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PRACTICAL PERSISTENCE FOR DIFFERENTIAL

DELAY MODELS OF POPULATION INTERACTIONS

Yulin Cao & Thomas C. Gard

Abstract. Practical persistence refers to determining specific estimates in terms of

model data for the asymptotic distance to the boundary of the feasible region for

uniformly persistent population interaction models. In this paper we illustrate prac-

tical persistence by computing, using multiple Liapunov functions, such estimates for

a few basic examples of competition and predator-prey type which may include time

delays in the net per capita growth rates.

1. Introduction

Uniform persistence for the Kolmogorov type models of population interactions

ẋi = xifi(x) (i = 1, . . . , n) (1.1)

means that solutions x = x(t) of (1.1) which are initially component-wise positive
are asymptotically uniformly component-wise positive: there are positive numbers
δi such that if x = x(t) = {xi(t)} is any solution of (1.1) with xi(0) > 0, i = 1, . . . , n,
then

lim inf
t→+∞

xi(t) > δi. (1.2)

In (1.1), xi(t) represents the population (density) of the i-th species at time t with
its (total) net rate of growth given by (1.1). Persistence for (1.1) corresponds to
mutual survival for the species represented in the model. Generally one expects
populations also to be bounded. More precisely, if also (1.1) is (point) dissipative,
i. e., if there are constants Mi > 0 such that

lim sup
t→+∞

xi(t) < Mi, (1.3)

then (1.1) is said to exhibit permanence. Uniform persistence (or permanence) has
emerged as an important stability concept for population dynamics models (see
Waltman [15], for example). More generally, permanence indicates that a sustained
level of complexity is maintained in (1.1) in that at least the dimension of the
system is preserved for arbitrarily large time. The discussion of persistence has been
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extended to differential equations in infinite dimensional spaces including partial
differential equations and functional differential equations (Hale and Waltman [11],
Hutson and Schmitt [13]). The latter may involve time delays which represent the
extent of dependence on the past for solutions. Delays can be discrete type τj

ẋi(t) = xi(t)fi(x(t), x(t − τ1), . . . , x(t− τm)) (i = 1, . . . , n) (1.4a)

or continuous delays

ẋi(t) =

m∑
j=1

∫ 0
−τj

Fij(x(t), x(t + s), t, t+ s) kij(s) ds (i = 1, . . . , n) (1.4b)

where the kij are distributions on the interval (−τ, 0], τ = max τj . Also, as (1.4b)
suggests, non-autonomous systems can be addressed. For (1.4), initial conditions
are functions φ defined on the interval (−τ, 0]:

x(t) = φ(t), t ∈ (−τ, 0] (1.5)

and solutions are naturally considered as mappings on an appropriate function
space Y ((−τ, 0])

x = xt ∈ Y : xt(θ) = x(t+ θ), t ∈ (−τ, 0]. (1.6)

To obtain persistence, two techniques have been employed: boundary-flow analysis
and construction of Liapunov functions. Here, the Liapunov functions are defined
somewhat differently from the classical definition in the equilibrium stability set-
ting. Sometimes referred to as an “average” Liapunov function (see [13] and the
references therein) or a “persistence” function ([8]), this type of auxiliary function
indicates that the boundary of the (persisting) set repels the flow defined by the dif-
ferential equation inside the set. Generally such a function is defined (and smooth)
in a neighborhood of the boundary, and, in the particular, it is continuous from
inside the set at the boundary. For multi-species population interactions models
(1.1), the basic choice for the function is

V (x) =

n∏
i=1

xrii (1.7)

where x = (x1, . . . , xn), and r1, . . . , rn are positive constants, and the set is the
usual positive cone in Rn

Rn+ = {x = (x1, . . . , xn) : xi > 0, i = 1, . . . , n}.

In the approach which we take, the single function V is replaced by a number of
functions which we call multiple Liapunov or net functions and which satisfy less
restrictive conditions than above. The Liapunov function method, especially the
variation involving multiple Liapunov or net functions, allows determining practical
persistence ([4], [5]). Practical persistence (permanence) refers to obtaining specific
estimates for δi (and Mi) in terms of the model data

δi = δi(f) (and Mi =Mi(f)) (1.8)
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such as, for example, in the case of simple food chains, in [7]. Such estimates can
give indications whether persistence (and dissipativity) are really meaningful for the
model. There seems to be some recent interest in extending the idea of practical
persistence to PDE ([1], [2]) and discrete population interaction models ([12]). The
main point of this paper is to illustrate practical persistence as simply as possible
by calculating the δ’s and M ’s for some elementary 2-species models with explicit
self-limitation in each species and with or without a single discrete time delay. We
include a specific numerical example - a Lotka-Volterra competition model with
time delay τ . The model is globally stable for all τ ≥ 0, and so an ideal estimate
for practical persistence in this case should involve specifying a small region in the
positive quadrant containing the stable equilibrium. The figure summarizing our
treatment of this example indicates how well we can achieve this using a pair of
simple Liapunov functions.

Generally, in the infinite dimensional case, the Liapunov approach (see Freed-
man and Ruan[6], Hutson and Schmitt [13] and Lakshmikantham and Matrosov
[14]) has amounted to constructing (average) Liapunov functionals on Y , or using
the Liapunov-Razumikhin technique ([10]) with Liapunov functions defined on the
range space X (the positive cone Rn+ in R

n) for functions in Y . In this setting, if
∂X denotes the boundary of X, uniform persistence means that there is a δ > 0
such that if x(t) is any solution with x(0) ∈ X\∂X, then

lim inf
t→+∞

d(x(t), ∂X) > δ (1.9)

where d is the distance function in X. Here we construct a set of multiple Liapunov
functions

{V1, . . . , Vp}

which are defined on possibly only a subset X0 of X. If a dissipative type property
like (1.3) holds, a natural choice forX0 is generally suggested by the correspondingly
bounded elements of X. The main advantage of the multiple Liapunov function
approach is that the requirements are parceled out to several functions on different
portions of the set X0, rather than a single Liapunov function (or even a vector
Liapunov function) on the whole space X. Another way of looking at this scenario
is that a possibly complicated Liapunov function is being assembled piecemeal. Our
idea for this approach was originally motivated by the paper of Wendi Wang and Ma
Zhien [16]; indeed, our work ([3], [4], [5]) on this problem amounts to a sequence of
generalizations and applications of the main result in [16]. This approach amounts
to constructing a partition {X1, . . . ,Xp+1} of X (or any subset X0 of X which is
the ultimate residence of all solution trajectories) with the property that

dist (Xp+1, ∂X) > 0. (1.10)

The sets Xk in the partition are determined by the functions Vk and these sets
are ordered by increasing time on trajectories: for k < p+ 1, trajectories in Xk at
some time must leave Xk in finite time and cannot move into Xj for any j < k at
any future time; consequently, ultimately all trajectories lie in Xp+1. In the next
section we give a concise summary of our basic results on uniform persistence and
practical persistence for differential delay equation models of population interac-
tions. For simplicity and clarity we specialize our results to 2-species interactions
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here. In section 3 we give a result which determines specific dissipative bounds for
2-species models with explicit self-limitation in each species and with or without a
single discrete time delay. We then discuss a numerical example - a Lotka-Volterra
competition model - to illustrate our practical persistence result.

2. Persistence via multiple Liapunov functions

We consider two-dimensional Kolmogorov type systems with time delay

ẋ(t) = x(t)f(x(t), y(t), x(t − τ), y(t− τ))

ẏ(t) = y(t)g(x(t), y(t), x(t − τ), y(t− τ)).
(2.1)

In (2.1), the functions f and g are continuous functions defined on R
4

+, the usual
4− d non-negative cone. The result below is essentially a special case of the main
result appearing in [4]. Here we give a self-contained complete proof of the result
using two Liapunov functions.

Theorem 2.1. Suppose that:

(i) System (2.1) is dissipative with bounds M1 and M2.

(ii) There are positive constants α and β such that

f(0, y0, 0, y1)− αg(0, y0, 0, y1) > 0, all y0, y1 ∈ [0,M2] (2.2)

and either

βf(x0, 0, x1, 0) + g(x0, 0, x1, 0) > 0, all x0, x1 ∈ [0,M1] (2.3)

or

−βf(x0, 0, x1, 0) + g(x0, 0, x1, 0) > 0, all x0, x1 ∈ [0,M1] (2.4)

provided αβ < 1.

Then (2.1) is uniformly persistent (and hence permanent).

Proof of Theorem 2.1. With M1 and M2 as above, we denote

X0 = (0,M1]× (0,M2].

We will need the following constants to obtain a more precise version of (ii):

P1 = min{f(x0, y0, x1, y1) : ((x0, y0), (x1, y1)) ∈ X0 ×X0}

P2 = min{g(x0, y0, x1, y1) : ((x0, y0), (x1, y1)) ∈ X0 ×X0}.
(2.5)

P1 and P2 are finite by continuity of f and g. The dissipative property means that
for any positive solution (x(t), y(t)) of (2.1), there is a t0 > 0 such that

(x(t), y(t)) ∈ X0 for all t > t0. (2.6)
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If (x(t), y(t)) is a solution of (2.1) satisfying (x(t), y(t)) ∈ X0 for all t ≥ t∗0 − 2τ for
some t∗0 > 0, then for any such t and 0 < ν < M1

x(t) ≤ ν implies x(t− τ) ≤ νe−P1τ . (2.7)

This follows because the integrated version of (2.1) on the interval [t− τ, t] gives

x(t) = x(t− τ) exp

∫ t
t−τ
f(x(s), y(s), x(s − τ), y(s− τ))ds ≥ x(t− τ)eP1τ

for t ≥ t∗0. If ν
∗ = νeP1τ , then (2.7) becomes

x(t) ≤ ν∗ ⇒ x(t− τ) ≤ ν (2.8)

and similarly for y(t). Condition (ii) then implies, for sufficiently small positive
numbers ε1 and ε2, there are positive numbers ν1 < M1 and ν2 < M2 such that

f(x0, y0, x1, y1)− αg(x0, y0, x1, y1) > ε1

for all x0 ∈ [0, ν
∗
1 ], x1 ∈ [0, ν1] and y0, y1 ∈ [0,M2]

and (2.9)

βf(x0, y0, x1, y1) + g(x0, y0, x1, y1) > ε2

for all x0, x1 ∈ [0,M1] and y0 ∈ [0, ν
∗
2 ], y1 ∈ [0, ν2]

where
ν∗1 = ν1e

P1τ and ν∗2 = ν2e
P2τ . (2.10)

The proof of Theorem 2.1 makes use of the two Liapunov functions

V1 = xy
−α V2 = x

βy. (2.11)

One asserts that there are positive constants η1 and η2 such that the sets

X1 = {(x, y) ∈ X0 : V1(x, y) ≤ η1}

X2 = {(x, y) ∈ X0 : V2(x, y) ≤ η2, V1(x, y) > η1} (2.12)

X3 = {(x, y) ∈ X0 : V1(x, y) > η1, V2(x, y) > η2}

partition X0 and structure the eventual location of trajectories (x(t), y(t)) of posi-
tive solutions of (2.1) according to the following scheme. Let t0 be given by (2.6).

(P1) If (x(t), y(t)) ∈ Xj for some t1 > t0 then

(x(t), y(t)) ∈
3
∪
i=j
Xi for all t > t1.

(P2) If (x(t), y(t)) ∈ Xj for some t1 > t0 and j < 3, there is t2 > t1 such that

(x(t2), y(t2)) 6∈ Xj .
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From (P1) and (P2) it follows that there is a t3 such that

(x(t), y(t)) ∈ X3 for all t > t3 (2.13)

which gives uniform persistence. The δ’s in the definition of uniform persistence
are determined from α, β and the η’s as follows:

(x, y) ∈ X3 ⇒ V1 = xy
−α > η1 and V2 = x

βy > η2 (2.14)

from which we obtain

y > η2/M
β
1 = δ2 and x > η1(η2/M

β
1 )
α = δ1 (2.15)

i. e.,
X3 ⊆ (δ1,M1]× (δ2,M2]. (2.16)

It remains to obtain explicit expressions for η1 and η2 in terms of f and g such that
(P1) and (P2) hold. With ν∗1 and ν

∗
2 as in (2.10), we choose

η1 = ν
∗
1/M

α
2 and η2 = (ν

∗
2 )
1+αβηβ1 = (ν

∗
2 )
1+αβ(ν∗1/M

α
2 )
β . (2.17)

Now the first step toward establishing (P1) is to show

X1 ⊆ {x ≤ ν
∗
1} and X2 ⊆ {y ≤ ν

∗
2} (2.18)

with η1 and η2 given in (2.17). We verify the second containment in (2.18):

(x, y) ∈ X2 ⇔ (x, y) ∈ X0 = (0,M1]× (0,M2]

and (2.19)

V2(x, y) = x
βy ≤ η2, V1(x, y) = xy

−α > η1

and from (2.19) it follows that

y ≤ η2/x
β < η2/(y

αη1)
β ⇔ y1+αβ < η2/η

β
1 .

Thus we have

y <
(
η2/η

β
1

)1/(1+αβ)
= ν∗2 .

From (2.18) and (2.9) we conclude that, for any solution (x(t), y(t)) of (2.1) which
is in X1 on the interval [t− τ, t]

V̇1(x(t), y(t)) =
d

dt
V1(x(t), y(t))

= [f(x(t), y(t), x(t − τ),y(t− τ))− αg(x(t), y(t), x(t − τ), y(t− τ))]V1(x(t), y(t))

≥ε1V1(x(t), y(t))
(2.20)

and similarly

V̇2(x(t), y(t)) =
d

dt
V2(x(t), y(t)) ≥ ε2V2(x(t), y(t)) (2.21)
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if the solution (x(t), y(t)) is in X2 on the interval [t− τ, t]. Now if (P1) fails, there
is a T > 0 , an integer k either 2 or 3, and a positive solution (x(t), y(t)) of (2.1)
satisfying (x(T ), y(T )) ∈ Xk and for which

t∗ = inf{t ≥ T : (x(t), y(t)) 6∈
3
∪
i=k
Xi} (2.22)

is a well-defined finite number. Furthermore, by continuity there is a positive integer
k∗ < k such that

(x(t∗), y(t∗)) ∈ Xk and Vk∗((x(t
∗), y(t∗)) = ηk∗ . (2.23)

Since (x(T ), y(T )) 6∈ Xk∗ , t∗ > T . From either (2.20) or (2.21) (depending on
whether k∗ = 1 or 2), Vk∗(x(t), y(t)) is strictly increasing at t = t

∗, and so with
(2.23) we have

Vk∗(x(t), y(t)) < ηk∗ , for 0 < t
∗ − t << 1. (2.24)

However, by definition of t∗ and Xi

Vi(x(t), y(t)) > ηi, for all t ∈ [T, t
∗), i = 1, . . . , k − 1 (2.25)

which contradicts (2.24) since k∗ is one of these i’s. Thus (P1) cannot fail. To
verify (P2), we first note that since X1, X2, and X3 partition X0 and since (2.1)
is dissipative, for any positive solution (x(t), y(t)) of (2.1) there is a T > 0 , an
integer k either 1, 2 or 3, such that

(x(T ), y(T )) ∈ Xk. (2.26)

It follows from (P1) that there is a t0 ≥ T and an integer k0, k ≤ k0 ≤ 3 such that

(x(t), y(t)) ∈ Xk0 , for all t ≥ t0. (2.27)

If k0 6= 3, then from (2.18)-(2.21), we have

d

dt
Vk0(x(t), y(t)) ≥ εk0Vk0(x(t), y(t)), for all t ∈ [t0,∞)

which implies
Vk0(x(t), y(t))→∞ as t→∞

and this contradicts (x(t), y(t)) ∈ Xk0 for all t ≥ t0. Thus (P2) is established. �
For practical persistence we will need specific choices for ν1 and ν2. Since the
magnitudes of ε1 and ε2 are not important, by continuity we can choose ν1 and ν2
as large as possible with the property

f(x0, y0, x1, y1)− αg(x0, y0, x1, y1) > 0

for all x0 ∈ [0, ν
∗
1 ), x1 ∈ [0, ν1) and y0, y1 ∈ [0,M2]

and (2.28)

βf(x0, y0, x1, y1 + g(x0, y0, x1, y1) > 0

for all x0, x1 ∈ [0,M1] and y0 ∈ [0, ν
∗
2 ), y1 ∈ [0, ν2)
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with ν∗1 and ν
∗
2 as in (2.10):

ν∗1 = ν1e
P1τ and ν∗2 = ν2e

P2τ . (2.29)

Then (2.17) gives

η1 = ν
∗
1/M

α
2 and η2 = (ν

∗
2 )
1+αβ(ν∗1/M

α
2 )
β (2.30)

which in turn by (2.15) leads to

δ1 = η1(η2/M
β
1 )
α =

(ν∗1ν
∗α
2 )

1+αβ

Mαβ1 (M
α
2 )
1+αβ

and (2.31)

δ2 = η2/M
β
1 =

ν∗β1 (ν
∗
2 )
1+αβ

Mβ1M
αβ
2

.

If the second case of condition (ii) holds, i. e., (2.4) replaces (2.3), we can use the
two Liapunov functions

V1 = xy
−α V2 = x

−βy (2.32)

In this case

(x, y) ∈ X3 ⇒ V1 = xy
−α > η1 and V2 = x

−βy > η2

implies

y >
(
η2η

β
1

)1/(1−αβ)
= δ2 and x > η1δ

α
2 = δ1, (2.33)

i.e.,
X3 ⊆ (δ1,M1]× (δ2,M2]. (2.34)

Here we require ν1, ν2, ν
∗
1 and ν

∗
2 such that

ν∗1 = ν1e
P1τ and ν∗2 = ν2e

P2τ , (2.35)

f(x0, y0, x1, y1)− αg(x0, y0, x1, y1) > 0

for all x0 ∈ [0, ν
∗
1 ), x1 ∈ [0, ν1) and y0, y1 ∈ [0,M2]

and (2.36)

−βf(x0, y0, x1, y1) + g(x0, y0, x1, y1) > 0

for all x0, x1 ∈ [0,M1] and y0 ∈ [0, ν
∗
2 ), y1 ∈ [0, ν2).

Then with the choices

η1 = ν
∗
1/M

α
2 and η2 = ν

∗
2/M

β
1 (2.37)

we obtain (2.18), and together with (2.33) we have

δ2 =
(
η2η

β
1

)1/(1−αβ)
=

(
ν∗β1 ν

∗
2

Mβ1M
αβ
2

)1/(1−αβ)

and (2.38)

δ1 = η1δ
α
2 = ν

∗
1/M

α
2

(
ν∗β1 ν

∗
2

Mβ1M
αβ
2

)α/(1−αβ)
=

(
ν∗1ν

∗α
2

Mαβ1 M
α
2

)1/(1−αβ)
.

Estimates of practical persistence for (2.1) are provided by (2.31) and (2.38). We
summarize with a more specific version of Theorem 2.1.
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Theorem 2.2. (Practical Persistence) Assume the hypotheses of Theorem 2.1. Let
ν∗1 and ν

∗
2 be determined by (2.28) and (2.29). If (x(t), y(t)) is any positive solution

of (2.1), there is a t∗ > 0 such that

(x(t), y(t)) ∈ [δ1,M1]× [δ2,M2] for all t > t
∗ (2.39)

where δ1 and δ2 are given by (2.31). If condition (2.3) in Theorem 2.1 is replaced
by (2.4) and if ν∗1 and ν

∗
2 are given by (2.35) and (2.36), then (2.39) holds with δ1

and δ2 are given by (2.38).

3. An example - Identical L − V competitors

We consider the Lotka-Volterra model for a pair of identical competitors with time
delay:

ẋ(t) = x(t)

[
1

2
−
2

3
x(t− τ)−

1

3
y(t− τ)

]

ẏ(t) = y(t)

[
1

2
−
1

3
x(t− τ)−

2

3
y(t− τ)

]
.

(3.1)

For any time delay τ ≥ 0
E = (x∗, y∗) = (.5, .5)

is the unique equilibrium for (3.1) in R2+, and it is known (e. g., see [9]) that E is
a globally (relative to R2+) asymptotically stable for all τ ≥ 0. We would like our
practical persistence (permanence) estimates to be as close as possible to the known
attractor E here. First we use the following result from [4] to estimate dissipative
constantsM1 =M2 =M . (For completeness, we include its proof in the appendix.)

Proposition 3.1. Suppose u(t) is a C1 positive function defined on an interval
[t0 − τ,∞) for some t0 ≥ 0 which also satisfies the differential delay inequality

u̇(t) ≤ u(t)[a− bu(t− τ)] (3.2)

where a ≥ 0 and b > 0 are constants. Then

lim sup
t→+∞

u(t) ≤
a

b
eaτ . (3.3)

Since x and y are non-negative (3.1) immediately gives the uncoupled inequality
system with identical components:

ẋ(t) ≤ x(t)

[
1

2
−
2

3
x(t− τ)

]

ẏ(t) ≤ y(t)

[
1

2
−
2

3
y(t− τ)

] (3.4)

and hence from Proposition 3.1

M =M(τ) =M1(τ) =M2(τ) =
1/2

2/3
e(1/2)τ = .75e.5τ . (3.5)
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Positive solutions of (3.1) must eventually reside in the square

X0 = (0,M ]× (0,M ]

and, corresponding to τ = 0, .25, and .5, for example, we have

M = .75, .85 and .97, (3.6)

respectively. Also, by symmetry here, we can take α = β, η1 = η2, ν1 = ν2 = ν,
and P1 = P2 = P . It follows that ν

∗
1 = ν

∗
2 = ν

∗ and δ1 = δ2 = δ. We make use of
the Liapunov functions

V1 = xy
−.5 V2 = x

−.5y (3.7)

to investigate persistence. Our estimate for the attractor is the set

X3 = {(x, y) ∈ X0 : V1(x, y) > η, V2(x, y) > η}

= {x ≤M,y ≤M,V1(x, y) > η, V2(x, y) > η}
(3.8)

where M is given by (3.6) and η is determined below. Toward this end, according
to (2.36), we first need ν (as large as possible) with the property

f(x, y)−
1

2
g(x, y) =

1

4
−
x

2
> 0

for all x ∈ [0, ν) and y ∈ [0,M ]. Thus ν = .5, and we calculate, from (2.35),

ν∗ = νePτ (3.9)

where

P = min{f(x, y) : (x, y) ∈ X0}.

Here

P =
1

2
−
2

3
M −

1

3
M =

1

2
−M = −.25,−.35, and −.47 (3.10)

if τ = 0, .25, and .5, respectively, for example. Thus

ν∗ = νePτ = .5ePτ = .5, .46, .40

for τ = 0, .25, and .5 respectively, and finally we get from (2.37)

η = ν∗/
√
M = .58, .50, .41. (3.11)

Finally, from (2.38)

δ =
(
ν1.5

)1/(.75)
= η2 = .34, .25, .17. (3.12)
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Actually, for any 0 ≤ τ < 1 we have, from (3.6) and (3.9)-(3.12),

δ =
ν2e(1−2M)τ

M
=
(.5)2e(1−1.5e

.5τ )τ

.75e.5τ
≈
(1− τ)

3
.

APPENDIX

Proof of Proposition 3.1. We consider two cases - whether or not u(t) is eventually
monotone. In the first case, if u(t) is eventually non-decreasing, say on the interval
(t1, t2), then u(t) ≤ a/b for t > t1 + τ , because a − bu(t − τ) ≥ 0 for t > t1 from
(3.2). If u(t) is non-increasing on (t1,∞), then

lim
t→+∞

u(t) = u0

is finite. If u0 > a/b, then u(t) > a/b + ε, some ε > 0 and t > some t2 > t1. Thus
for t > t2 + τ, u(t− τ) > a/b+ ε and from (3.2)

u̇(t) ≤ u(t)[a− b(a/b+ ε)] = −b ε u(t).

But this last inequality implies u(t) → 0, as t → ∞, contradicting that u0 > a/b.
We conclude in the monotone case that

lim sup
t→+∞

u(t) ≤
a

b
.
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If u(t) is not eventually monotone, u(t) has a local maximum at each point in a
sequence {tn} ⊆ (t0 + τ,∞) with tn →∞ as n→∞ and

lim sup
t→+∞

u(t) = lim
n→+∞

u(tn).

Since u̇(tn) = 0, (3.2) yields

u(tn − τ) ≤
a

b
.

Certainly (3.2) gives u̇(t) ≤ au(t) for all t > t0. Thus integrating (3.2) on each
interval [tn − τ, tn] and using the previous two inequalities obtains

u(tn) ≤ u(tn − τ)e
aτ ≤

a

b
eaτ ,

and then
lim sup
t→+∞

u(t) = lim
n→+∞

u(tn) ≤
a

b
eaτ

which completes the present proof.
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