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HÖLDER SOLUTIONS FOR THE AMORPHOUS

SILICON SYSTEM AND RELATED PROBLEMS

Walter Allegretto, Yanping Lin, & Aihui Zhou

Abstract. We present existence of solutions and other results for the partial dif-

ferential equation system with memory which models amorphous silicon devices and

related problems in R3. Our approach employs only classical estimates and Degree

Theory; it shows the existence of Cα,α/2 solutions for some α > 0. In view of the

mixed boundary conditions, this is the maximum regularity that can be expected.

1. Introduction

In the past few years micro-electronic devices employing amorphous silicon as
the semiconductor material have shown promise in a variety of applications such
as liquid crystal displays, image sensors and solar cells. The mathematical model
usually employed to simulate such devices involves drift-diffusion equations as well
as equations describing the density of trapped charges, [3, 8]. The latter may
be explicitly integrated in time, giving a drift-diffusion system with integral (i.e.
“memory”) terms. Specifically, if we assume only one trapped charge state and set
all mathematically irrelevant coefficients to unity, we obtain:

−∆ϕ =
(
p− n+ C1(x) +

∫ t
0

(p − n)e−
∫ t
ξ
(n+p+2)dηdξ

)
(1’)

∂n

∂t
−∇[Dn(x, t, n, p, |∇ϕ|)∇n − nµn(x, n, p, |∇ϕ|)∇ϕ] (2’)

= 1−

∫ t
0

(p − n)e−
∫ t
ξ
(n+p+2)dηdξ − n

[
1 +

∫ t
0

(p− n)e−
∫ t
ξ
(n+p+2)dηdξ

]
∂p

∂t
−∇[Dp(x, n, p, |∇ϕ|)∇p + pµp(x, n, p, |∇ϕ|)∇ϕ] (3’)

= 1 +

∫ t
0

(p − n)e−
∫ t
ξ
(n+p+2)dηdξ − p

[
1−

∫ t
0

(p− n)e−
∫ t
ξ
(n+p+2)dηdξ

]

to be satisfied in a smooth domain Ω ⊂ R3. We observe that the factor “2” is
present in the various integrals in equations (1’)-(3’) to ensure charge conservation,
[8]. With equations (1’)–(3’) we associate initial/mixed boundary conditions as
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follows: Let ∂Ω = ΓD ∪ ΓN with ΓD a smooth nonempty closed sub-manifold in
which Dirichlet conditions are to hold:

ϕ(x, t) = ϕ(x), n(x, t) = n(x), p(x, t) = p(x)

for all t, while Neumann conditions are to hold on ΓN = ∂Ω − ΓD :

∂ϕ

∂~ν
=
∂n

∂~ν
=
∂p

∂~ν
= 0 .

With n, p we also associate initial conditions. Both to avoid technical difficulties and
in keeping with the situation in the physical problems we also ask that n(x, 0) =
n(x), p(x, 0) = p(x), with n(x), p(x) ∈ C1(Ω) and n, p ≥ 0. These may be
weakened in what follows without essential proof changes, but they do simplify the
presentation.
For the same reason, we assume throughout the paper that all equation coeffi-

cients are smooth in their variables. Note that since n, p are densities we shall only
seek solutions with n, p ≥ 0. The behavior of the equation coefficients in (n, p) for
n, p < 0 can thus be chosen for convenience. Some regularity is also needed for
∂(ΓN ) ∩ ΓD. Intuitively if x ∈ ∂(ΓN ) ∩ ΓD and N is a small neighborhood of x,
we require that regularity considerations for N ∩ ∂Ω be reduced via bi-Lipschitz
(resp. smooth) coordinate maps to similar problems on quarter-spheres (resp. hemi-
spheres). The reader interested in the explicit formulations of such conditions may
find them for example in [7, 11, 13, 16].
In the next sections we introduce and analyze a system of equations which con-

tains as special cases not only (1’)–(3’) but also the standard drift-diffusion equa-
tions. While we are not aware of an earlier study of such a system with “memory
terms”, we point out there have been numerous results on the non-augmented sys-
tem in recent years. It is not possible to present a detailed analysis of previous
results here, but we refer the interested reader in particular to the papers [2, 4, 5],
to the books [9, 10, 12] and the references therein. It is the paper by Fang and Ito
[2], and da Veiga, [15] which furnished in part the motivation for this work, and
which are closest to the assumptions made. Indeed the regularity of n, p shown
here is conjectured in [15]. In general terms, the approaches usually employed in
the past are based on time discretization, on semigroup analysis, on fixed point
theorems and weak solutions are found in suitable spaces. Often techniques in-
volving maximum principles, the Einstein relations and the introduction of quasi
Fermi variables, and coefficient truncation were employed. In this paper we use
none of these tools, and it is not clear how useful many of these would be in our
situation, given the memory term present in (1′). Instead we employ Degree Theory
and work directly with Cα,α/2 spaces. Not only does this simplify considerably the
presentation but the solutions we find are of the regularity one would expect from
the physical point of view. More global regularity cannot be realized in general due
to the mixed boundary conditions for n, p, ϕ.
Our procedures are based on simple arguments involving classical results ([6,

17]) which are well-known although in themselves far from simple. As presented,
the results are given for Ω ⊂ R3 – the physically interesting case. We conjecture
that similar results hold for Ω ⊂ RN , N 6= 3.
As a final observation, note that as mentioned above, we do not make use of the

Einstein Relations connecting Dn, Dp and µn, µp as we shall have no need of them.
It follows that the results also hold if the system does not admit “ quasi-Fermi ”
variables.
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II. Analysis

Based on the model system considered in the Introduction, we introduce the
following equations:

−∆ϕ = f
(
x, t, p − n, h(p, n)

)
(1)

∂n

∂t
−∇[Dn(x, t, n, p, |∇ϕ|)∇n − nµn

(
x, t, n, p, |∇ϕ|

)
∇ϕ]

= 1− h(p, n)− n[1 + h(p, n)] +Rn(x, t, n, p) (2)

∂p

∂t
−∇
[
Dp(x, t, n, p, |∇ϕ|)∇p + pµp

(
x, t, n, p, |∇ϕ|

)
∇ϕ
]

= 1 + h(p, n)− p[1− h(p, n)] +Rp(x, t, n, p) (3)

with

h(p, n) =

∫ t
0

(p− n)e−
∫ t
ξ
(n+p+2)dηdξ .

We keep the initial/boundary conditions given on (n, p, ϕ) in the introduction as
well as the requirement that Dn,Dp, µn, µp, Rn, Rp be smooth functions of their
respective arguments (at least for n, p ≥ 0). We now introduce the following
growth conditions on Ω× (0, T ), which may depend on T .
(A) There exist positive constants α, β such that

α ≤ Dn(x, t, n, p, |∇ϕ|), Dp(x, t, n, p, |∇ϕ|) ≤ β

(B) Rn(x, t, n, p) = Rn,1(x, t, n, p) − nRn,2(x, t, n, p) with Rn,1, Rn,2 nonnegative,
bounded, smooth if n, p ≥ 0. We assume that Rp admits a similar decomposition
into Rp,1 − pRp,2 with and Rp,1, Rp,2 nonnegative, bounded, smooth.

(C) µn = µn,1 + µn,2, with µn,1 a positive constant and µn,2 = µn,2
(
x, t, n, p, |∇ϕ|

)
such that |µn,2∇ϕ| ≤ an for some positive constants an if

(
x, t
)
are bounded.

Similarly, µp = µp,1 + µp,2 with 0 < µp,1 constant and |µp,2∇ϕ| ≤ ap.
(D) There exist positive smooth functions M1,M2 of (x, t) such that∣∣f(x, t, ξ1, ξ2)−M1|ξ1|α2 sign ξ1∣∣ ≤M2

for some α2 ≥ 1 and all (x, t) ∈ Ω× [0, T ], 0 ≤ ξ2 ≤ 1.
Observe that system (1)–(3) with conditions (A – D) includes both the standard

Drift-Diffusion model and the amorphous silicon model.
We choose and fix a parameter τ with 3 < τ < 4, set QT = Ω× (0, T ) and recall

Ω ⊂ R3. We observe the following results

Lemma 0.
(a) Let −∆u(x) = f1(x) in Ω, with f1 ∈ Lτ (Ω). If u = u(x) ∈ C1 in ΓD,

∂u
∂n
= 0

on ΓN then u ∈ H1,τ (Ω) and

‖∇u‖Lτ (Ω) ≤ C
[
‖f1‖Lτ (Ω) + ‖u‖C1(Ω)

]
(b) Let v be a generalized solution of

vt −∇[w∇v + ~δv] +mv = f2 (4)
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with 0 < α < w(x, t) < β (α, β constants) and |~δ|2, m, f2 in Lq,r(QT ) for some
q ∈ (n2 , ∞], r ∈ (1,∞],

1
r
+ n
2q < 1. Suppose v satisfies the initial/boundary

conditions: v = v(x) ∈ C1 on {ΓD × (0, T )}∪
{
Ω×{0}

}
, ∂v
∂~ν
= 0 on ΓN × (0, T )

and v is bounded in L2(QT ). Then there exists an α0 > 0 (independent of v)
such that v ∈ Cα0,α0/2(QT ).

(c) If v solves (4) with the given initial/boundary conditions and ‖v‖L2(Ω)(t) is
bounded, then v is globally bounded in L∞.

Proof. Part (a) is immediate from the results of Shamir, [13].
Part (b) follows from e.g. [6, Theorem 10.1, p. 205] (see also [1]) and a reflection

process to establish the needed regularity on ΓN ∩ΓD, [7], [16], and Part (c) follows
from [6, p. 192]. More explicitly, let v satisfy (4) and suppose first that Ω0 ⊂⊂ Ω.
Then for Ω0 Parts (b), (c) are found explicitly in [6]. Next, if P ∈ ΓN then
we map a neighborhood N of P by a bi-Lipschitz map L to a sphere S with
L(ΓN ∩ N ) ⊂ {x | x3 = 0}, L(P ) = 0 and L(Ω ∩ N ) ⊂ {x | x3 > 0}. We extend
v as an even function to the whole of S and the coefficients as in [14], [16] so
that the extended function v̂ satisfies (the extended) (4) in S. We can now use
the interior/initial results to conclude first that v̂ is bounded in L∞ and then that
v̂ ∈ Cα0,α0/2 in a neighborhood of 0 × [0, T ]. Applying L−1 then shows the result
for N . If P ∈ ΓN ∩ ΓD then the process is the same except now L(Ω ∩ N ) ⊂ {x |
x2 > 0, x3 > 0}, L(ΓN ∩ N} ⊂ {x | x2 = 0}, L(ΓD ∩ N ) ⊂ {x | x3 = 0}. We first
extend v as an even function to the upper hemisphere and then apply the Dirichlet
problem results. The results for P on the Dirichlet Boundary are in [6].
In summary, for each P ∈ Ω, there exists a neighborhood M such that u ∈

Cα0,α0/2(M× [0, T ]) and thus u ∈ Cα0,α0/2(QT ) by boundary regularity. The same
arguments also show Part (c).

Theorem 1. There exist α1 > 0 and K > 0 such that all solutions of (1 – 3) in
Cα,α/2(QT ) with 0 < α < α1 and n, p ≥ 0 actually satisfy

‖n‖Cα1,α1/2 + ‖p‖Cα1,α1/2 + ‖ϕ‖Cα1,α1/2 ≤ K.

Proof. Let (n, p, ϕ) represent a solution in Cα,α/2 for some α > 0. First note that

∂h

∂t
+ (n+ p+ 2)h = p− n.

Since p, n are assumed nonnegative and h(x, 0) = 0, we immediately conclude that
|h| ≤ 1. We next show that p, n are bounded in Lξ(Lξ) for some large ξ. Assume
without loss of generality that µn,1 = µp,1 = µ1. Otherwise we multiply the “n
equation” in procedures that follow by

µp,1
µn,1

and repeat.

Put E = max [‖n + p‖L∞ , 1] and let n = Ew, p = Ez in equations (1 – 3). We
then have 0 < w, z < 1 on ΓD and equations (1 - 3) yield

−∆ϕ = f
(
x, t, E(z − w), h(p, n)

)
(5)

∂w

∂t
−∇[Dn∇w − wµn∇ϕ] ≤

Rn,1 + 2

E
(6)

∂z

∂t
−∇[Dp∇z + zµp∇ϕ] ≤

Rp,1 + 2

E
. (7)
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Let g(1) = (g− 1)+ for any function g, C denote an arbitrary constant and use the
Steklov average of [(w(1))]θ, [(z(1)]θ as test functions in equations (6), (7) respec-
tively for some θ > 1. Since n, p are assumed of class Cα,α/2, these are suitable
test functions. We find from assumptions (A), (B), (C) that:

1

(θ + 1)

∫
Ω

[w(1)]θ+1
∣∣∣∣t2
t1

+
4θ

(θ + 1)2

∫ t2
t1

∫
Ω

α
∣∣∣∇([w(1)] θ+12 ) ∣∣∣2

−

∫ t2
t1

∫
Ω

anθ{[w
(1)]θ + [w(1)]θ−1}|∇w(1)|

−

∫ t2
t1

∫
Ω

µ1θ[(w
(1))θ + (w(1))θ−1]∇ϕ∇w(1)

≤

∫ t2
t1

∫
Ω

C

E
(w(1))θ.

We repeat with equation (7) and add to obtain

1

(θ + 1)

∫
Ω

{
(w(1))θ+1 + (z(1))θ+1

}∣∣∣t2
t1

+
4θ

(θ + 1)2

∫ t2
t1

∫
Ω

α
{∣∣∇([w(1)] θ+12 )∣∣2 + ∣∣∇([z(1)] θ+12 )∣∣2}

−

∫ t2
t1

∫
Ω

θ(an + bn)
[
{[w(1)]θ + [w(1)]θ−1}|∇w(1)|+ {[z(1)]θ + [z(1)]θ−1}|∇z(1)|

]
−

∫ t2
t1

∫
Ω

µ1θ∇ϕ∇

[
(w(1))θ+1

θ + 1
+
(w(1))θ

θ
−
(z(1))θ+1

θ + 1
−
(z(1))θ

θ

]

≤

∫ t2
t1

∫
Ω

C

E
[(w(1))θ + (z(1))θ]. (8)

Let I1, I2, I3, I4 denote the four integrals on the left hand side of (8). I3, I4 can
be estimated by elementary means as follows. The first part of I3 can be estimated
by

θan

∫ t2
t1

∫
Ω

{[w(1)]θ + [w(1)]θ−1}|∇w(1)|

≤
2θan
θ + 1

∫ t2
t1

∫
Ω

{[w(1)]
θ+1
2 + [w(1)]

θ−1
2 }
∣∣∇[(w(1)) θ+12 ]∣∣

≤
2θan
θ + 1

[
1

2ε

∫ t2
t1

∫
Ω

{[w(1)])θ+1 + [w(1)]θ−1}+
ε

2

∫ t2
t1

∫
Ω

∣∣∇[(w(1)) θ+12 ]∣∣2].
If we choose ε small enough (depending on an, α, θ) then the second integral on the
right hand side has coefficient smaller than the corresponding term in I2. Observe
that if α

an(θ+1)
is big enough, then we can also employ to advantage the estimate

∫
Ω

(w(1))θ+1 ≤
1

ρ1

∫
Ω

∣∣∇[(w(1)) θ+12 ]∣∣2
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where ρ1 denotes the least eigenvalue of −∆ with mixed boundary conditions.
While this comment is irrelevant here, it is useful both for the existence of steady
state solutions and of an absorbing set. The second part of I3 is treated identically,
with z replacing w. Next:

−I4 =

∫ t2
t1

∫
Ω

µ1θ

{
−
(w(1))θ+1

θ + 1
−
(w(1))θ

θ
+
(z(1))θ+1

θ + 1
+
(z(1))θ

θ

}
f
(
x, t, E(z−w), h

)

Without loss of generality, at any given point (x, t) we may first assume z(1) > w(1)

with z(1) > 0 and also note that (z −w)α2 ≥ (z(1) −w(1))α2 and recall α2 ≥ 1. We
then have from (5)

1

θ + 1
[(z(1))θ+1 − (w(1))θ+1][M1E

α2(z(1) −w(1))α2 −M2]

≥
1

θ + 1
[(z(1))θ+1 − (w(1))θ+1][M1E

α2(z(1) − w(1))− (M2 +M1E
α2)]

≥ −
1

θ + 1

[(z(1))θ+1 − (w(1))θ+1]

(z(1) − w(1))

(M1E
α2 +M2)

2

4M1Eα2

≥ −
(M1E

α2 +M2)
2

4M1Eα2
[(z(1))θ + (w(1))θ].

An identical estimate, with θ replaced by θ − 1, holds for the other two terms in
the integrand of I4 and for the points where w

(1) > z(1). Thus:

−I4 ≥ −C

∫ t2
t1

∫
Ω

{(z(1))θ + (w(1))θ + (z(1))θ−1 + (w(1))θ−1}

with a calculable constant C. In summary, setting s = (w(1))
θ+1
2 and r = (z(1))

θ+1
2 ,

we obtain from equation (8):

∫
Ω

(s2 + r2)
∣∣∣t2
t1
+ c0

∫ t2
t1

∫
Ω

[|∇s|2 + |∇r|2] ≤ c1

∫ t2
t1

∫
Ω

(s2 + r2) + c2

with calculable positive constants c0, c1, c2. We thus have that (z
(1))(θ+1)/2 and

(w(1))(θ+1)/2 are bounded in C(L2) ∩ L2(H1,2) and thus, see e.g. [6], wθ+1, zθ+1

are bounded in L10/3(L10/3), i.e., n, p are bounded in Lξ(Lξ) for any large chosen
ξ. In particular, f is bounded in Lξ(Lξ) and thus |∇ϕ| is bounded in Lξ(Lτ ) for
ξ large, where we recall 3 < τ < 4. We now employ [6] and Lemma 0 to conclude
that n, p (and thus ϕ) are bounded in Cα1,α1/2 with α1 and bound independent of
n, p.
It is useful to embed (1 – 3) and the associated boundary/initial conditions in

the following system:

−∆ϕ = λf(x, t, p− n, h(p+, n+)) (9)

∂n

∂t
−∇[Dn∇n− nµn∇ϕ] = λ{1− h(p

+, n+)− n+[1 + h(p+, n+)] + R̃n} (10)

∂p

∂t
−∇[Dp∇p+ pµp∇ϕ] = λ{1 + h(p

+, n+)− p+[1− h(p+, n+)] + R̃p} (11)
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with boundary/initial Dirichlet conditions

ϕ = λϕ, n = λn, p = λ p on ΓD; n = λn, p = λp at t = 0 (12)

and R̂n = Rn(x, t, n
+, p+), R̂p = Rp(x, t, n

+, p+). Observe that for λ = 1 and
n, p ≥ 0, this reduces to the original problem, and the solutions n, p must be
nonnegative by the weak maximum principle and equation (9).

Theorem 2. There exists a Cα,α/2 solution (n, p, ϕ) of system (1,3) with the as-
sociated boundary/initial conditions for some α > 0 independent of (n, p, ϕ), with
(n, p) nonnegative. If Dn, Dp, µn, µp are only functions of (x, t), the solution is
unique.

Proof. We transform (9)–(12) into an operator equation in the usual way. Let
(λ0, n0, p0) be given with (n0, p0) ∈ Cα,α/2 with α > 0 chosen, evaluate f at this
point and calculate ϕ0 from (9). Evaluate the coefficients Dn, Dp, µn, µp, h,
boundary/initial conditions and the right hand sides of (10), (11) at (λ0, n0, p0, ϕ0)
and solve the now linear equations to obtain the new (n, p). We may express this
process in the form:

λ = λ0

ϕ = λT0(n0, p0)

(n, p) = T1(n0, p0, T0(n0, p0), λ).

Observe that T1 : C
α,α/2 × [0, 1] → Cα1,α1/2 whence if we choose some α < α1 we

have compactness, since Cα1,α1/2 ⊂⊂ Cα,α/2 and the earlier estimates of Theorem 1
still hold (indeed the presence of λ helps as 0 ≤ λ ≤ 1). Finally, that T1 is
continuous can be seen from lengthy but routine arguments. Note in particular that
the compactness of T1 implies that continuity need only be shown C

α,α/2× [0, 1]→
L2 and that the coefficients Dn, µn, Dp, µp are assumed bounded and thus the
Lebesgue Convergence Theorem can be applied, much as for example, was done
in [2]. Once again the framework of Cα,α/2 spaces makes this process easier. The
existence of a solution is then immediate by the Leray-Schauder Degree using λ as a
homotopy parameter, [17]. The uniqueness of (n, p, ϕ) under the extra assumption
on Dn, Dp, µn, µp, is immediate from Gronwall’s Lemma (see once again, e.g.,
[2]), since if we let (n, p, ϕ) and (n̂, p̂, ϕ̂) denote two solutions we then observe the
estimate:

|h(n, p)− h(n̂, p̂)| =

∣∣∣∣
∫ t
0

((p− p̂)− (n − n̂))e−
∫ t
ξ
(p+n+2)dξ

+

∫ t
0

(p̂− n̂)

[
e−
∫
t
ξ
(p+n+2) − e−

∫
t
ξ
(p̂+n̂+2)

]∣∣∣∣
≤ [C0 + C1(n, p, n̂, p̂)t]

∫ t
0

|p− p̂|+ |n− n̂|

for some constant C0. Choose T and let 0 ≤ t ≤ t1 < T . In view of the assumed
regularity of the coefficient functions and employing the equations solved by ϕ, ϕ̂,
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we have

1

2

∫
Ω

{(n− n̂)2 + (p− p̂)2}
∣∣∣
t1
− C2

∫ t1
0

∫
Ω

{(n− n̂)2 + (p− p̂)2}

≤

∫
Ω

C3

[ ∫ t1
0

(|n− n̂|+ |p − p̂|)

(∫ t
0

|n− n̂|+ |p− p̂|

)
dt

]

≤ C4

∫ t1
0

∫
Ω

{|n − n̂|2 + |p− p̂|2}

with the constants Ci depending on n, p, n̂, p̂, T . We then have n ≡ n̂ and p ≡ p̂
for t < T and thus for all t.

III. Global Results

In the earlier section, we cannot exclude the possibility that n, p→∞ as t→∞.
However, it is easy to give conditions which ensure global boundedness and the
existence of steady state solutions. Indeed, we need only show the local boundedness
of (n, p) in Lξ (Lξ) for large ξ. After that, classical results (see again [6]) will ensure
the conclusion. Observe in this regard that if an + bn are sufficiently small then
from simple modifications of the proof of Theorem 1, as mentioned above, it follows
that we can estimate all of the “negative” integrals in (8) in terms of the positive
ones and by repeating obtain the estimate

∫
Ω

[nθ + pθ]
∣∣
t
≤ C0

for some C0 > 0. Obviously a similar estimate holds for ‖n‖L∞ + ‖p‖L∞ . Further-
more a similar proof shows that in this case there exists at least one steady state
solution n̂, p̂, ϕ̂ in Cα1,α1/2(Ω), with h = p−n

n+p+2 ,

Absorbing set considerations can also be based in this case directly on the proof
of Theorem 1. Indeed, choose E = sup

{
‖n + p‖L∞(∂ΩD), 1

}
. We then repeat and

find that there exist a K, t0 such that for t ≥ t0 we have ‖n+ p‖L∞ ≤ K, where K
depends only on ‖n+ p‖L∞(∂ΩD) and t0 on ‖n+ p‖L∞(Ω). Some idea of the precise
nature of the bounds K and t0 can be obtained by following the various proofs
in [6], [13] and Theorem 1. In general, however, precise estimates seem extremely
difficult to obtain due to the difficulty in estimating the various constants.

References

[1] E. DiBendetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993.

[2] W. Fang and K. Ito, Global solutions of the time-dependent drift-diffusion semiconductor

equations, J. Differential Equations 123 (1995), 523–566.

[3] J. Furlan, Charge carrier dynamic nonequilibrium in amorphous semiconductors, IEEE

Transactions on Electron Devices 39(2) (1992), 448–450.
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HÖLDER SOLUTIONS FOR THE AMORPHOUS SILICON SYSTEM 9

[7] G. Lieberman, Intermediate Schauder theory for second order parabolic equations IV: time

irregularity and regularity, Diff. Int. Eq. 5 (1992), 1219–1236.

[8] J. R. F. McMacken and S. G. Chamberlain, “A numerical model for two-dimensional tran-

sient simulation of amorphous silicon thin-film transistors’, IEEE Transactions on Computer

Aided Design 11(5) (1992), 629–637.

[9] P. Markowich, The Stationary Semiconductor Equations, Springer-Verlag, New York, 1986.

[10] P. Markowich, C. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer-Verlag,

New York, 1986.

[11] M. Murthy and G. Stampacchia, A variational inequality with mixed boundary conditions,

Israel J. Math. 13 (1972), 189–224.

[12] S. Selberher, Analysis and Simulation of Semiconductor Devices, Springer-Verlag, New York,
1984.

[13] E. Shamir, Regularization of mixed second order boundary value problems, Israel J. Math. 8

(1968), 151–168.

[14] G. M. Troianiello, Elliptic Differential Equations and Obstacle Problems, Plenum Press,

New York, 1987.

[15] H. Beirao da Veiga, Remarks on the flow of holes and electrons in crystalline semiconduc-

tors, Navier-Stokes Equations and Related Nonlinear Problems (A. Sequeira, ed.), Plenum,

New York, 1995, pp. 291-306.

[16] H. Xie, L2,µ-estimate to the mixed boundary value problem for second order elliptic equations

and applications in thermistor problems, Nonl. Anal. TMA 24, 9–28.

[17] E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. I, Springer-Verlag,
New York, 1986.

Walter Allegretto

Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta,

Canada T6G 2G1

E-mail address: retl@retl.math.ualberta.ca

Yanping Lin

Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta,

Canada T6G 2G1

E-mail address: ylin@hilbert.math.ualberta.ca

Aihui Zhou

Institute of Systems Science, Academia Sinica, Beijing 100080, China

E-mail address: azhou@bamboo.iss.ac.cn


