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On Variational Inequalities Associated with the

Navier-Stokes Equation: Some Bifurcation

Problems ∗

Vy Khoi Le & Klaus Schmitt

1 Introduction

This paper is devoted to a study of bifurcation problems for the steady states of
Navier-Stokes problems where several types of constraints are imposed. In an
abstract setting this leads to the study of bifurcation problems for variational
inequalities. We show how the tools developed in [4] may be employed to ana-
lyze these problems. Some of the problems considered here, have already been
analyzed in [4] for nonlinear versions of the Stokes equation (see [4, pp. 72-
77]); but we expand considerably upon the development there. We first give the
statement of the problem and then provide several constraint situations where
bifurcation results may be obtained.

The results discussed here were first presented in a lecture given during May
1997 by the second author at the third Mississippi State Conference on Differ-
ential Equations and Computational Simulations at Mississippi State University.

Let Ω ⊂ R3 be a bounded domain in R3 with smooth boundary. Let

V = {v ∈ [H10 (Ω)]
3 : div v = 0 a.e. in Ω}.

Then V is a subspace of the Hilbert space [H10 (Ω)]
3 with the restricted norm and

scalar product. For u ∈ V , we denote by Du the 3× 3 matrix of distributional
derivatives,

Du = [∂iuj ]1≤i,j≤3 .

For u, v ∈ V , let

Du : Dv =

3∑
i,j=1

∂iuj∂ivj .
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138 On Variational Inequalities

Let b : V × V × V → R be the trilinear form

b(u, v, w) =

∫
Ω

3∑
i,j=1

ui(∂ivj)wj =

∫
Ω

uT (Du)w ,

(for all u, v, w ∈ [H10 (Ω)]
3). Notice that b(u, v, w) = −b(v, u, w) = −b(u,w, v),

for all u, v, w. Let g : Ω× R3 × R→ R3, with

(x, u, λ) 7→ g(x, u, λ)

being a mapping that satisfies the Carathéodory conditions for each component
gi, i = 1, 2, 3. Furthermore, assume that g is differentiable with respect to u,
and that g,Dug satisfy the usual growth conditions:

|g(x, u, λ)| ≤ A(λ) +B(λ)|u|s−1

|Dug(x, u, λ)| ≤ A(λ) +B(λ)|u|s−2, (1)

for a.e. x ∈ Ω, all u, λ ∈ R, with A,B ∈ L∞loc(R), 1 < s < 6 = 2
∗ (the Sobolev

conjugate of 2). (Note that the above correct several misprints on page 76 of
[4].) We shall assume further that

g(x, 0, λ) = 0 for a.e. x ∈ Ω, ∀λ ∈ R.

Also assume that
j : V → [0,∞], j(0) = 0,

is a convex, lower semicontinuous functional.
We consider the variational inequality below, where ν > 0 is the so-called

viscosity constant.

ν

∫
Ω

Du : D(v − u) + b(u, u, v − u) + j(v)− j(u) ≥

∫
Ω

g(x, u, λ) · (v − u), (2)

for all v ∈ V, u ∈ V . i.e., we seek u ∈ V such that the inequality in (2) holds for
all v ∈ V . We note that, by hypotheses, u = 0 is a solution. We shall establish
conditions, for various choices of j, in order that (2) have nontrivial solutions
for certain values of λ. More specifically, we establish the existence of connected
sets C ⊂ V of solutions of (2) such that for (u, λ) ∈ C, u 6= 0 and C∩{0}×R 6= ∅,
i.e., C bifurcates from the trivial solution set {0} × R.
Many interesting cases (we shall present several of these) are covered by

choosing j to be the indicator function of some closed convex set K 3 0, i.e.,

j(u) = IK(u) =

{
0, u ∈ K
∞, u /∈ K,

in which case (2) is equivalent to the variational inequality

ν

∫
Ω

Du : D(v − u) + b(u, u, v − u)−

∫
Ω

g(·, u, λ) · (v − u) ≥ 0 (3)
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for all v ∈ K, u ∈ K. Also, in the case

j : V → [0,∞)

is C1, by choosing v = u + tw, t > 0 in (2), dividing by t and letting t → 0+,
we obtain the inequality

ν

∫
Ω

Du : Dw + b(u, u, w) + 〈j′(u), w〉 ≥

∫
Ω

g(x, u, λ) · w, ∀w ∈ V,

where 〈·, ·〉 is the duality pairing of V ∗ and V . Hence (since w may be replaced
by −w) we obtain the equation

ν

∫
Ω

Du : Dw + b(u, u, w) + 〈j′(u), w〉 =

∫
Ω

g(x, u, λ) · w , (4)

for all w ∈ V , u ∈ V . Which, when j = 0, is the usual variational form of the
Navier-Stokes equation (cf. [5], [9], or [10]). (Note that, if j : V → [0,∞) is
C1 and convex, then (2) and (4) are equivalent problems.) Now, we define the
operators A : V → V ∗ and B : V × R→ V ∗ as follows

〈A(u), v〉 = ν
∫
ΩDu : Dv ,

〈B(u, λ), v〉 =
∫
Ω
g(x, u, λ) · v − b(u, u, v), u, v ∈ V .

Then (2) may be rewritten as

〈A(u)−B(u, λ), v − u〉+ j(v)− j(u) ≥ 0 , (5)

for all v ∈ V , u ∈ V .
In order to obtain information about possible bifurcations from the trivial

solution of (5), we need to establish some properties of the operatorB and study
(5) in a neighborhood of the trivial solutions. This is carried out in the next
section.

2 Preliminaries

Lemma 1 The operator A is linear, continuous and coercive, in the sense that
there exists a constant α > 0 such that

〈A(v), v〉 ≥ α‖v‖2, ∀v ∈ V.

Proof. This statement follows easily from the definition of A, the Poincaré’s
inequality for H10 (Ω), and the conventional norm of [H

1
0 (Ω)]

3 as derived from
the norm of H10 (Ω).
Now we define the operator f : V × R→ V ∗, by

〈f(u, λ), v〉 =

∫
Ω

3∑
i,j=1

Duigj(x, 0, λ)ui(x)vj(x)

=

∫
Ω

[v(x)]TDug(x, 0, λ)u(x) . (6)
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Lemma 2 The operators B and f are completely continuous, and f is the
linearization of B at 0 (with p = 2 in the sense of (A7), Chapter 6, [4]).

Proof. It is clear that if f is the linearization of B in the sense of (A7), [4].
Then f is the (partial) Fréchet derivative of B. Hence, once we have shown that
B is completely continuous, it will follow that f is completely continuous by a
result of Krasnosel’skii ([3]).
Let B0 : V × R→ V ∗ be given by

〈B0(u, λ), v〉 =

∫
Ω

g(·, u, λ) · v, ∀u, v ∈ V, λ ∈ R.

Then the continuity of B0 follows ¿From the continuity of the Niemitskii oper-
ator and the compactness of the embedding H10 (Ω) ↪→ L

q(Ω), for q < 6 = 2∗.
Now, we check that f is the linearization of B0 at 0 in the sense of (A7) of [4].
In fact, let {un} be an arbitrary sequence in V converging weakly to a function
u, un ⇀ u, and let {σn} ⊂ R with σn > 0, for all n, σn → 0, and {λn} ⊂ R,
λn → λ.

We can estimate
∣∣∣〈 1σnB0(σnun, λn)− f(u, λ), v〉

∣∣∣ (for v ∈ V , ‖v‖ = 1), using
Hölder’s inequality to obtain∥∥∥∥ 1σnB0(σnun, λn)− f(u, λ)

∥∥∥∥
∗

≤ C

[∫
Ω

∣∣∣∣ 1σn g(x, σnun, λn)−Dug(x, 0, u, λ)u
∣∣∣∣
s/(s−1)

](s−1)/s
.

Since un ⇀ u in [H
1
0 (Ω)]

3, un → u in [Ls(Ω)]3, 1 ≤ s ≤ 6, and hence, by passing
to a subsequence if needed,

un → u a.e. in Ω and |un| ≤ h ,

with h ∈ Ls(Ω) (cf. [1]). Hence,

1

σn
g(x, σnun, λn)→ Dug(x, 0, u, λ)u a.e. in Ω,

because of the Carathéodory conditions and differentiability assumptions on g.
Further, from the mean value theorem,

|g(x, σnun, λn)| = |g(x, σnun, λn)− g(x, 0, λn)|

≤ sup
|v|≤|un|

|Dug(x, v, λn)| |σnun|

≤ sup
|v|≤|un|

[A(λ) +B(λ)|v|s−2]σn|un|

≤ [A(λ) +B(λ)|un|
s−2]σn|un|

≤ σn[A(λ) +B(λ)|h|
s−2]|h| .
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Hence, ∣∣∣∣ 1σn g(x, σnun, λn)
∣∣∣∣ ≤ [A(λ) +B(λ)|h|s−2]|h|(∈ Ls/(s−1)(Ω)).

By the dominated convergence theorem,∫
Ω

∣∣∣∣ 1σn g(x, σnun, λn)−Dug(x, 0, u, λ)u
∣∣∣∣
s/(s−1)

→ 0,

which implies
1

σn
B0(σnun, λn)→ f(u, λ) in V

∗.

Let the mapping Q : V → V ∗ be defined by

〈Q(u), v〉 = b(u, u, v), ∀u, v ∈ V.

Then, since the embedding H10 (Ω) ↪→ L
4(Ω) is compact, the mapping Q will be

completely continuous (see e.g. Chapter 72, Lemma 72.5, [10]). Hence B(u, λ) =
B0(u, λ) − Q(u) is completely continuous. If now un ⇀ u in V and σn → 0+,
then

〈
1

σn
Q(σnun), v〉 =

1

σn
b(σnun, σnun, v) = σnb(un, un, v),

or
1

σn
Q(σnun) = σnQ(un) .

Since Q(un) → Q(u) in V ∗, it follows that
1
σn
Q(σnun) → 0 in V ∗. Hence it

follows that
1

σn
B(σnun, λn)→ f(u, λ) in V

∗,

whenever un ⇀ u in V , σn → 0+, λn → λ. This shows that f is the linearization
of B at 0. ♦

We next assume that there exists a convex, lower semicontinuous functional
J : V → [0,∞] having the property below. (see (A8), pp. 117-120, [4])
If vn ⇀ v in V and σn → 0+, then

J(v) ≤ lim inf
1

σ2n
j(σnvn),

and if v ∈ V and σn → 0+, then there exists a sequence {vn} ⊂ V such that

vn → v and
1

σ2n
j(σnvn)→ J(v) .

We note that J , if it exists, is uniquely determined (see [4]).
To (5) we assign the variational inequality

〈A(u) − f(u, λ), v − u〉+ J(v) − J(u) ≥ 0, ∀v ∈ V , u ∈ V . (7)

The proof of the following lemma is straightforward.
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Lemma 3 (i) For each t > 0 and u ∈ V ,

f(tu, λ) = tf(u, λ), J(tu) = t2J(u).

(ii) If u is a solution of (7), then so is tu for all t > 0.

As an immediate corollary, we obtain the following necessary conditions for
bifurcation from the trivial solution (see [4]).

Corollary 1 Assume that (0, λ0) is a bifurcation point from the trivial solution
for (5). Then there exists u0 6= 0 such that for all t > 0, tu0 solves (7) with
λ = λ0.

3 A general result in global bifurcation

¿From classical results ([4], [5]), it follows that for each f ∈ V ∗, there exists a
unique solution, u = PA,j(f), to the variational inequality

〈A(u)− f, v − u〉+ j(v)− j(u) ≥ 0, ∀v ∈ V, u ∈ V ,

and a unique solution, u = PA,J(f), to the variational inequality

〈A(u)− f, v − u〉+ J(v)− J(u) ≥ 0, ∀v ∈ V ∈ V .

Furthermore, the mappings PA,j , PA,J : V
∗ → V are continuous and problems

(5), respectively (7), are equivalent to the fixed point equations

u− PA,jB(u, λ) = 0, (8)

respectively,
u− PA,Jf(u, λ) = 0. (9)

Of course, both equations have the trivial solution. A necessary condition for
(0, λ0) to be a bifurcation point of (8) is that (9), for λ = λ0, have a nontrivial
solution, hence a ray of such.
We have the following bifurcation theorem (see[4]).

Theorem 1 Assume that a1 and a2 (a1 < a2) are such that (9) has only the
trivial solution for λ = a1 and λ = a2. Further assume that

deg(I − PA,J [f(·, a1)], Br(0), 0) 6= deg(I − PA,J [f(·, a2)], Br(0), 0),

where deg(·, ·, ·) denotes the Leray-Schauder degree. Then if

S = {(u, λ) : (u, λ) is a solution of (8) with u 6= 0} ∪ ({0} × [a1, a2]) ,

and C is the connected component of S containing {0} × [a1, a2], it follows that
either
(i) C is unbounded in V × R, or
(ii) C ∩ ({0} × (R \ [a1, a2])) 6= ∅.
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In other words, we have the global Krasnosel’skii-Rabinowitz bifurcation
alternative ([8]) for bifurcation from the trivial solution segment {0} × [a1, a2].
We shall apply this theorem in several situations, and note that the appli-

cation will be most straightforward if the problem (7) yields an equation, e.g.
that J is a C1 functional or J = IK , where K is a closed subspace of V .

4 Examples

Velocity constraints

We first consider some situations where there are imposed constraints on the
velocity u, i.e., there exists a closed convex set K in V such that j = IK . Several
choices of K will be considered.
Let us suppose that K is given by

K = {w ∈ V : |w(x)| ≤ c for a.e x ∈ Ω}. (10)

In order to apply Theorem 1, we must compute the functional J . To this end,
we note that if w ∈ V ∩ [C∞0 (Ω)]

3, then tw ∈ K, for t > 0, sufficiently small.
Hence, as V ∩ [C∞0 (Ω)]

3 is dense in V , we obtain that

V =
⋃
t>0

tK = K0,

which is the so-called support cone of K, and we deduce that J = IV , i.e.,
J = 0. Thus problem (7) becomes

ν

∫
Ω

Du : Dv −

∫
Ω

vTDug(·, 0, λ)u = 0, ∀v ∈ V u ∈ V . (11)

If it is the case that
Dug(x, 0, λ) = λk(x), (12)

where k = [kij ]i,j=1,2,3 is a matrix in [L
∞(ω)]9, then (11) is the usual eigenvalue

problem for the Stokes equation

ν

∫
Ω

Du : Dv − λ

∫
Ω

vT ku = 0, ∀v ∈ V , u ∈ V . (13)

It follows that all eigenvalues of odd multiplicity of (13) yield global bifurcation
branches of (11).

If it is the case that the flow is restricted for some components of the velocity
field on a sub-domain Ω0 ⊂ Ω, e.g.

K = {w ∈ V : w1(x) ≥ −c, w2(x) ≥ −d for a.e. x ∈ Ω0},

then J = IK0 , where the support cone

K0 = {w ∈ V : w1 ≥ 0, w2 ≥ 0 a.e. in Ω0}
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then (7) becomes

ν

∫
Ω

Du : D(v − u)− λ

∫
Ω

(v − u)Tku ≥ 0, ∀v ∈ K0 , u ∈ K0, (14)

and the bifurcation values are contained in the “spectrum” of (14), i.e., the set
of those λ ∈ R, for which (14) has a nontrivial solution.

Other interesting cases where the support coneK0 is the whole space V (and
hence J = 0) are given by

K = {u ∈ V : |(∇× u)(x)| ≤ c for a.e. x ∈ Ω},

where c > 0 is given, or a constraint of a nonlocal nature, e.g. if S be a compact
oriented smooth surface in Ω and a limitation is imposed on the magnitude of
the flux of the flow across S, e.g.,

K =
{
u ∈ V :

∣∣ ∫
S

u · νdS
∣∣ ≤ c},

where ν is the unit normal vector field to S and c is a nonnegative constant.

Visco-plastic Bingham fluids

We consider here the variational inequality modeling the equilibrium of a steady
state rigid visco-plastic Bingham fluid. This viscous-rigid fluid is a general-
ization of the usual Newtonian fluid, whose equilibrium is represented by the
Navier-Stokes equations.
Here we consider the convex functional j : V → [0,∞) given by:

j(u) =

∫
Ω

µ(x)|Du| =

∫
Ω

µ(x)
[∑
(∂iuj)

2
]1/2
, (15)

or

j(u) =

∫
Ω

µ(x)
[∑

ε2ij(u)
]1/2
, (16)

where εij(u) =
1
2 (∂iuj + ∂jui). Here, µ ∈ L

∞(Ω), µ ≥ 0, a.e. on Ω, 6≡ 0,
represents the yield limit between the rigidity and viscosity of the fluid flow (cf.
[2], [6]). We shall consider the case that j is given by (15), the other case in
(16) being similar in nature. Let Ω0 = {x ∈ Ω : µ(x) = 0} and

W = {u ∈ V : Du = 0 a.e. on Ω\Ω0}. (17)

It is clear from the definition of j that it is a nonnegative convex and lower
semicontinuous functional on V and j(0) = 0. We have the following lemma:

Lemma 4 Given j as above, the functional J exists and is given by

J = IW ,

where W is given by (17).
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Proof. Let {un} be a sequence with un ⇀ u and let {σn} ⊂ R+ a sequence
with σn → 0+. We first show that

lim inf
j(σnun)

σ2n
≥ IW (u). (18)

If u ∈ W then (18) obvious holds, since j ≥ 0. If u /∈W , then µ(x)|Du| > 0 on
a subset of positive measure, hence,

j(u) =

∫
Ω

µ(x)|Du| dx > 0.

We have
1

σn
j(σnun) =

∫
Ω

µ(x)|Dun|,

since j is homogeneous of degree 1. Since j is weakly lower semicontinuous,
lim inf j(un) ≥ j(u) > 0. Hence

lim inf
j(σnun)

σ2n
= lim inf

j(un)

σn

≥ lim
1

σn
· lim inf j(un) = ∞ = IW (u).

Next, let u ∈ V , σn → 0+ and choose un = u, ∀n, then

lim
j(σnun)

σ2n
=

{
0, if j(u) = 0
∞, if j(u) > 0

=

{
0, if u ∈ W
∞, if u /∈ W

= IW (u),

hence J = IW , by earlier remarks.
Since W is a subspace, inequality (7) becomes

ν

∫
Ω

Du : Dv − λ

∫
Ω

vTDug(·, 0, λ)u = 0, ∀v ∈W , u ∈W. (19)

By Theorem 1, we may conclude that eigenvalues of odd multiplicity of (19) will
yield bifurcation points for global bifurcation of (2).

An extension of the above is the case that j is given by

j(u) =

∫
Ω

µ(x)|Du|γ dx (20)

with γ ≥ 1. Again j : V → [0,∞] is a convex and lower semicontinuous
functional with the effective domain D(j) (which always is a vector subspace of
V )

D(j) = V, 1 ≤ γ ≤ 2,
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and for γ > 2,

D(j) = {u ∈ V : µ|Du|γ ∈ L1(Ω)}

⊃ V ∩ [W 1,γ(Ω)]3.

Also, we may compute the functional J and obtain

D(J) = V, 1 ≤ γ < 2

In case γ = 2, j is homogeneous of degree 2 and hence clearly J = j. In fact
j is differentiable with

〈j′(u), v〉 =

∫
Ω

µ(x)Du : Dv, ∀u, v ∈ V, (21)

hence in this case inequality (14) becomes (see also (4))∫
Ω

[1 + µ(x)]Du : Dv − λ

∫
Ω

vT ku = 0, ∀v ∈ V , u ∈ V . (22)

Hence we may conclude that eigenvalues of odd multiplicity of (22) yield global
bifurcation points for (2).

We finally consider the case where γ > 2. As noted, D(j) is a vector subspace
of V , which however, will not be closed in general. However, we may conclude

Lemma 5 Let j be given by (20). Then, for γ > 2, the functional J is given
by

J = IV = 0.

Proof. Let un ⇀ u, σn → 0+. Since j ≥ 0, we have that

lim inf
1

σ2n
j(σnun) ≥ 0 = IV (u).

This shows (A8) (a) of [4]. Let now v ∈ V and σn → 0+, we shall choose a
sequence {vn} ⊂ V such that

vn → v in V, and lim
n→∞

1

σ2n
j(σnvn) = 0 . (23)

Since
V ∩ [C∞0 (Ω)]

3 = {u ∈ [C∞0 (Ω)]
3 : div u = 0}

is dense in V , we can find a sequence {un} ⊂ V ∩ [C∞0 (Ω)]
3 such that un → v

in V . But

j(un) =

∫
Ω

µ(x)|Dun|
γ <∞,

hence, since σγ−2n → 0 as n→∞ (since γ > 2), we may, for each k, find nk ∈ N
sufficiently large such that nk > nk−1 and(∫

Ω

µ|Duk|
γ

)
σγ−2j <

1

k
, ∀j ≥ nk.
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Now, define the sequence {vj} as follows:
For each j ∈ N, there exists a unique k = k(j) such that

nk ≤ j < nk+1, (24)

(since the sequence {nk} is strictly increasing). Define

vj = uk = uk(j).

If j is large, nk is also large. Since limk→∞ unk = v, limj→∞ vj = v.
On the other hand

jσj (vj) =

(∫
Ω

µ|σjDvj |
γ

)
σ−2j

=

(∫
Ω

µ|Dvj |
γ

)
σγ−2j

=

(∫
Ω

µ|Duk|
γ

)
σγ−2j

<
1

k
=

1

k(j)
,

since j ≥ nk. As j is sufficiently large, we have, by (24), that nk+1 and, then, k
is also large. Hence, 1

k(j) → 0 as j →∞. This shows that limj→∞ jσj (vj) = 0.

We hence obtain again the Stokes equation (11) or (13) as a limiting problem.
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[1] H. Brézis: Analyse Fonctionnelle, Masson, Paris, 1983.

[2] G. Duvaut and J. L. Lions: Les Inéquations en Mécanique et en
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