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NORMALIZED GROUND STATE OF A MIXED DISPERSION
NONLINEAR SCHRODINGER EQUATION WITH COMBINED
POWER-TYPE NONLINEARITIES

ZHOUJI MA, XIAOJUN CHANG, ZHAOSHENG FENG

ABSTRACT. We study the existence of normalized ground state solutions to a
mixed dispersion fourth-order nonlinear Schrodinger equation with combined
power-type nonlinearities. By analyzing the subadditivity of the ground state
energy with respect to the prescribed mass, we employ a constrained mini-
mization method to establish the existence of ground state that corresponds
to a local minimum of the associated functional. Under certain conditions, by
studying the monotonicity of ground state energy as the mass varies, we apply
the constrained minimization arguments on the Nehari-Pohozaev manifold to
prove the existence of normalized ground state solutions.

1. INTRODUCTION AND MAIN RESULTS

Consider the mixed dispersion nonlinear Schrodinger equation with combined
power-type nonlinearities

0 — eN* Y + YA + p|p|T 3P + [P = 0, (1.1)

where N > 1,4 > 0,e > 0,7y € R,) e RxRY — C and 2 < g < p < 4*. Note
that equation becomes the well-known Schrodinger equation when € = 0 and
v = 1. This equation has been extensively studied as a partial differential equation,
presenting various mathematical challenges from the perspective of mathematical
physics [4,[6]. Over the past decades, a lot of attention has been paid to normalized
solutions of the nonlinear Schrodinger equation with both pure and mixed nonlin-
earities [II, [7, 1O, 111 12} 13| 17, 18, 19 22| 23, 26], 34, B5] B8] and the references
therein. For the specific case 4 = 0, when 2 < p < 2+ 4, all solutions to
with € = 0 exist globally, and the associated standing waves are orbitally stable.
However, for p > 2 + %, the solutions to equation can exhibit singularity
within a finite time. To address regularization and stabilization of these solutions,
Karpman-Shagalov [21], [20] proposed the inclusion of a small fourth-order disper-
sion term €||Aul|3 in the model. Through a combination of stability analysis and
numerical simulations, they demonstrated the stable outcomes for 2 < p < 2 4 %,
while noting the instability phenomena for p > 2 + %. Consequently, p = 2 + %
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appears as a new mass critical exponent. Despite the significance of the mixed dis-
persion fourth-order nonlinear Schrédinger equation in physical contexts, it remains
inadequately understood, as addressed in [4] 8 [15] 29} 30} [32].

In this article, we are concerned with equation and its standing waves
solutions of the form (¢, ) = e**u(x), where w € R is a Lagrange multiplier and
u(x) satisfies

eA%u — yAu + wu — plul??u — [ulfP2u =0 in RY. (1.2)

When we consider solutions to (|1.2), a possible choice is to consider a fixed value
w € R and search for solutions as the critical points of the action functional

€ ¥ w o 1
Au () = SlIAull3 + IVul3 + 5 lull3 - S ela = Sluls

In this case, we focus on the existence of minimal action solutions, namely, solutions
minimizing A, , among all non-trivial solutions [6], 3.

Alternatively, we can search for solutions to with a prescribed L?-norm.
Define the energy functional on H? = H2?(R™ C) by

€ v W 1
Epg(u) := 5[ Aul3 + 5[ Vull3 - el = Sl

It is standard to check that E, , is of class C! and a critical point of E, ; restricted
to the mass constraint

S(c) ={ue H? : ||ull3 = c}
gives rise to a solution to with [|ul]3 = e

If p = 0, the corresponding functional is denoted by FE,. When € > 0 and
v > 0, with a pure mass subcritical nonlinearity, i.e., 2 < p < p as considered in [5],
the functional E, has been shown to be bounded from below on S(c), and critical
points of E can be sought as global minimizers for any ¢ > 0. Bonheure et al
[3] investigated the existence of normalized ground states of by exploiting the
constrained minimization method and explored the normalized solutions of equation
with pure mass-critical and mass-supcritical nonlinearity, i.e., p < p < 4*.

When ¢ = 1, v < 0 and g = 0, Luo et al [24] used a profile decomposition
technique to study the existence of ground states for withc=1land2 <p <p.
Boussaid et al [9] obtained the existence of normalized ground state solutions for
all ¢ > 0, v < 0 and 2 < p < P without the restriction on ¢ and ~ imposed in [24].
For p < p < 4*, Luo-Yang [25] identified at least two radial normalized solutions:
a ground state and an excited state, along with associated asymptotic properties.
Recently, Ferndndez et al [14] utilized the Tomas-Stein inequality to develop a novel
approach for establishing non-homogeneous Gagliardo-Nirenberg-type inequalities
in RY. These inequalities play a crucial role in proving optimal results regarding the
existence of global minimizers for 2 < ¢ < p. Additionally, for the case 2 < ¢ < p,
they showed the existence of local minimizers in H2(RY) but not H2(RY).

When € > 0 and v = 0, equation becomes the biharmonic nonlinear
Schrodinger equation, in which the stability of solitons in magnetic materials was
investigated [16], B7]. Phan [33] presented the existence of normalized ground state
solutions of for € > 0 and v = 0 with the pure mass-critical nonlinearity. The
case involving mass supercritical nonlinearities was discussed in [27], where normal-
ized ground states were shown to exist for 2 < ¢ < p < p = 4*. The existence of
normalized ground state solutions for p < ¢ < p < 4* was shown in [2§].
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As for the case € > 0,y > 0 and p > 0, however, as far as we know, very little has
been known for the mixed dispersion fourth-order nonlinear Schrédinger equation
with combined nonlinearities. This constitutes one of our primary motivations of
study in the existence of normalized ground state solutions of for 2 < ¢ <
2+ % <p<p<4*and p < q < p < 4% respectively. For simplicity, we set
e=v=1.

Definition 1.1. We say that a solution u. € S(c) of equation (1.2)) is a ground
state solution to (|1.2) if it possesses the minimal energy among all solutions in S(c),
ie., if
Epq(uc) = inf{Ep 4(u), u € S(c), (Ep7q|S(c))/(U) = 0}.
We start with the case 2 < ¢ <2+ % <P < p < 4* by setting
V() :={u € S(¢) : [|Aull3 +[Vul3 < po},
OV (e) = {u € S(c) : [Aull3 + |Vull3 = po},
where py is a suitable positive constant. For any given p > 0, we aim to determine
a specific value ¢y = co(p) > 0 such that for any ¢ € (0, cp) it holds
my,q(c):= inf E, (u)<0< inf FE, (u).
p.a(C) weV (o) p.a(W) weBV(e) p.a(w)
Theorem 1.2. Let N > 5, u>0and2 < g < 2+% <p<p<4*. Foranyp >0,
there exists co = co(p) > 0 such that for any c € (0,¢q), the constraint functional

Ep qls(e) admits a ground state, which corresponds to a local minimizer of E, , in
the set V (c).

As p > P, it is evident that the constrained functional E,, 4|g(.) is unbounded
from below. However, the presence of the lower order term |u|? ?u with 2 <
q <2+ % creates a geometry of local minima on S(c) for sufficiently small ¢ >
0. The challenge in establishing the existence of local minimizers arises from the
lack of compactness of the bounded minimizing sequence {u,} C V(c¢) due to
the noncompact embedding H?(RY) — L?(RY). By employing a minimization
approach and incorporating the subadditivity of ground state energy, we overcome
this obstacle and demonstrate the existence of local minima. Furthermore, we
find that any ground state serves as a local minimum for the associated energy
functional.

Theorem 1.3. Let N > 5, u >0 andp < q < p < 4*. If g = p, we assume
that pc*/N < 1\%%4. Then there exists a sufficiently small ¢* > 0 such that for
N

»q
any c € (0,c*), the constrained functional Ep 4|s(c) possesses a critical point u at a
positive level Ey, 4(u) > 0 with the following properties: w satisfies (L.2]) for some
w > 0 and represents a normalized ground state of (1.2)) on S(c).

We introduce the Nehari-Pohozaev set of E,, 4|g(c) as follows
Qpqlc) ={u € S(c) : @pq(u) =0},
where
1
Qp.q(w) = [Aullz + SIIVull3 = pygllell§ — o llullp,

Nr-2 N1 1

e 5 (f — 7), Vr € (2,4%].

Yr = 9 r
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It is easily seen that all critical points of E, 4|S(c) lie in @, 4(c).

To prove Theorem |1.3] we shall employ a direct minimization method for E, ,
on Qpq(c). A crucial step is to show the convergence of a minimizing sequence
{un} C Qpq(c) of E, , at my 4(c). The sign of the Lagrange multiplier w € R plays
a pivotal role in the analysis. However, tackling this issue is challenging because
of the presence of the term ||Vu|2. As demonstrated in Lemma we identify a
sufficiently small ¢* > 0 such that for any ¢ € (0, ¢*), the corresponding w. remains
positive.

Another difficulty comes from weak limits of the minimizing sequence, which may
violate the constraint due to the non-compactness of the embedding H?(RY) —
L?(RY). Overcoming this obstacle, we need to show that the mapping ¢ + m,, 4(c)
is strictly decreasing. This, together with the relationship between the energy func-
tional F, , and the Nehari-Pohozaev functional @, 4, leads to strong convergence
of the minimizing sequence in H%(R"). Subsequently, by showing that Q,, ,(c) is a
natural constraint, we observe that the minimizer of E, , on Q, ,(c) constitutes a
normalized ground state solution of .

The paper is organized as follows. In Section [2] we provide some preliminary
concepts and lemmas that will be utilized throughout the paper. We prove Theorem
in Section [3] and prove Theorem in Section [4] respectively.

2. PRELIMINARY RESULTS

Throughout this article, for 1 < 7 < oo, L"(R") denotes the standard Lebesgue
space with norm [|u||} := [p~ |u|"dz. Additionally, the positive constants are denote
by C,Cy,Cs, ..., with values that may vary from line to line. The open ball in RV
is denoted as Bgr(x) with center at « and radius R.

In this section, we present some preliminary results which will be used in the
next two sections. We start with recalling the well-known Gagliardo-Nirenberg
inequality and Sobolev inequality.

Lemma 2.1 ([BI]). If N > 5 and 2 < r < 4%, then the Gagliardo-Nirenberg
inequality
Y r(1=r

el < Ol A7 fuf 5
holds for u € H*(RY), where Ci . denotes the sharp constant.
Lemma 2.2 ([36]). When N > 5, we have

Sllulli- < [|Aul3, vue H*RY),

where § > 0 depending only on N denotes an optimal constant.

Note that the following interpolation inequality holds:

1/2 1/2
/ |Vu|?dr < (/ |Au\2da:) (/ |u|2dat) . Yue H*RM). (2.1)
RN RN RN

By similar arguments as those in [39], we can obtain the Lions’ type lemma in
H?(RN).

Lemma 2.3. Assume that {u,} is bounded in H*(RY). For any R > 0, if

sup / |un|?de — 0 asn — oo,
yERN JBr(y)

then u, — 0 in L"(RY) for r € (2,4%).
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To understand the geometry of the constrained functional, we consider the func-
tion f(c, p) defined on RT x R by
1 /"L (0% (0% ijilv (% (8%
fle,p) = 5~ 60?\/7qp o™t — 7ppﬂ 2™,
and its restriction g.(p) is defined on (0,00) by p — g¢c(p) := f(c,p) for each
¢ € (0,00), where

N(g—2 2N —q(N -4
N(p—2 2N —p(N -4
QQZ%_]., a3 — pS( )

NotethatforanyNZ5and2<q<2+%<;T9<p§4*,wehavea0€

(_15 _%)7(11 € (%71% Q2 € (Oa ﬁ]a and ag € [Oa %)

Lemma 2.4. For each ¢ > 0, the function g.(p) has a unique global mazimum and
the maximum value satisfies

>0 if ¢ < ¢,
max ge(p) { =0 if ¢ = co,
p>0 ;
max,>o ge(p) <0 if ¢ > co,
where )
= (=—)V*>0 2.2
Co (QK) ( )
with
CQ 20} Cp Cq ag
Mg Qo UP ~' N,q | @2—ao N,p Qo UP ~'N,q | @2—a0
K_—C'Nq -—— 5 +7[_77 > } > 0.
g Ml ar g Cf, p az q Oy,

Proof. From the definition of g.(p) it follows that

1
gé(p) — 7QO§C]%7qpaoflca1 _ a2];cjpv,ppazflca3.

Hence, the equation ¢.(p) = 0 has a unique solution:

ag pup Ol g msres 21oa

Pe = [f ——T’q] coz=%0 . (2.3)
az ¢ Oy,

Taking into account that g.(p) = —oo as p — 0 and g.(p) = —oc0 as p — oo,

we obtain that p. is the unique global maximum point of g.(p) and the maximum

value is

q
_ 1 B Oéo,uPCN,q %Wm
maxge(p) =5~ —Cny| =~ —"~cp CECTRETING
p>0 2 q ) as q CNp
B q _ay
Oy [- @@Cm} mag Salze) o
P
p ag q CN,p
q
—3- Loy O‘O“pCN’q}%f”’c%
9  _YNg| P
2 q 4 Qg q CN,p

P q D]
_ N [_ Qo (P CN#I} RIS
D
Q2 q CN’p
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1
- _K N/4.
2 C

By the definition of ¢q, we obtain max,~o ge,(p) = 0. |

Remark 2.5. When p = 4*, we use S~*/2 instead of Cﬁ’p, where § is the optimal
constant given in Lemma [2.2]

Lemma 2.6. Let (c1,p1) € RT x RT be such that f(c1,p1) > 0. Then for any
¢ € (0,¢1] we have

, ¢
flea, p2) >0, if p2 € [fﬂla/ﬁ]'
1
Proof. Since ¢ — f(-, p) is a non-increasing function, we have

fle2,p1) = fle1,p1) > 0.

Taking into account ag + a1 = % and ag + a3 = %72, we obtain

f(Cz, Clm) - f(ChPl)

_K Co 1
C‘Z Otl N Y aptal 70;0 Q1,03 (1 aztas
N,qP1 i ( (01) )"'p N.pP1 o ( (01) )
u c2
Oq 0t1 041 1— (=
Nq 14 ( (Cl

1 (X3 & p=2
)'7) + Cf’vppl e (1—(5) =)

Since c3 < 1,2 < g < 2+% and p < p < 4%, we derive
Co
f(027 ;Pl) Z f(chpl) Z 0.
1
We claim that if g.,(2p) > 0 and ge,(p1) > 0, then
c
f(c2.p) = ge(p) 2 0, for p € [Zp, p1].
C1

Indeed, if gc,(p) < 0 for some p € [£2p, p1], then there exists a local minimum point
n (2p,p1). This contradicts the fact in Lemma that the function g.,(p) has a
unique critical point which has to be its unique global maximum. O

Lemma 2.7. Forp<qg<p<4*,a>0,b>0,c>0andd >0 withc+d >0,
which are independent of t, we denote

(a=2) (r—2)
Hlabe.d) = ma (a1 4 bt — e ™52 g 20y
t>0

Then the function (a,b,c,d) — H(a,b,c,d) is continuous.

Proof. By making slight modifications to the proof of [2, Lemma 5.2], we can arrive
at the desired result. So, we omit the details here. O

3. CASE2< g<2+ 4+ <p<p< 4

In this section, we show that ground states of equation (|1.2)) exist which corre-
spond to the local minima of the associated functional.
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3.1. Properties of mapping c +— my, 4(c). Let ¢y > 0 be determined by equation
(2.2) and let pg := pc, > 0 be defined by equation (2.3). According to Lemmas

and it follows that f(co, po) =0, and f(c, po) > 0 for all ¢ € (0,¢p). Set
By, = {u € H*RY) : | Aull3 + [[Vull3 < po} and  V(c) := S(c) N By,
For ¢ € (0, ¢p), we consider the local minimization problem:

mpq(c) = inf K, (u).
p.a(€) weV (o) p.a (1)
Lemma 3.1. Let c € (0,¢p) and 2 < g < 2+ % <p<p<4*. Then the following
three assertions hold.
(1) mpq(c) = infycv(c) Epq(u) <0 <inf,covc) Epqlu);.
(2) The function ¢ — myp 4(c) is a continuous mapping.
(3) For all o € (0,¢), we have my q(c) < mp q(a) +myp q(c — ). If my q4(a) or
my q(c — ) is attained, then the inequality is strict.

Proof. (1) For any u € 9V(c), we have [|[Aul3 + ||[Vul|3 = po. Applying the
Gagliardo-Nirenberg inequality leads to

1 /'I' [e75) [e5]
Epq(u) > S (1Aull3 + [ Vull3) - Eczqv,q(HAUH% + [ Vul3) o (Jlull)

P

CN ;
- T’p(IIAUIlg + [ Va3) = ([full3) (3.1)

= (1Aull3 + IVull3) £ (Jull3, | Aullz + [|Vul3)
= pof(c,po) > pof(co,po) = 0.

Let u € S(c) be arbitrary but fixed. For s € R, set uy(x) = s™/?u(sz). Clearly,
us € S(c) for any s € R*. We define

Vu(s) = Epq(us)
s 52 n _ 1 _
= S lAul + S IVul = £ 8" ullg = 2N,

for all s > 0.

It is easily seen that v,(s) — 0~ as s — 0. Hence, there exists sufficiently
small s9 > 0 such that [|Aus,||3 + [|[Vus, 3 < po and E, 4(usy) = ¥u(so) < 0.
Consequently, we have m,, 4(c) < 0.

(2) Let ¢ € (0,¢p) be arbitrary and {c,} C (0,cg) be such that ¢, — ¢. By the
definition of my, 4(c,) with mp 4(c,,) < 0, for any € > 0 small enough, there exists
un, € V(c) such that

E,q(un) <myq(cy) +€¢ and E,4(up) <O0. (3.2)
Let z, = \/gun Clearly, z,, € S(c). On the one hand, if ¢, > ¢, then

&
182013 + V2013 = —([Auallz + [ Vunl3) < po.

On the other hand, if ¢, < ¢, by Lemma and f(cn,po) = f(co,po) = 0, we

have f(cn,p) > 0 for any p € [<=pg, po]. However, from (3.1)) and (3.2) it follows
that f([lunl3, [|Aunll3 + [Vun[3) < 0. Hence, [|Aupl3 + [[Vun[3 < %po and
Az, |13 + [|[Vzn |3 < o+ “pg = po. Since 2, € V(c), we have

myp q(c) < Epg(2n)
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Epq(un) + (Epq(2n) — Epq(un))
1 ¢ 1 ¢
= Epq(un) + 5(? —1)||Au, |2 + 5(? — 1)[|Vuall3
n n
W C.a 1 ¢ /2
By A |12 = (P72 —1]|u,||P
(29 = Dlhuall - SIS~
That is,
My q(c) < Ep q(2n) = Ep q(un) + 0n(1) as n — o0o. (3.3)

Using and yields
Mp,q(€) < mp,g(cn) + €+ on(1).
Now, we let u € V(c¢) be such that
E,q(u) <myq(c)+e and E,4(u) <O0.

Set up, := y/%u. Then u, € S(cy,), and ¢, — ¢ implies that || Au, |34 Vua|3 < po
for n large enough. So u,, € V(c,). Note that E, ,(u,) = Ep 4(u). Thus, we obtain

Mp,q(cn) < Epq(u) + (Epq(un) — Epq(u)) < mypq(c) + €+ o0n(1).

Because of the arbitrariness of € > 0, we infer that my, 4(cn) = mp 4(c).
(3) Given a € (0, ¢), it suffices to prove that

Vo e (1, g] L My g(00) < Oy g ()
and that, if m, ,(«) is attained, the inequality is strict. Using (¢), for any ¢ > 0
small enough, there exists u € V(a) such that
E,q(u) <my,(a)+e and E,,(u) <O0.

From Lemma [2.6) and f(c, po) > f(co,po) = 0, it follows that f(c,p) > 0 for any

p € [2po, po]. Hence, using (3.1) and (3:2) we obtain f(|ul}3, | Aull3 + || Vul2) < 0.
That is,

(&%
1Aullz + [ Vull3 < Zpo.

Set v = vAu. Then ||v||3 = fa and ||Av||2 + ||Vv||3 < po. Thus v € V(fa). A
direct calculation yields

1 1 1 1
mp,q(fa) < Ep4(v) < §9||AUH§ + §9||VU||§ = EHHUHZ - ];9Hv||§
= 9Ep7q(u) < 9(mp7q(0‘) +€).

Because of the arbitrariness of ¢, we obtain my, ,(fa) < Omy, o(). If my () is
attained, we can choose ¢ = 0.

3.2. Proof of Theorem [1.21 We define
Me={ueV(c): Epﬂ(u) = mp,q(c)}-

Lemma 3.2. Let 2 < ¢ < 2+ + <P < p < 4*. For any c € (0,co) and the
sequence {u,} C B,, such that ||u,|2 — ¢ and Ep 4(u,) — mp (), there exists a
sequence {y,} C RY such that for some R > 0 it holds

/ |u,|?dz > B > 0. (3.4)
Br(yn)
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Proof. By way of contradiction, we assume that does not hold. From {u,} C
B,, and |u,ll2 — c it follows that {u,} is bounded in H*(RY). For 2 < ¢ <
2+ + <P <p<4*, by Lemma we deduce that [lu,[[§ — 0 and [Ju,|[b — 0,
as n — o0o. At this point, it follows that E, ,(u,) > o,(1). If p = 4%, in view of
f(eo, po) =0, a straightforward computation yields

1 1 1 «
Epﬂ(un) = 5”Aun”§ + §||VU7LH§ - E”unHi* =+ On(l)

1 1 11 a
> illﬁunllg + §||Vun|\§ - EW(IIA%H% +[[Vun|[3) 7 +0n(1)
111
> ([1A]13 + HVun||§)(§ ~ pgErf’) ton(l)

= (180 + IV unl3)% Ch el +0n(1) > 0.
Both cases contradict the fact m,, 4(c¢) < 0. Thus, we arrive at the desired result. O

Proposition 3.3. For any c € (0,co), if {un} C B,, is such that ||u,||3 — ¢ and
Epq(un) — my4(c), then, up to translation, u, — u. € M, in H*(RY). In
particular, the set M, is compact in H?(RN), up to translation.

The proof of the above proposition can be obtained by similar arguments as in
[27] (see also [18]).

Proposition 3.4. For any c € (0,¢), if my 4(c) is reached, then any ground state
is contained in V (c).

Proof. For any v € S(c) and s € (0,00), we obtain

Ui(s) = 2QMww),

which implies that if w € S(c) is a ground state solution, then there exist v € S(c)
and so > 0 such that w = vy, Ep (W) = ¥, (s0) and ¥/, (sp) = 0. To conclude the
proof, it suffices to show that ¢/ (s) has at most two zeros. This is equivalent to
showing that the function

!
)
s
has at most two zeros. Note that
¥y (s) Na-2 o, 1N (g —2)
€)= 22 = 22wl 4 [Vulf - oSS g
Ne-2) o N(p—2)
ST i e
P
and
N2y pN(g—2) N(q—2)
¢'(s) = s[4 Auf3 —s— 7 - 5 (—5— = 2)ulg
q
Neo-2 4, N(p-2) N(p-2)
- ST o)l

—: s[4]|Au — f(s)]-

So we need to show that £(s) is the unique solution. Since 2 < ¢ < 2+ + <
Pp<p<4* N >5and s >0, it is easy to see that s — f(s) is a non-increasing
function. Hence, £’(s) has a unique solution and &(s) has at most two zeros.
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Now, since ¥, (s) = 07, | Avs||3 + [|[Vvs||3 = 0 as s — 0 and 1, (s) = Ep 4(vs) >
0, when v, € 9V (c), 1) has a first zero s; > 0 corresponding to a local minima.
Also, from 1, (s1) < 0,¢,(s) > 0 when vs € 9V (c) and 1), (s) — —00 as s — 00, P,
has a second zero s > s1 corresponding to a local maxima. In particular, vs, € V(c)
and E,4(vs,) = ¥y(s1) < 0. Thus, if my,4(c) is achieved, it is a ground state

level. O
Proof of Theorem[1.4 The existence of a minimizer for F, , on V(c) follows from
Proposition By Proposition this local minimizer is a ground state. O

4. CASEp<g<p<4*
In this section, we present the proof of Theorem [I.3]

4.1. Monotonicity of ground state energy m, ,(c). We start by showing some
properties of Q, ;(¢) and the energy functional E, , restricted on it. For any u €
S(c) and s € (0,+00), we define

ug(x) = sNtu(y/sx), for ae. x e RV,
Clearly, us € S(c) for any s > 0. It follows that

5 2 S 2
Epq(us) = 5 l[Aullz + 5[ Vulz ~

and
s N(q—2) N(p—2)
Qp.q(us) =82HAUH§+§HVUH§—/~%8 T lullg = s T [l

Then, we have the following properties for E, ;(u,) and Qp 4(us).

Lemma 4.1. . Let N >5,¢>0, u>0andp < q<p<4*. When q =D, we
assume that pc*/N < ]\g+4 . Then for any u € S(c), there exists a unique s, €

(0, +00) such that us, € Qp q( ) and s, is the unique critical point of E,, 4(us) such
that Ey q(us,) = MaXe(0,400) Ep,q(us). The function u v Ey 4(us,) is concave on
[Su, +00). In particular, if Qp q(u) <0, then s, € (0,1]. Moreover, the map u + s,
is of class C".

Since the proof is similar to the one of [28, Lemma 3.4], we omit it here. Under
the same assumptions described in Lemma [£.1] we can obtain the following results
concerning the Nehari-Pohozaev’s type set Q, ,(c) and the constrained functional
E, 4.

Lemma 4.2. Let N > 5, ¢ >0, u >0 andp < q < p < 4*. When q = p, we
assume that puc*’N < ]\%7*;4. Then we have

(1) Qpqle) #0;

( ) mquQp q(c) HAUH2 2||Vu||% >0 and infuer,q(C) ”AUH% > 0;

( ) lnquQ (c) qu( )> 0;

(4) E,q is coercive on Q,p.q4(0).

Proof. (1) By Lemma [4.1] for any u € S(c), there always exists s, > 0 such that

Us, € Qpq(c), it follows that Qp 4(c) # 0.
(2) For any u € Q, 4(c), using the Gagliardo-Nirenberg inequality yields

N.q

1
1Aull3 + 51 Vull3 = mygllull§ + i
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a7vq
2

_ 1
< 19gCR (VO T (| Aulla + 5| Vul3)
P p(1=7p) 1 2) 232
+ON, (V) T (| Aulle + Sl Vallz) =

Ifp <qg <p, then py, > qyg > 2. If p = ¢ < p and pct/N < Nj\é‘?q, then

NC1 . .
PYp > GYq = 2 and ”Ni_ﬁ’qc‘l/]v < 1. In either case, there exists a constant C' > 0

such that ||Aull3 + §||Vull3 > C, which implies inf,ecq, (o) [|Aull3 + 5[ Vull3 > 0.

By a similar argument, we can deduce that inf,co () [[Aul3 > 0.
(3) For eachy u € 9, 4(c), we have

9 — 2 2, Qg —1 2, Pl — 4%
E,  (u) = ————|Au|l5 + —=—||Vul||5 + —=—]u||. (4.1
p.q (W) 207, [Au]3 207, [Vull3 v [l )
From (2) it follows that inf,cq, (c) Ep,q(u) > 0.
(4) By (4.1)), it is easily seen that (4) holds. O
For any fixed ¢ > 0, Lemma indicates that
mpq(c) = inf FE, (u
p.a(€) o () p.a(t)

is well-defined and strictly positive. We now analyze the behaviors of m, 4(c) when
¢ > 0 varies.

Lemma 4.3. Let p < p < q < 4*. When q = p, we assume that pc*/N < oA

N.q
Then the function c — my, 4(c) is continuous for ¢ € (0,+00).

Proof. We define

= inf By q(us). 4.2
V(€)= inf maxEpq(us) (4.2)

To prove v(c) = myp q(c), for any u € Q, 4(c) we have E, ;(u) = maxsso Ep ¢(us),
which implies that vy(c) < mp 4(c). On the other hand, for any u € S(c), by Lemma
there exists s, > 0 such that u,, € Q) 4(c) and maxs~o Ep g(us) = Ep 4(us,) >
my q(c). Thus, we have v(c) = my, 4(c).

For each fixed ¢ > 0, taking {c¢,} C RT such that ¢, — ¢, we shall prove
limy, 00 My g(cn) = My 4(c). For any € > 0, by the definition of m,, 4(c) there exists
v € Qpq(c) such that E,4(v) < mypq(c) + 5. Set vy, := /2v € S(c¢p). From the
fact pct/N < 1%7;4, cn — cand Lemma it follows that

NP

Myp,qg(cn) < I?f%‘ Epq((vn)s)

52 s I N(a=2) 1 Ne-2

= (8w 3+ ZIVenl = ™ g = L5 )
2

s 9 S 5 M N=2) 1 N@-2) €

< max( 13 + 190l - ™ ol - 5™ follp) + £
€
= I?f(})(Ep,q((v)S) + 3
€
= Epq(v) + 3 < mypq(c) e
That is,
lim sup my, 4(cn) < My q(c). (4.3)

n—oo
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Then we take {u,} C Qp 4(c,) such that

€
Ep q(un) < mpq(cn) + 9 (4.4)
In view of Qp q(u,) =0, for n large enough, from (4.3) and (4.4)) it follows that
11 1 1 v, 1
= — =N Aun |3 + = (1 = =) ||IVunl3 + (2 — 2) Jua|®
(5= 2w+ 50— ) IVl (22— 2
€
< Epg(un) < mpqlen) + 3
3¢
< mpq(c) + i

If py, > gy, > 2, we can derive that {u,} is bounded in H2(RY). If py, > qv, = 2,
recalling Lemma (2), we can see the same result.
Without loss of generality, as n — oo we assume that

1Aunll3 = Cr, Va3 = Co,  lunlld = Cs, lunlly = Ca.

If follows from Lemma (2) that C; > 0, C > 0, and C3 > 0, Cy > 0 with
C3+Cy > 0.

Let @, := , /éun. Clearly, 4, € S(c). From Lemma it follows that

2

N s¢ ¢ s, ¢
Mpg(€) < M By (@).) = mave [ - Al + 5 () |Vl
W N@-=2 ,C . g 1 ve-2 ¢
= B () g — 25T ()2 ]
Cn p n
s? 2 5 2
< max(S 8w + 51V 3
N(q—2) 1 ve-2 3e
= Nl = T lwnll) +
3e
= I?fgiEp,q((un)S) + T
3e
= Epq(un) + 1 < mypg(cn) + €.
That is,
< limi .
Mp,q(c) < hnrggf Mp,q(Cn)
Hence, we arrive at the desired result. ([

Lemma 4.4. Let p < p < ¢ < 4*. When q = p, we assume that pc*/N < o
N,q
Then the function c — my, 4(c) is non-increasing for ¢ € (0, +00).

Proof. For 0 < ¢1 < ¢ < +00, we shall prove that my, 4(c2) < myq4(c1). According
to the definition of v(c) in for any € > 0 there exists u; € Q) 4(c1) such that

€
By q(u1) < mypg(er) + 3 and Iilgé(Ep,q((ul)/\) = E(u1).

For k > 0 and A € (0,1), we define
wy = uf + (v§)a-
We choose uf € H?(RY) such that suppuf C Bi(0) and ||uf — u1]| = o(k),

while v) = (cz — [|uf|3)*/? va:\lz’ where v* € C$°(RY) such that suppv® C
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B%H(O)\B% (0). It is obvious that dist(supp(v{)a,suppuf) > %(\% —1) > 0.
Hence, ||w§||3 = c2. By a standard argument, as A,k — 0, we derive
AWK = A3, [VwSl3 = [Vurlld,  wSE = lualld,  [wSIE = fullp.

Letting (w%); = tN/4w§(\/iac), by Lemmaaugain7 we can deduce that for A\, x > 0
small enough, it holds

€ €
Myp,q(c2) < Igag(Ep,q((wi)t) < I?38(Ep,q((ul)t) + 5= Epq(u1) + 5 <mypgqler) e

[
Lemma 4.5. Let p < g < p < 4*. Assume that u. € S(c) solves
Ay — Au+ weu = plu|?2u + |ulP2u. (4.5)
Then there exists ¢* > 0 such that w. > 0 for any c € (0,c*).
Proof. By we deduce @, 4(u) = 0 and
[Aucl3 + [ Vuel3 + wellucll3 — pllucllg = lluclh = 0.
Then
werge = (1= g) [ Auc|3 + (% = 1) IVuel3 = (v = ) lluclb- (4.6)
For small ¢ > 0, using the Gagliardo-Nirenberg inequality leads to
AUl = 7pCR g1 Auc[|3™ (V)1 1) 4 3, O, | Al (Ve)Pt )
< pmax{CF ., R }(VE) T 70 (|| Aucl|57 + [|Au[|5™).
Then, for p < g < p < 4%, as ¢ — 0 we obtain
/RN |Aug|*dz — oo. (4.7)
On the other hand, we from and derive
wevge = (1= 7q)[| Auell3 + (% —1)IVuel3 = (3 = 7a) luell?
> (1= 9) 8wl + (5 — 1) Vel At
From ([4.7), it follows that w. > 0 if ¢ > 0 is small enough. O

Lemma 4.6. Let p < ¢ < p < 4* and ¢ € (0,¢*). When q = P, we assume that
pct/N < LEEL - Suppose that u € S(c) such that Ej 4(u) = my, 4(c) and

T -
CN,q

A2y — Au + wu = plul?%u + |uP .
Then the function c— my, 4(c) is strictly decreasing in a right neighborhood of c.

Proof. By Lemma we know that w > 0. Set uy(z) = ¥4V u(v/tx) for
At > 0. We define

N(qg—2) N(p=2)

K\ t) = Ep 4 _r 2,1 2 MU e L \P2|lP
1) = Bpglung) = 5 A Auld+ G AN Vulf = A g =X
and
M) = Qpeglun)
= XAl + NIVl — gt ™A il — 7t 2
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By a direct calculation, we have

oK 1 5 1 9 M 1 1
SS1) = S Aul+ S IVul - Sl - Sl =~ Swe,
oK 1
S 1) = 8wl + S Ful — gl — v lully = 0,
9’K N(g—2) N(p—2)
gz (L1) = | Aull - 17— = Dllullg =7 (—5— = Dlulz <0,
which yields for §; small enough and 6y > 0,
K14 6x,146)<K(1,1) forw>0. (4.8)

In addition, we observe that
1
M(1,1) = Qpq(u) = [Aul3 + SIIVullz — prgllullf = ypllul} = 0.

We now claim that

oM 1 N(g—2) N(p—-2)
L) = 2 A+ S IVl — g — L s — 3y~ ul # 0.
Otherwise, we assume that
oM 2 1 2 N(g—2) N(p—2)
C21,1) = 8wl + 71Vl — g~ o2l — 3y = fuly = 0,
Then for any p < ¢ < p < 4%, we have that
1 N(q—2) N(p—2)
1 IVulls = pg (1 = —g Ml + %1 = ——2—)llullp,

which is impossible. According to the implicit function theorem, we deduce that

there exists € > 0 and a continuous function g : [1 —¢, 1+ €] — R satisfying g(1) = 1

such that M(X, g(A)) =0 for A € [1 —¢€,1 + ¢|. This together with (4.8)) gives
Mpq((L+ €)c) < Epq(Uiyeg(i+e)) < Epq(u) =mpq(c).

We have arrived at the desired result. O

4.2. Ground states. In this subsection, before presenting the proof of Theorem

we show the minimizer of E, ;(u) constrained on Q, ,(c). For convenience, we
set f(s) = plsl s + |s|P 25, F(s) = ]s| + L]s[P and H(s) = f(s)s — 2F(s).

Lemma 4.7. Let p < ¢ < p < 4* and ¢ € (0,c¢*). When q = D, we assume that

pct/N < J\f\éit‘l, Then there exists uy € Qp ¢(c) such that Ep 4(ug) = mp 4(c).
N.q

Proof. Using the Ekeland variational principle, there exists a minimizing sequence
{un} C Qp4(c) such that

E,q(un) = mpq4(c) asn— 4oo. (4.9)

By Lemma [4.2{(4), it follows that {u,} is bounded in H?(R"). We claim that {u,}
is non-vanishing. Indeed, if {u,} is vanishing, then it follows from Lemma [2.1| that

/ |un|"dz — 0, for r € (2,47).
RN
Since Qpq(un) =0 and p < ¢ < p < 4%, it follows that

1
‘Aun|2 + §|Vun|2 = N'Yq”un”g JF'Y;D”“H”% —0, asn— oo,
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which contradicts Lemma[4.2[2). Thus, up to a subsequence, we obtain that u, —
up # 0 in H?(RY). Denote Un,0 = Up — Ug. It is easily seen that

|3 = lluoll3 + [lun.oll3 + 0n(1),
IVunll3 = [[Vuoll3 + | Vuun,oll3 + 0a(1),
1A 13 = [| Auol[3 + | Aun oI5 + 0n (1)

By the splitting properties of Brezis-Lieb we have

H(upn) = H(uo) +H(un 0) +on(1), (4.10)
Un) = Ep q(u0) + Epq(un0) + 0n(1), (4.11)
Un) = Qp,q(w0) + Qp,q(un,0) + 0n(1). (4.12)

We claim that @, 4(ug) < 0. Up to a subsequence, we assume that d,
f]RN | Ay, o]2dx + % f]RN |V, 0l2dz — 69 > 0. Now we need to consider two cases.

Case 1. §p = 0. By Lemma for any r € (2,4%), we have [px |tn ol dz — 0.
Then @Qp,q(tn,0) = 0 as n — +oo. Hence, from (4.12]) we derive @), 4(ug) = 0.

Case 2. §p > 0. By contradiction, we suppose that Q) (uo) > 0. From (4.12)
it follows that Qp 4(un,0) < 0. According to Lemma[4.1] there exists sy, , € (0, 1]
such that Qp,q((un,0)s,, ,) = 0. In view of the fact that H(s)

T
Bl

al
al

is strictly increasing
for s € (0,00), we deduce

Epq(un,0) — Ep,q((un,O)su,,hO)

1—s2
— o / | Aty 0] 2dx +
2 ]RN

7/ F(up,0)dx + s, N/2/ F(sfx{‘éuno)d
RN RN

1—s
&/ \Vun0|2dx
2 ]RN ’

1—s2 . 1—s, l—si
= 0 () + (om0~ o / (Viuy o[2dx
RN

2 2 4
1-s2,N
507 [ 0)uno = 2F (un))da
f/ F(upo)dr + s, N/Q/ F(sﬁ{iuno)d
RN RN
1—872170N

> 5 1 (f (Un,0)tn,0 — 2F (un,0))dz
RN

2

SU
— F(uno Ydx + s, N/Q/ F( N/4un0)dx+7"’0Qp7q(un,o)

2
LT g (1
RN [t 0PN [N Ay o 2N
1— unO
b, )
1—54,,

Z 2 ’ Qp,q(un,0)~
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We denote ¢, 0 := ||unol|3. Clearly, ¢, < c. From Lemmawe derive

Myp,q(c) = lim (Ep,q(un) - %ng(%ﬂ)

n—-4o0o
. N 1 2
S (O RCRTEY ISTO RETAE

N 1
= (g/ H(uo)dx—/ Fuo)dz + 7| Vuo )
RN RN

. N 1
+ ngrfoo <§ » H(up0)dr — /]RN F(upo)dz + 1||Vun0||g>

=[5 [ (aohuo = 2+ )P+ F17ul]

) 1
+ lim (Enq(un,o) - iQp,q(’LLn,O))

n—-+o0o

] 1
> lim (Enq(un,o)*?Qp,q(un,O))

n—-+oo
82
. Un 0
> lim (Ep,q((un’o)sun,o)— 9 Qp,q(un,O))

n—-+o00

v

ngrfoo Ep,q ( (un,O)Sun,o )

ngrq{loo mp,q(cn,o) > mP,q(C)'

Y]

This indicates that lim,,_, o @p,q(Un,0) = 0 and

ng{{}oo Epq(uno) = ngrfoo Myp.q(Cn0) = My q(c)- (4.13)

On the other hand, combining (4.9)) and (4.11]) yields
Myp,q(€) = Epg(un) + 0n(1) = Epg(uo) + Ep,q(tn,0) + 0n(1).
In view of E, 4(uo) > 0, from (4.13)) it follows that

Myp,q(€) > myp q(c) — Epg(uo) = nglfoo By q(tno) = ngg}oo My q(Cn,0) = Mpq(c).

This yields a contradiction.
Using Qp,q(uo) < 0 and similar arguments as above, there exists so € (0, 1] such
that (ug)s, € Qpg(co) and

_ 52
Fp(t0) — By a(10)eg) >+ 0@y ). (414)

We denote ¢y = |lugl|3. Clearly, co € (0,¢]. By (4.14) and Lemma [4.4| we have

Mp,q(c) = hmoo (Ep,q(un) - %Qp,q(un)>

n—+
- 1 N 1 2
- (3 [ gt [ ) v
. N 8
=t 5 L (0o (24 5) Pl )
1 1
+ £ IVunol] + (Epaito) = 5Qp.auo))

55
2 Ep,q((UO)SO) - ng,q(UO)
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> my q(co) = My 4(c),

which implies mp 4(co) = mpq(c) and Qp q(uo) = 0, that is, sp = 1. Thus we have
uy € Qpqlco) and E, 4(ug) = my 4(co). Using Lemma at co and my, 4(co) =
my 4(c), we obtain ¢g = ¢ and thus E, ,(ug) = my 4(c). O

Proof of Theorem[I.3 Consider the functional ¥(u) : S(c) — R defined by

1 Su N(g=2) 1 Ne-2)
V() i= Bplue,) = 5sbllulf + IVl — 2o Jull - 2o Jull,
where s, is given in Lemma [.1] and u,, € Qp 4(c).

According to Lemma we find ug € Qp 4(c) such that E, ;(ug) = my q(c).
Then there exists vg € S(c) such that (vo)s, = uo and ¥(vo) = Ej ¢((v0)s,,) =
E, 4(ug) = my 4(c). This implies that v is a minimizer of E, , restricted on S(c).

We claim that W is of class C* and

d¥ (u)le] = dEp,q(us, )[#s,] (4.15)
for any u € S(c) and ¢ € T,,5(c). In fact, by the definition of ¥ we have

U(u+tp) = W(u) = Epo((u+tp)s,) — Epq(us,),

where [t] is small enough, s; = Su+tp and sg = s, is the unique maximum point of
the functional E, ,(us). By the mean value theorem we obtain

Epq((u+tp)s,) — Epq(us,)

< Epg((u+tp)s,) — Epq(us,)
2

= S—t(/ 2t AU - Ap + 12| Ap|*dr) + ﬁ(/ 24V - Vip + 12| V|*dr)
2 Jmw 2 Jan (4.16)

N(g—=2)

1
—psy ! / (/ Iu+sntw|q‘2(U+tnt<p)ts0dt)dw
RN 0

N(p-2)
P

1
— 5 / ( / Ju+ tnp|P 2 (u + tmso)wdt) dz,
Ry NJo
where 7; € (0,1). Similarly, we derive

Epq((u+1tp)s,) — Epq(us,)
2 Ep,q((u +t9)s) — Ep,q(“So)

2
:SEO(/ 2tAu-Aso+t2lAsol2das>+%o(/ 26Vu - Vo + £*|Vp|*da)
RN RN (4.17)

N(g—2)

1
— psy * / (/ |u+t0t¢|q*2(u+t0t¢)t@dt>dx
RN 0

N(p-2)
1

1
— S / (/ |u + 0y p|P 2 (u + t9t<p)tg0dt) dz,
RN \Jo

where 6; € (0,1). Since the map u + s, is of class C!, from (4.16) and (4.17) it
follows that

lim U(u+typ) — U(u)
t—0 t

=52 Au - Apdx + sy, / Vu - Vpdz
RN RN




18

Z. MA, X. CHANG, Z. FENG EJDE-2024/29

N(g—2)

9 N(p—2) 9
— Sy * u/ [u|T™%u - pdx — s * u/ |u|P~*u - pdx.
RN RN

So the Gateaux derivative of ¥ is bounded linear in ¢ and continuous in w.

Therefore, U is of class C'. In particular, by changing variables in the integrals,

we

So

It

have

d¥(u)[p] = 52 Au - Apdx + s, / Vu - Vodx
RN RN

N(g—=2) 9 N(p=2) 9
— 5y ! u/ |w]T™%u - pdx — sy, * / |u|P~%u - pdx
RN RN

= Aug, - Ap,, dx —|—/ Vus, - Vg, dx
RN RN

- /J/ |usu ‘q—QUIS“ ’ (psudx - / |Usu |p_2usu : (psudl‘-
RN RN
= dEp (us,)]@s,]-
the claim (4.15)) is true, from which we deduce

|[dEy,q(uo)]| (TuyS(e))* = sup |dEyp,q(uo)[¢]]
0€TuyS(e)llwll<1

sup [dEp,q ((UO)SUO )[(905;01 )Svo} |
P€Tuy S(e),llpll <1

sup |[d¥ (vo) [, 1]
©E€Tuy S(e),llpll<1 °

1% (vo)ll (7 ()~ - sup e
P€Tug S(e),llel<1

IA

1l

Sug

IN

max{s,,', L}|dEp.q(vo)llz,,,5(0))« = 0-
follows that ug is a critical point of E, , restricted on S(c). By Lemma for

some w > 0, ug weakly solves (1.2)). In view of E, ,(uog) = my 4(c), we infer that ug
is a normalized ground state solution of problem (1.2)). O
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