Multiple Solutions to a Boundary Value Problem for an n-th Order Nonlinear Difference Equation *

Susan D. Lauer

Abstract

We seek multiple solutions to the n-th order nonlinear difference equation $$
\Delta^{n} x(t)=(-1)^{n-k} f(t, x(t)), \quad t \in[0, T]
$$ satisfying the boundary conditions $$
x(0)=x(1)=\cdots=x(k-1)=x(T+k+1)=\cdots=x(T+n)=0 .
$$

Guo's fixed point theorem is applied multiple times to an operator defined on annular regions in a cone. In addition, the hypotheses invoked to obtain multiple solutions to this problem involves the condition (A) f : $[0, T] \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is continuous in x, as well as one of the following: (B) f is sublinear at 0 and superlinear at ∞, or (C) f is superlinear at 0 and sublinear at ∞.

1 Introduction

Define the operator Δ to be the forward difference

$$
\Delta u(t)=u(t+1)-u(t)
$$

and then for $i \geq 1$ define

$$
\Delta^{i} u(t)=\Delta\left(\Delta^{i-1} u(t)\right)
$$

For $a \leq b$ integers define $[a, b]=\{a, a+1, \ldots, b-1, b\}$. Let the integers $n, T \geq 2$ be given, and choose $k \in\{1,2, \ldots, n-1\}$. Consider the nth order nonlinear difference equation

$$
\begin{equation*}
\Delta^{n} x(t)=(-1)^{n-k} f(t, x(t)), \quad t \in[0, T] \tag{1}
\end{equation*}
$$

satisfying the boundary conditions

$$
\begin{equation*}
x(0)=x(1)=\cdots=x(k-1)=x(T+k+1)=\cdots=x(T+n)=0 . \tag{2}
\end{equation*}
$$

[^0]To simplify the discussion of the desired properties of the function f define the following four functions:

$$
\begin{array}{rlrl}
f_{0, m} & =\lim _{u \rightarrow 0^{+}} \min _{t \in[k, T+k]} \frac{f(t, u)}{u}, & f_{\infty, m}=\lim _{u \rightarrow+\infty} \min _{t \in[k, T+k]} \frac{f(t, u)}{u}, \\
f_{0, M} & =\lim _{u \rightarrow 0^{+}} \max _{t \in[k, T+k]} \frac{f(t, u)}{u}, & \text { and } & f_{\infty, M}
\end{array}=\lim _{u \rightarrow+\infty} \max _{t \in[k, T+k]} \frac{f(t, u)}{u} .
$$

We seek to prove the existence of multiple positive solutions to (1) and (2) where
(A) $f:[0, T] \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is continuous in x, where \mathbb{R}^{+}denotes the nonnegative reals.

We also require that one of the following sublinearity and superlinearity conditions on the function f holds:

$$
\begin{aligned}
& \text { (B) } f_{0, m}=+\infty \quad \text { and } \quad f_{\infty, m}=+\infty, \text { or } \\
& \text { (C) } f_{0, M}=0 \quad \text { and } \quad f_{\infty, M}=0 .
\end{aligned}
$$

We apply Guo's Fixed point theorem, Guo and Lakshmikantham [5], using cone methods to accomplish this. This technique was first applied to differential equations in the landmark paper by Erbe and Wang [4] using Krasnosel'skii's fixed point theorem, Krasnosel'skii [9]. A key to applying this fixed point theorem involves discrete concavity of solutions of the boundary value problem in conjunction with a lower bound on an appropriate Green's function.

This work constitutes a complete generalization of the paper by Eloe, Henderson and Kaufmann [3] which we use extensively. We also utilize techniques from Hartman [6], Merdivenci [11], and Peterson [12]. Extensive use of the results by Eloe [2] concerning a lower bound for the Green's function will be made.

2 Preliminaries

Let $G(t, s)$ be the Green's function for the disconjugate boundary value problem

$$
\begin{equation*}
L x(t) \equiv \Delta^{n} x(t)=0, \quad t \in[0, T] \tag{3}
\end{equation*}
$$

and satisfying (2). The characterization of the Green's function can be found in Kelley and Peterson [8]. We will use $G(t, s)$ as the kernel of an integral operator preserving a cone in a Banach space, the setting for our fixed point theorem.

A closed, non-empty subset \mathcal{P} of a Banach space \mathcal{B} is said to be a cone provided (i) $a u+b v \in \mathcal{P}$ for all $u, v \in \mathcal{P}$ and for all $a, b \geq 0$, and (ii) $u,-u \in \mathcal{P}$ implies $u=0$.

Repeated application of the following fixed point theorem from Guo, Guo and Lakshmikantham [5], will yield two solutions to (1) and (2).

Theorem 2.1 Let \mathcal{B} be a Banach space and $\mathcal{P} \subset \mathcal{B}$ be a cone. Let Ω_{1} and Ω_{2} be two bounded open sets in \mathcal{B} such that $0 \in \Omega_{1} \subset \bar{\Omega}_{1} \subset \Omega_{2}$. Let

$$
\mathcal{H}: \quad \mathcal{P} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow \mathcal{P}
$$

be a completely continuous operator satisfying either
(i) $\|H x\| \leq\|x\|, x \in \mathcal{P} \cap \partial \Omega_{1}$, and $\|H x\| \geq\|x\|, x \in \mathcal{P} \cap \partial \Omega_{2}$, or
(ii) $\|H x\| \geq\|x\|, x \in \mathcal{P} \cap \partial \Omega_{1}$, and $\|H x\| \leq\|x\|, x \in \mathcal{P} \cap \partial \Omega_{2}$.

Then \mathcal{H} has a fixed point in $\mathcal{P} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.
Two applications of 2.1 to the problem (1) and (2) following along the lines of methods incorporated by Eloe, Henderson and Kaufmann [3] will be performed.

Note that $x(t)$ is a solution of (1) and (2) if and only if

$$
x(t)=(-1)^{n-k} \sum_{s=0}^{T} G(t, s) f(s, x(s)), \quad t \in[0, T+n] .
$$

Hartman [6] extensively studied the boundary value problem (1) and (2) with $(-1)^{n-k} f(t, u) \geq 0$. Eloe [2] employed lemmas from Hartman to arrive at the following theorem that gives a lower bound for the solution to the class of boundary value problems studied by Hartman.

Theorem 2.2 Assume that u satisfies the difference inequality $(-1)^{n-k} \Delta^{n} u(t) \geq$ $0, t \in[0, T]$, and the homogeneous boundary conditions, (2). Then for $t \in$ $[k, T+k]$,

$$
(-1)^{n-k} \Delta^{n} u(t) \geq \frac{T!\nu!}{(T+\nu)!}\|u\|
$$

where $\|u\|=\max _{t \in[k, T+k]}|u(t)|$ and $\nu=\max \{k, n-k\}$.

We remark that Agarwal and Wong [1] have recently sharpened the inequality of Theorem 2.2. This sharper inequality is of little consequence for this work.

Eloe also contributed the following corollary.
Corollary 2.3 Let $G(t, s)$ denote the Green's function for the boundary value problem, (3) and (2). Then for all $s \in[0, T], t \in[k, T+k]$,

$$
(-1)^{n-k} \Delta^{n} G(t, s) \geq \frac{T!\nu!}{(T+\nu)!}\|G(\cdot, s)\|,
$$

where $\|G(\cdot, s)\|=\max _{t \in[k, T+k]}|G(t, s)|$ and $\nu=\max \{k, n-k\}$.

To fulfill the hypotheses of Theorem 2.1 let $\mathcal{B}=\{u:[0, T+n] \rightarrow \mathbb{R} \mid$ $u(0)=u(1)=\cdots=u(k-1)=u(T+k+1)=\cdots=u(T+n)=0\}$ with $\|u\|=\max _{t \in[k, T+k]}|u(t)|$. Now $(\mathcal{B},\|\cdot\|)$ is a Banach space.

Let

$$
\begin{equation*}
\sigma=\frac{T!\nu!}{(T+\nu)!} \tag{4}
\end{equation*}
$$

with $\nu=\max \{k, n-k\}$ and define a cone

$$
\mathcal{P}=\left\{u \in \mathcal{B} \mid u(t) \geq 0 \text { on }[0, T+n] \text { and } \min _{t \in[k, T+k]} u(t) \geq \sigma\|u\|\right\} .
$$

3 Main Results

We first seek two solutions to the case when f is sublinear at 0 and superlinear at ∞. Define

$$
\begin{equation*}
\eta=\left(\sum_{s=0}^{T} \| G(\cdot, s \|)^{-1}\right. \tag{5}
\end{equation*}
$$

Theorem 3.1 Assume $f(t, x)$ satisfies conditions (A) and (B). Suppose there exists $p>0$ such that if $0 \leq u(t) \leq p, t \in[0, T]$, then $f(t, u) \leq \eta p$. Then the boundary value problem (1) and (2) has at least two positive solutions $u_{1}, u_{2} \in \mathcal{P}$ satisfying $0 \leq\left\|u_{1}\right\| \leq p \leq\left\|u_{2}\right\|$.
proof Define a summation operator $\mathcal{H}: \mathcal{P} \rightarrow \mathcal{B}$ by

$$
\begin{equation*}
\mathcal{H} x(t)=(-1)^{n-k} \sum_{s=0}^{T} G(t, s) f(s, x(s)), \quad x \in \mathcal{P} \tag{6}
\end{equation*}
$$

Now $\mathcal{H}: \mathcal{P} \rightarrow \mathcal{P}$ and is completely continuous.
Choose $\alpha>0$ such that

$$
\begin{equation*}
\alpha \sigma^{2} \sum_{s=k}^{T}\|G(\cdot, s)\| \geq 1 \tag{7}
\end{equation*}
$$

By the sublinearity of f at 0 there exists $0<r<p$ such that $f(t, u) \geq \alpha u$ for all $0 \leq u \leq r, t \in[0, T+n]$. For $x \in \mathcal{P}$ with $\|x\|=r$

$$
\begin{aligned}
\mathcal{H} x(t) & =(-1)^{n-k} \sum_{s=0}^{T} G(t, s) f(s, x(s)) \\
& \geq \sigma \sum_{s=0}^{T}\|G(\cdot, s)\| f(s, x(s)) \\
& \geq \alpha \sigma \sum_{s=0}^{T}\|G(\cdot, s)\| x(s)
\end{aligned}
$$

$$
\begin{aligned}
& \geq \alpha \sigma^{2} \sum_{s=k}^{T}\|G(\cdot, s)\|\|x\| \\
& \geq\|x\|, \quad t \in[k, T+k] .
\end{aligned}
$$

Therefore $\|\mathcal{H} x\| \geq\|x\|$. Hence if we set

$$
\Omega_{1}=\{u \in \mathcal{B} \mid\|u\|<r\}
$$

then

$$
\begin{equation*}
\|\mathcal{H} x\| \geq\|x\|, \text { for all } x \in \mathcal{P} \cap \partial \Omega_{1} . \tag{8}
\end{equation*}
$$

Now for $x \in \mathcal{P}$ with $\|x\|=p$,

$$
\begin{aligned}
\mathcal{H} x(t) & =(-1)^{n-k} \sum_{s=0}^{T} G(t, s) f(s, x(s)) \\
& \leq \sum_{s=0}^{T}\|G(\cdot, s)\| f(s, x(s)) \\
& \leq \sum_{s=0}^{T}\|G(\cdot, s)\| \eta p \leq p=\|x\|, \quad t \in[0, T+k] .
\end{aligned}
$$

Now if we take

$$
\Omega_{2}=\{u \in \mathcal{B} \mid\|u\|<p\}
$$

then

$$
\begin{equation*}
\|\mathcal{H} x\| \leq\|x\|, \text { for all } x \in \mathcal{P} \cap \partial \Omega_{2} \tag{9}
\end{equation*}
$$

Thus with (8) and (9), we have shown that \mathcal{H} satisfies the hypotheses to Theorem 2.1(ii). This yields a fixed point u_{1} of \mathcal{H} belonging to $\mathcal{P} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$. This fixed point is a solution of (1) and (2) satisfying $r \leq\left\|u_{1}\right\| \leq p$.

Next, choose $\omega>0$ such that

$$
\begin{equation*}
\omega \sigma^{2} \sum_{s=k}^{T}\|G(\cdot, s)\| \geq 1 \tag{10}
\end{equation*}
$$

By the superlinearity of f at infinity there exists $R_{1}>0$ such that $f(t, u) \geq \omega u$ for all $u \geq R_{1}, t \in[0, T+n]$. Let $R=\max \left\{2 p, R_{1}\right\}$. Now for $x \in \mathcal{P}$ with $\|x\|=R$

$$
\begin{aligned}
\mathcal{H} x(t) & =(-1)^{n-k} \sum_{s=0}^{T} G(t, s) f(s, x(s)) \\
& \geq \sigma \sum_{s=0}^{T}\|G(\cdot, s)\| f(s, x(s)) \\
& \geq \omega \sigma \sum_{s=0}^{T}\|G(\cdot, s)\| x(s)
\end{aligned}
$$

$$
\begin{aligned}
& \geq \omega \sigma^{2} \sum_{s=k}^{T}\|G(\cdot, s)\|\|x\| \\
& \geq\|x\|, \quad t \in[k, T+k]
\end{aligned}
$$

Therefore $\|\mathcal{H} x\| \geq\|x\|$. Hence if we set

$$
\Omega_{3}=\{u \in \mathcal{B} \mid\|u\|<R\}
$$

then

$$
\begin{equation*}
\|\mathcal{H} x\| \geq\|x\|, \text { for all } x \in \mathcal{P} \cap \partial \Omega_{3} \tag{11}
\end{equation*}
$$

Thus with (9) and (11), we have shown that \mathcal{H} satisfies the hypotheses to Theorem 2.1(i). This yields a fixed point u_{2} of \mathcal{H} belonging to $\mathcal{P} \cap\left(\bar{\Omega}_{3} \backslash \Omega_{2}\right)$. This fixed point is a solution of (1) and (2) satisfying $p \leq\left\|u_{2}\right\| \leq R$.

Therefore, the boundary value problem (1) and (2) has at least two positive solutions $u_{1}, u_{2} \in \mathcal{P}$ such that $0 \leq\left\|u_{1}\right\| \leq p \leq\left\|u_{2}\right\|$.

We now seek two solutions for the case when f is superlinear at 0 and sublinear at ∞.

Theorem 3.2 Assume $f(t, x)$ satisfies conditions (A) and (C). Suppose there exists $q>0$ such that if $\sigma q \leq u(t) \leq q, t \in[k, T+k]$, then $f(t, u) \geq \tau q$, where

$$
\begin{equation*}
\tau=\left(\sigma \sum_{s=k}^{T}\|G(\cdot, s)\|\right)^{-1} \tag{12}
\end{equation*}
$$

Then the boundary value problem (1) and (2) has at least two positive solutions $u_{1}, u_{2} \in \mathcal{P}$ such that $0 \leq\left\|u_{1}\right\| \leq q \leq\left\|u_{2}\right\|$.
proof Define the summation operator as in (6) and define η as in (5). By the superlinearity of f at 0 there exists $0<r<q$ such that $f(t, u) \leq \eta u$ for all $0 \leq u \leq r, t \in[0, T]$. For $x \in \mathcal{P}$ with $\|x\|=r$,

$$
\begin{aligned}
\mathcal{H} x(t) & =(-1)^{n-k} \sum_{s=0}^{T} G(t, s) f(s, x(s)) \\
& \leq \sum_{s=0}^{T}\|G(\cdot, s)\| \eta x(s) \\
& \leq\left(\sum_{s=0}^{T}\|G(\cdot, s)\|\right) \eta\|x\|=\|x\|, \quad t \in[0, T+k]
\end{aligned}
$$

Therefore $\|\mathcal{H} x\| \leq\|x\|$. Hence if we set

$$
\Omega_{1}=\{u \in \mathcal{B} \mid\|u\|<r\}
$$

then

$$
\begin{equation*}
\|\mathcal{H} x\| \leq\|x\|, \text { for all } x \in \mathcal{P} \cap \partial \Omega_{1} \tag{13}
\end{equation*}
$$

Next, for $x \in \mathcal{P}$ with $\|x\|=q$

$$
\begin{aligned}
\mathcal{H} x(t) & =(-1)^{n-k} \sum_{s=0}^{T} G(t, s) f(s, x(s)) \\
& \geq \sigma \sum_{s=k}^{T}\|G(\cdot, s)\| \tau q \geq q=\|x\| \quad t \in[k, T+k]
\end{aligned}
$$

Therefore $\|\mathcal{H} x\| \geq\|x\|$. Hence if we set

$$
\Omega_{2}=\{u \in \mathcal{B} \mid\|u\|<q\}
$$

then

$$
\begin{equation*}
\|\mathcal{H} x\| \geq\|x\|, \text { for all } x \in \mathcal{P} \cap \partial \Omega_{2} \tag{14}
\end{equation*}
$$

Thus with (13) and (14), we have shown that \mathcal{H} satisfies the hypotheses to Theorem $2.1(\mathrm{i})$ which yields a fixed point u_{1} of \mathcal{H} belonging to $\mathcal{P} \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$. This fixed point is a solution of (1) and (2) satisfying $r \leq\left\|u_{1}\right\| \leq q$.

Next, by condition (C), for every $\varepsilon>0$, there exists a $\xi>0$ such that for all $u \geq 0, t \in[0, T+k], f(t, u) \leq \xi+\varepsilon u$. Let $\varepsilon=\frac{\eta}{2}$, where η is defined by (5) and select a corresponding ξ. Let $R=\max \left\{2 q, 2 \frac{\xi}{\eta}\right\}$. Then for $x \in \mathcal{P}$ with $\|x\|=R$

$$
\begin{aligned}
\mathcal{H} x(t) & =(-1)^{n-k} \sum_{s=0}^{T} G(t, s) f(s, x(s)) \\
& \leq \sum_{s=0}^{T}\|G(\cdot, s)\|[\xi+\varepsilon x(s)] \\
& \leq \xi \sum_{s=0}^{T}\|G(\cdot, s)\|+\varepsilon \sum_{s=0}^{T}\|G(\cdot, s)\| x(s) \\
& \leq \frac{\xi}{\eta}+\varepsilon \sum_{s=0}^{T}\|G(\cdot, s)\|\|x\| \\
& \leq \frac{R}{2}+\frac{\|x\|}{2}=\|x\|, \quad t \in[0, T+k]
\end{aligned}
$$

Therefore $\|\mathcal{H} x\| \leq\|x\|$. Hence if we set

$$
\Omega_{3}=\{u \in \mathcal{B} \mid\|u\|<R\}
$$

then

$$
\begin{equation*}
\|\mathcal{H} x\| \leq\|x\|, \text { for all } x \in \mathcal{P} \cap \partial \Omega_{3} \tag{15}
\end{equation*}
$$

Thus with (14) and (15), we have shown that \mathcal{H} satisfies the hypotheses to Theorem 2.1(i) which yields a fixed point of \mathcal{H} belonging to $\mathcal{P} \cap\left(\bar{\Omega}_{3} \backslash \Omega_{2}\right)$.

This fixed point, u_{2}, is a solution of (1) and (2) satisfying $q \leq\left\|u_{2}\right\| \leq R$. Therefore, the boundary value problem (1) and (2) has at least two positive solutions $u_{1}, u_{2} \in \mathcal{P}$ such that $0 \leq\left\|u_{1}\right\| \leq q \leq\left\|u_{2}\right\|$.

References

[1] R. P. Agarwal and P. J. Y. Wong, Extension of continuous and discrete inequalities due to Eloe and Henderson, Nonlinear Analysis (in press).
[2] P. W. Eloe, A generalization of concavity for finite differences, Computers and Mathematics with Applications (in press).
[3] P. W. Eloe, J. L. Henderson, and E. R. Kaufmann, Multiple positive solutions for difference equations, Journal of Difference Equations and Applications (in press).
[4] L. H. Erbe and H. Wang, On the existence of positive solutions of ordinary differential equations, Proceedings of the American Mathematical Society 120 (1994), 743-748.
[5] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Inc., San Diego, 1988.
[6] P. Hartman, Difference equations: Disconjugacy, principal solutions, Green's functions, complete monotonicity, Transactions of the American Mathematical Society 2465 (1978), 1-30.
[7] J. L. Henderson and S. D. Lauer, Existence of a positive solution for an nth order boundary value problem for nonlinear difference equations, Abstract and Applied Analysis 2, Nos. 3-4 (1997), 87-95.
[8] W. G. Kelley and A. C. Peterson, Difference Equations, An Introduction with Applications, Academic Press, Inc., San Diego, 1991.
[9] M. A. Krasnosel'skii, Positive Solutions of Operator Equations, P. Noordhoff Ltd., Groningen, The Netherlands.
[10] S. D. Lauer, Positive solutions of a boundary value problem for second order nonlinear difference equations, Communications on Applied Nonlinear Analysis 4 (1997), Number 3.
[11] F. Merdivenci, Two positive solutions of a boundary value problem for difference equations, Journal of Difference Equations and Applications 1 (1995), 263-270.
[12] A. C. Peterson, Boundary value problems for an nth order linear difference equation, SIAM Journal on Mathematical Analysis 15 (1984), 124-132.

Susan D. Lauer
Department of Mathematics, Tuskegee University
Tuskegee, Alabama 36088 USA
E-mail address: lauersd@auburn.campus.mci.net

[^0]: * 1991 Mathematics Subject Classifications: 39A10, 34B15.

 Key words and phrases: n-th order difference equation, boundary value problem, superlinear, sublinear, fixed point theorem, Green's function, discrete, nonlinear. © 1998 Southwest Texas State University and University of North Texas.
 Published November 12, 1998.

