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Multiple Solutions to a Boundary Value Problem

for an n-th Order Nonlinear Difference Equation ∗

Susan D. Lauer

Abstract

We seek multiple solutions to the n-th order nonlinear difference equa-
tion

∆nx(t) = (−1)n−kf(t, x(t)), t ∈ [0, T ]

satisfying the boundary conditions

x(0) = x(1) = · · · = x(k − 1) = x(T + k + 1) = · · · = x(T + n) = 0 .

Guo’s fixed point theorem is applied multiple times to an operator defined
on annular regions in a cone. In addition, the hypotheses invoked to
obtain multiple solutions to this problem involves the condition (A) f :
[0, T ]× R+ → R+ is continuous in x, as well as one of the following: (B)
f is sublinear at 0 and superlinear at ∞, or (C) f is superlinear at 0 and
sublinear at ∞.

1 Introduction

Define the operator ∆ to be the forward difference

∆u(t) = u(t+ 1)− u(t),

and then for i ≥ 1 define

∆iu(t) = ∆(∆i−1u(t)).

For a ≤ b integers define [a, b] = {a, a+1, . . . , b−1, b}. Let the integers n, T ≥ 2
be given, and choose k ∈ {1, 2, . . . , n − 1}. Consider the nth order nonlinear
difference equation

∆nx(t) = (−1)n−kf(t, x(t)), t ∈ [0, T ], (1)

satisfying the boundary conditions

x(0) = x(1) = · · · = x(k − 1) = x(T + k + 1) = · · · = x(T + n) = 0. (2)
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130 Multiple Solutions to a Difference Equation

To simplify the discussion of the desired properties of the function f define the
following four functions:

f0,m = lim
u→0+

min
t∈[k,T+k]

f(t,u)
u
, f∞,m = lim

u→+∞
min

t∈[k,T+k]

f(t,u)
u
,

f0,M = lim
u→0+

max
t∈[k,T+k]

f(t,u)
u
, and f∞,M = lim

u→+∞
max

t∈[k,T+k]

f(t,u)
u
.

We seek to prove the existence of multiple positive solutions to (1) and (2)
where

(A) f : [0, T ]×R+ → R+ is continuous in x , where R+ denotes the nonnegative
reals.

We also require that one of the following sublinearity and superlinearity condi-
tions on the function f holds:

(B) f0,m = +∞ and f∞,m = +∞, or

(C) f0,M = 0 and f∞,M = 0.

We apply Guo’s Fixed point theorem, Guo and Lakshmikantham [5], using
cone methods to accomplish this. This technique was first applied to differential
equations in the landmark paper by Erbe and Wang [4] using Krasnosel’skĭi’s
fixed point theorem, Krasnosel’skĭi [9]. A key to applying this fixed point the-
orem involves discrete concavity of solutions of the boundary value problem in
conjunction with a lower bound on an appropriate Green’s function.
This work constitutes a complete generalization of the paper by Eloe, Hen-

derson and Kaufmann [3] which we use extensively. We also utilize techniques
from Hartman [6], Merdivenci [11], and Peterson [12]. Extensive use of the
results by Eloe [2] concerning a lower bound for the Green’s function will be
made.

2 Preliminaries

Let G(t, s) be the Green’s function for the disconjugate boundary value problem

Lx(t) ≡ ∆nx(t) = 0, t ∈ [0, T ] (3)

and satisfying (2). The characterization of the Green’s function can be found in
Kelley and Peterson [8]. We will use G(t, s) as the kernel of an integral operator
preserving a cone in a Banach space, the setting for our fixed point theorem.
A closed, non-empty subset P of a Banach space B is said to be a cone

provided (i) au+ bv ∈ P for all u, v ∈ P and for all a, b ≥ 0, and (ii) u,−u ∈ P
implies u = 0.

Repeated application of the following fixed point theorem from Guo, Guo
and Lakshmikantham [5], will yield two solutions to (1) and (2).
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Theorem 2.1 Let B be a Banach space and P ⊂ B be a cone. Let Ω1 and Ω2
be two bounded open sets in B such that 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2. Let

H : P ∩ (Ω2 \ Ω1)→ P

be a completely continuous operator satisfying either

(i) ‖Hx‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω1, and ‖Hx‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω2, or

(ii) ‖Hx‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω1, and ‖Hx‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω2.

Then H has a fixed point in P ∩
(
Ω2 \ Ω1

)
.

Two applications of 2.1 to the problem (1) and (2) following along the lines of
methods incorporated by Eloe, Henderson and Kaufmann [3] will be performed.

Note that x(t) is a solution of (1) and (2) if and only if

x(t) = (−1)n−k
T∑
s=0

G(t, s)f(s, x(s)), t ∈ [0, T + n] .

Hartman [6] extensively studied the boundary value problem (1) and (2)
with (−1)n−kf(t, u) ≥ 0. Eloe [2] employed lemmas from Hartman to arrive at
the following theorem that gives a lower bound for the solution to the class of
boundary value problems studied by Hartman.

Theorem 2.2 Assume that u satisfies the difference inequality (−1)n−k∆nu(t) ≥
0, t ∈ [0, T ], and the homogeneous boundary conditions, (2). Then for t ∈
[k, T + k],

(−1)n−k∆nu(t) ≥
T ! ν!

(T + ν)!
‖u‖,

where ‖u‖ = max
t∈[k,T+k]

|u(t)| and ν = max{k, n− k}.

We remark that Agarwal and Wong [1] have recently sharpened the inequal-
ity of Theorem 2.2. This sharper inequality is of little consequence for this
work.

Eloe also contributed the following corollary.

Corollary 2.3 Let G(t, s) denote the Green’s function for the boundary value
problem, (3) and (2). Then for all s ∈ [0, T ], t ∈ [k, T + k],

(−1)n−k∆nG(t, s) ≥
T ! ν!

(T + ν)!
‖G(·, s)‖,

where ‖G(·, s)‖ = max
t∈[k,T+k]

|G(t, s)| and ν = max{k, n− k}.
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To fulfill the hypotheses of Theorem 2.1 let B = {u : [0, T + n]→ R|
u(0) = u(1) = · · · = u(k − 1) = u(T + k + 1) = · · · = u(T + n) = 0} with
‖u‖ = max

t∈[k,T+k]
|u(t)|. Now (B, ‖ · ‖) is a Banach space.

Let

σ =
T ! ν!

(T + ν)!
(4)

with ν = max{k, n− k} and define a cone

P = {u ∈ B | u(t) ≥ 0 on [0, T + n] and min
t∈[k,T+k]

u(t) ≥ σ‖u‖}.

3 Main Results

We first seek two solutions to the case when f is sublinear at 0 and superlinear
at ∞. Define

η =

(
T∑
s=0

‖G(·, s‖

)−1
. (5)

Theorem 3.1 Assume f(t, x) satisfies conditions (A) and (B). Suppose there
exists p > 0 such that if 0 ≤ u(t) ≤ p, t ∈ [0, T ], then f(t, u) ≤ ηp. Then the
boundary value problem (1) and (2) has at least two positive solutions u1, u2 ∈ P
satisfying 0 ≤ ‖u1‖ ≤ p ≤ ‖u2‖.

proof Define a summation operator H : P → B by

Hx(t) = (−1)n−k
T∑
s=0

G(t, s)f(s, x(s)), x ∈ P (6)

Now H : P → P and is completely continuous.
Choose α > 0 such that

ασ2
T∑
s=k

‖G(·, s)‖ ≥ 1. (7)

By the sublinearity of f at 0 there exists 0 < r < p such that f(t, u) ≥ αu for
all 0 ≤ u ≤ r, t ∈ [0, T + n]. For x ∈ P with ‖x‖ = r

Hx(t) = (−1)n−k
T∑
s=0

G(t, s)f(s, x(s))

≥ σ

T∑
s=0

‖G(·, s)‖f(s, x(s))

≥ ασ

T∑
s=0

‖G(·, s)‖x(s)
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≥ ασ2
T∑
s=k

‖G(·, s)‖‖x‖

≥ ‖x‖, t ∈ [k, T + k].

Therefore ‖Hx‖ ≥ ‖x‖. Hence if we set

Ω1 = {u ∈ B | ‖u‖ < r}

then
‖Hx‖ ≥ ‖x‖, for all x ∈ P ∩ ∂Ω1. (8)

Now for x ∈ P with ‖x‖ = p,

Hx(t) = (−1)n−k
T∑
s=0

G(t, s)f(s, x(s))

≤
T∑
s=0

‖G(·, s)‖f(s, x(s))

≤
T∑
s=0

‖G(·, s)‖ηp ≤ p = ‖x‖, t ∈ [0, T + k].

Now if we take
Ω2 = {u ∈ B | ‖u‖ < p}

then
‖Hx‖ ≤ ‖x‖, for all x ∈ P ∩ ∂Ω2. (9)

Thus with (8) and (9), we have shown that H satisfies the hypotheses to
Theorem 2.1(ii). This yields a fixed point u1 of H belonging to P ∩

(
Ω2 \ Ω1

)
.

This fixed point is a solution of (1) and (2) satisfying r ≤ ‖u1‖ ≤ p.
Next, choose ω > 0 such that

ωσ2
T∑
s=k

‖G(·, s)‖ ≥ 1. (10)

By the superlinearity of f at infinity there exists R1 > 0 such that f(t, u) ≥ ωu
for all u ≥ R1, t ∈ [0, T + n]. Let R = max{2p,R1}. Now for x ∈ P with
‖x‖ = R

Hx(t) = (−1)n−k
T∑
s=0

G(t, s)f(s, x(s))

≥ σ

T∑
s=0

‖G(·, s)‖f(s, x(s))

≥ ωσ

T∑
s=0

‖G(·, s)‖x(s)
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≥ ωσ2
T∑
s=k

‖G(·, s)‖‖x‖

≥ ‖x‖, t ∈ [k, T + k].

Therefore ‖Hx‖ ≥ ‖x‖. Hence if we set

Ω3 = {u ∈ B | ‖u‖ < R}

then
‖Hx‖ ≥ ‖x‖, for all x ∈ P ∩ ∂Ω3. (11)

Thus with (9) and (11), we have shown that H satisfies the hypotheses to
Theorem 2.1(i). This yields a fixed point u2 of H belonging to P ∩

(
Ω3 \ Ω2

)
.

This fixed point is a solution of (1) and (2) satisfying p ≤ ‖u2‖ ≤ R.
Therefore, the boundary value problem (1) and (2) has at least two positive

solutions u1, u2 ∈ P such that 0 ≤ ‖u1‖ ≤ p ≤ ‖u2‖. ♦

We now seek two solutions for the case when f is superlinear at 0 and
sublinear at ∞.

Theorem 3.2 Assume f(t, x) satisfies conditions (A) and (C). Suppose there
exists q > 0 such that if σq ≤ u(t) ≤ q, t ∈ [k, T + k], then f(t, u) ≥ τq, where

τ =

(
σ

T∑
s=k

‖G(·, s)‖

)−1
. (12)

Then the boundary value problem (1) and (2) has at least two positive solutions
u1, u2 ∈ P such that 0 ≤ ‖u1‖ ≤ q ≤ ‖u2‖.

proof Define the summation operator as in (6) and define η as in (5). By the
superlinearity of f at 0 there exists 0 < r < q such that f(t, u) ≤ ηu for all
0 ≤ u ≤ r, t ∈ [0, T ]. For x ∈ P with ‖x‖ = r,

Hx(t) = (−1)n−k
T∑
s=0

G(t, s)f(s, x(s))

≤
T∑
s=0

‖G(·, s)‖ηx(s)

≤

(
T∑
s=0

‖G(·, s)‖

)
η‖x‖ = ‖x‖, t ∈ [0, T + k].

Therefore ‖Hx‖ ≤ ‖x‖. Hence if we set

Ω1 = {u ∈ B | ‖u‖ < r}

then
‖Hx‖ ≤ ‖x‖, for all x ∈ P ∩ ∂Ω1. (13)
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Next, for x ∈ P with ‖x‖ = q

Hx(t) = (−1)n−k
T∑
s=0

G(t, s)f(s, x(s))

≥ σ

T∑
s=k

‖G(·, s)‖τq ≥ q = ‖x‖ t ∈ [k, T + k].

Therefore ‖Hx‖ ≥ ‖x‖. Hence if we set

Ω2 = {u ∈ B | ‖u‖ < q}

then
‖Hx‖ ≥ ‖x‖, for all x ∈ P ∩ ∂Ω2. (14)

Thus with (13) and (14), we have shown that H satisfies the hypotheses to
Theorem 2.1(i) which yields a fixed point u1 of H belonging to P ∩

(
Ω2 \ Ω1

)
.

This fixed point is a solution of (1) and (2) satisfying r ≤ ‖u1‖ ≤ q.
Next, by condition (C), for every ε > 0, there exists a ξ > 0 such that for all

u ≥ 0, t ∈ [0, T + k], f(t, u) ≤ ξ + εu. Let ε = η
2 , where η is defined by (5) and

select a corresponding ξ. Let R = max{2q, 2 ξ
η
}. Then for x ∈ P with ‖x‖ = R

Hx(t) = (−1)n−k
T∑
s=0

G(t, s)f(s, x(s))

≤
T∑
s=0

‖G(·, s)‖[ξ + εx(s)]

≤ ξ

T∑
s=0

‖G(·, s)‖ + ε

T∑
s=0

‖G(·, s)‖x(s)

≤
ξ

η
+ ε

T∑
s=0

‖G(·, s)‖‖x‖

≤
R

2
+
‖x‖

2
= ‖x‖, t ∈ [0, T + k].

Therefore ‖Hx‖ ≤ ‖x‖. Hence if we set

Ω3 = {u ∈ B | ‖u‖ < R}

then
‖Hx‖ ≤ ‖x‖, for all x ∈ P ∩ ∂Ω3. (15)

Thus with (14) and (15), we have shown that H satisfies the hypotheses to
Theorem 2.1(i) which yields a fixed point of H belonging to P ∩

(
Ω3 \ Ω2

)
.

This fixed point, u2, is a solution of (1) and (2) satisfying q ≤ ‖u2‖ ≤ R.
Therefore, the boundary value problem (1) and (2) has at least two positive
solutions u1, u2 ∈ P such that 0 ≤ ‖u1‖ ≤ q ≤ ‖u2‖.
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