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SUFFICIENT CONDITIONS FOR THE EXISTENCE OF
INTERIOR POINTS FOR POSITIVE CONES

MOHAMMED SAID EL KHANNOUSSI, ABDERRAHIM ZERTITI

ABSTRACT. Using partial ordering methods we give a sufficient condition for
a positive cone to have nonempty interior.

1. INTRODUCTION

Let (E,| - ||g) be a real Banach space and P be a nonempty closed convex set
in E. P is called a cone if it satisfies the following two conditions:
(i) z € P and A > 0 imply Az € P,
(ii) x € P and —x € P implies = 0, where 6 denotes the zero element in E.
A cone P is said to be generating (or reproducing) if F = P — P, i.e., every
element x € E can be represented in the form x = v — v where u,v € P.
A cone P is called solid if there exists an element ug which belongs to the interior
of the cone P, that is, there exists positive constant r such that

B(ug, ) ={x € E:|lup —z|| <r} C P.
A cone P defines a linear ordering in E by
r <y ifandonlyif y—ax¢€ P.
A cone P is said to be normal if there exists a constant N > 0 such that
6<e<y — [al <Nlyl, @yeP
We denote by ug some fixed non-zero element of P. Our main result reads as
follows.

Theorem 1.1. If ug be a non-zero element of P such that for any x € E there
exists positive constant o > 0 such that © < azug, then ug belongs to the interior
of the cone P. That is, there exists positive constant v such that

B(ug,7) ={x € E:|lup —z|| <r} C P.
In Section [3| we introduce the ug-norm and the space E,,,, where ug is a given
nonzero element of P. It is well-known that if P is a solid cone and uy € P,

then £ = E,,. In this paper we shall study the converse statement and give an
improvement and generalization of [2, Theorem 1.5.1].
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2. PROOF OF THEOREM [L.1]

To prove Theorem we establish the following two lemmas. The first one is
based on [2, Lemma 1.4.2].

Lemma 2.1. Let ug be a mon-zero element of P such that for any x € E there
exists positive constant o, > 0 satisfying x < agzug. Then a constant 7 > 0 can
be found such that for any x € E there exists positive constant §(x) > 0 such that
z < B(x)ug and ||B(x)uol < 7z

Proof. 1t is clear that £ = US2 | B, where
E, = {x € E : there is f(z) > 0 such that z < f(x)ug and ||8(x)uo|| < nllz||},

for n = 1,2,3,.... By the Baire-Hausdorfl’s Theorem (that is, a nonempty com-
plete metric space is a second Baire set), there exist positive integer ni, zo € E
and R > r > 0 satisfying

By={z € E:r<|z—x| < R} C E,,.

Let 5y > 0 and ns be a positive integer such that —zg < Boug, and ||Boug| <
nallzol|. Let B ={z € E:r < ||z|| < R}, and choose an integer ns3 satisfying

1
ns > ni + ;(Tll —+ TLQ)HJS'()”

In what follows, we prove that B C FE,,. Indeed, for any z € B, we have y =
xo + = € By, then there exists a sequence {z;} C E,, such that z; — y as i — oc.
Clearly, we can assume that z; € By for i = 1,2,3,.... Take constants 8; > 0 such
that z; < Byup and ||Biug|| < n1l|z;||. Then we obtain z; — z¢ < (8; + Bo)uo and

1(Bi + Bo)uoll < nal|2il| + nzl|zoll
< (n1 + na)|zoll + n1llzi — 0|

)||$0||
T

< |:(n1 + no + na |||z — ol

< ng|lz; — zol|-

from which it follows that z; —xg € E,, for n = 1,2,3,.... From the fact that
T; —To — Y — X as ¢ — oo we obtain z € Eind Therefore B C E7n3

Clearly, from x € E,,, we can easily prove that tz € E,,, for all £ > 0. Conse-
quently, £ = E,,.

Finally, we show that £ = Es,,. Taking z € F such that  # 6, then there
exists 1 € L, satisfying

1
lz = a1 < Fllzl-
Since x1 € E,,, there exists §; > 0 such that

z1 < Brug, || Bruoll < nallza .

Similarly, there exist xo € E,, and B2 > 0 such that
1
lz — 21 —zall < Zllzll, 22 < Bawo,  [|B2uoll < mallz]l.
Inductively, we find sequences {x} C E,, and {Br} >0, k =1,2,..., satisfying

1
lz =21 —@g — - — ] < 27”1’”, rr < Brug, and  ||Bruoll < nallakl,
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for k=1,2,3,....
Clearly, z = -, z and
k

k—1
3||x
il < flo = @il + llo =Y all < y k=1,2,....
i=1 i=1

From which it follows that
o0 o0
S 1Bkl < ns 3 el < 3nallz] < oo.
k=1 k=1

Consequently the series Y ;- | B converges to some constant 3 > 0. Clearly

oo oo
= Zxk < Zﬂkuo = Buo,
k=1 k=1

and
1Buoll <> lIBruoll < 3ns||.
k=1
Therefore, € Es,,,, which implies that £ = Ej,,,. [l

As a consequence of the previous lemma we have.

Lemma 2.2. Let ug be a non-zero element of P such that for each x € E there
exists positive constant a > 0 satisfying © < agzug. Then there is a constant > 0,
not depending on x, such that for every x € E satisfying ||z|| < 1 we have x < Bug.

Proof. By using Lemma for every x € E satisfying ||z|| < 1 there exists positive
constant §(z) > 0 such that < B(z)up and ||B(z)ug|| < 7||z|| < 7. Then for all
constant 3 > HuTTH we have x < Sug. O

Proof of Theorem[I.1]. By Lemma[2.2] there is a constant 3 > 0 such that for every

x € E satisfying ||z]| < 1 we have z < fuy. By taking r = % we have for every

x € FE satisfying ||z|| < 1, up — rx > 0. Taking an element x € FE (2 # ug) such
that ||up — x| < r, we obtain

x=1ug — (ug — )

o —xf| wo—=

>0

=u .
’ r uo—=l —

Consequently x € P, which completes the proof. (I

3. SPACE E,,

In what follows, we suppose that P is a cone in F and let ug be a non-zero
element of P. We define the space E,, and up-norm as follows (see [7]),

E., = {z € E : there exists A > 0 such that — Aug <z < Aug},
|2]|ue = Inf{A > 0: =Aug <z < Aug}, € Ey,.

It is easy to see that E,, is a normed linear space with the norm || - [|,,. Then ||z,
is called a ug-norm of x € E,, (see [7] for more details). The following theorem
can be found in [2, Theorem 1.5.1]

Theorem 3.1. If P is a normal cone, then:
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(i) The space E,, is a Banach space.
(ii) Py, = PNE,, is a normal solid cone in space E,,, and

15% = {x € E,, : there exists T > 0 such that x > Tug}
= {xz € E: there exists A > 7 > 0 such thattug < x < Aug}.

Remark 3.2. If x € FE and there exists positive constant o, > 0 such that z <
azug, then from the inequality —x < a_, uq, for some a_, > 0 one has —a_,ug <
z < azug. Then x € E,,, and thus E' = E,,.

Theorem 3.3. A necessary and sufficient condition for a cone P to be solid is that
E=FE,.

Proof. Suppose that E = FE,, then for any z € E there exists A > 0 such that
x < Aug hence by Theorem ug € P and thus P is a solid cone.

Conversely, suppose that ug € P, then there exists positive constant r > 0 such
that B(ug,r) = {z € E : |lup — x| < r} C P. For each z € E, (x # 0), we

have ug HT7"”m € P and then —@uo <z < ”LTH’U,(). Therefore, z € E,, and

E=E,. O
In what follows, we assume that P is a normal cone.

Theorem 3.4. If P is a solid cone, then ug € p if and only if the ug—norm || - ||u,
is equivalent to the original norm || - ||.

Proof. Suppose that ug € ]5, then there exists positive constant r» > 0 such that
B(ug,7) = {x € E : |lJup — || < r} C P. For each x € E, (x # 0), we have
—@uo <z < @uo. Then

7o < 2, @€ B
On the other hand, for each z € E,,, we have —auy < x < aug, where o = |||y, ,
and then 0 < z 4+ aug < 2aug. Thus, by the normality of P, we obtain
[z + auo| < 2aNuol,
where N is the normal constant of P, which implies that
] < flz + cuoll + [| = auoll < M|z |lu,,

where M = (2N + 1)||ug||. Consequently, the ug-norm || - ||y, is equivalent to the
original norm || - ||.
Conversely, suppose that for any x € F there exist two positive constants ¢ and
C satisfying
il < [zl < Clllug

then it is easy to show that E = E,,, and then by Theorem ug € P. O

Remark 3.5. Theorem does not assume P to be normal.

Remark 3.6. It is well-known that if P is a solid cone and ug € FD’, then £ = E,,
and the up-norm || - ||, is equivalent to the original norm || - ||. But here we have
studied the converse statement and then our work improves and generalizes [2]
Theorem 1.5.1].
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