pa()|7 = | Hun(v) — pa(t)[7-dt}

+B{ [ (o) = palt) 3]

and H € .Z (L7 (Q, X (7)), (L*(X))N), for any € > 0, there exists N, € N such
that

[IHa(v) — pa®)2 — [Hur(v) — pa(®)|22] < e
whenever k > N.. Furthermore,

T
J1(0) < Te + IE{ / [ Hug(v) — ud(t)||%2dt} =Te + Ji(vg).
0
So we arrive at
J1(0) < liminf Jq (vg)
k—oc0

by the arbitrariness of ¢.
From the convergence vy, — ¥ in ¥, we derive that

ve(t) = o(t) ae. t€0,T]
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so {vk(t)} is bounded in V', which implies
(Kow(t), vk () < I lor (@) < +oc.
By Fatou’s Lemma, we obtain
likm inf {E (Kvg(t),ve(t))y } < {]Elikm inf (Kvg(t),ve(t))y }
—00 —00
= {]Ehgggéf (Ko(t),o(t))y }-

Furthermore,
Jo2(7) < likm inf Ja (vg).
— 00

At last J(9) < liminfy o0 J(vk). O
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