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Governing Equations of Fluid Mechanics in

Physical Curvilinear Coordinate System ∗

Swungho Lee & Bharat K. Soni

Abstract

This paper presents the development of unsteady three-dimensional
incompressible Navier-Stokes and Reynolds-averaged Navier-Stokes equa-
tions in an unsteady physical curvilinear coordinate system. It is demon-
strated that the numerical simulations based on governing equations in a
physical curvilinear coordinate system are less mesh sensitive than other
schemes.

Introduction

The ultimate goal of the current research is to develop a numerical flow simu-
lation system applicable to unsteady three dimensional incompressible Navier-
Stokes equations that is accurate and efficient in view of CPU time taken for
convergence. Patel et al. [1] note that,

If the geometry is highly curved and skewness of angles between
the velocity components and the faces of the computational cells are
large, an approach that transforms only the independent coordinate
variables in the equations representing the transport of mass and
momentum may lead to increased numerical diffusion.

This fact provides the motivation for the development of governing equations
in physical curvilinear component form. In this coordinate system, compo-
nents of the velocity have the same direction as that of the coordinate lines and
have physical values. The physical curvilinear-components form of the velocity
was first introduced by Truesdell [2]. Demirdzic et al. [3] derived the phys-
ical curvilinear-components form in nonorthogonal coordinates for Reynolds-
averaged Navier-Stokes equations and the equations of the k − ε turbulence
model. In their derivation, the equations of the Cartesian tensor forms were
transformed directly into physical curvilinear-component forms by a two step
procedure. Takizawa et al. [4] used this form to simulate a two-dimensional
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free-surface problem using a different concept for the connection coefficients.
However, in this approach, practical applications have been limited to two-
dimensional problems because of the large storage requirements of geometric
tensors and connection coefficients, as well as the numerical error associated
with the evaluation of these geometric tensors and connection coefficients.
This work explores an approach which is different from Demirdzic et al [3]

in that the partial differential equations with the coordinate-free vector form
are transformed into the physical curvilinear coordinate system using general
transformation laws. The resulting unsteady three-dimensional incompressible
viscous equations based on the unsteady physical curvilinear coordinate system
derived in this research are validated by numerically simulating the laminar
three-dimensional lid-driven cavity and the free surface turbulent flows.It is
demonstrated that these numerical simulations are less mesh sensitive.

Basic transformations

In the following analysis, xi are Cartesian coordinates, ξ
i are curvilinear coor-

dinates and ξ(i) are physical curvilinear coordinates. First, consider the general
transformation law under the two changes of the coordinates system xi to ξ

i

and ξi to ξ(i). The relationship between the coordinates xi and the coordinates
ξi can be expressed as follows:

ξi = ξi(xj , t) (1)

The relationship between the coordinates ξi and the coordinates ξ(i) can be
expressed as:

ξ(i) = ξ(i)(ξi) , where ∆ξ(i) =
√
gii∆ξ

i (2)
√
gii are evaluated at ξ

k = constant and k 6= i. ξ(i) resemble the coordinate
stretching in each direction of ξi. In view of transforming the coordinates from
xi to ξ

i and ξi to ξ(i), the vector d~r can be written as:

d~r =
∂~r

∂ξi
dξi = ~aidξ

i (sum on i) (3)

=
∂~r

∂ξ(i)
dξ(i) = ~a(i)dξ

(i) , where ~a(i) =
1
√
gii
~ai (4)

~ai are covariant base vectors in the curvilinear coordinate system and ~a(j) are
covariant base vectors in the physical curvilinear coordinate system. The rela-
tionships between each coordinate system for each covariant and contravariant
metric tensors are written as:

~a(i) · ~a(j) = g(ij) =
1

√
gii
√
gjj
gij , where ~ai · ~aj = gij (5)

~a(i) · ~a(j) = g(ij) =
√
gii
√
gjjg

ij , where ~ai · ~aj = gij , ~a(i) =
√
gii~a

i (6)

g(ij) and g
(ij) are the physical covariant and the physical contravariant metric

tensors, respectively. The physical covariant metric tensor g(ij) are equal to
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one if the subscripts i and j are the same. To obtain the divergence, gradi-
ent and Laplacian operators of a vector in the physical curvilinear coordinate
system, one starts from the covariant and the contravariant derivatives of the
base vectors. Before obtaining the divergence, however, one needs to define the
physical curvilinear components of the velocity vector. These components can
be defined as the magnitude of the ith component projected onto the ith physical
curvilinear coordinate direction,

u(i) = ~u · ~a(i) . (7)

Here u(i) represents the physical curvilinear component of the velocity vector
and has physical values. In the Cartesian coordinate system, u(i) are identical
to the physical components of the velocity u(i).
The derivatives of the covariant base vector in the physical curvilinear coor-

dinate system are obtained by taking the derivative of the covariant base vector
in the curvilinear coordinate system.

∂~a(i)

∂ξ(j)
= [

√
gkk

√
gii
√
gjj
Γkij − δ

k
i

gkm
gii
√
gjj
Γmij ]~a(k) (sum on k and m)

= Γ
(k)
(ij)~a(k) (sum on k) , (8)

where

Γ
(k)
(ij) =

√
gkk

√
gii
√
gjj
Γkij − δ

k
i

gkm
gii
√
gjj
Γmij .

Similarly, the derivatives of the contravariant base vector in the physical curvi-
linear coordinate system are obtained by taking the derivative of the contravari-
ant base vector.

∂~a(i)

∂ξ(j)
= −Γ(i)(kj)~a

(k) (sum on k) (9)

Here the Christoffel and physical counterparts of the Christoffel symbols have
the following properties:

Γijk = Γ
i
kj and Γ

(i)
(jk) 6= Γ

(i)
(kj) (10)

Using the general transformation laws for a scalar φ, the gradient can be
written as follows:

∇φ =
∂φ

∂ξ(i)
~a(i) = g(ik)

∂φ

∂ξ(k)
~a(i) (sum on i and k) , (11)

where ~a(i) = g(ik)~a(k). Also, the gradient of a vector ~u can be expressed using
equation as:

∇~u =
∂~u

∂ξ(i)
~a(i) =

∂(u(k)~a(k))

∂ξ(i)
~a(i) (sum on i and k)

= u
(k)
(,i)~a(k)~a

(i) = g(ij)u
(k)
(,i)~a(k)~a(j) ,
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where

u
(k)
(,i) =

∂u(k)

∂ξ(i)
+ u(m)Γ

(k)
(im) .

The quantity u
(k)
(,j) is called the covariant derivative of the physical curvilinear

components of a vector ~u. One can easily evaluate the divergence of a vector ~u
using equation (8) as:

∇ · ~u =
∂~u

∂ξ(i)
· ~a(i) =

∂u(k)~a(k)

∂ξ(i)
· ~a(i) (sum on i and k)

= u
(i)
(,i) =

√
gii

J

∂

∂ξ(i)
(
J
√
gii
u(i)) (sum on i) (12)

The Laplacian can be evaluated by the divergence of the gradient of a vector ~u,

∇2~u = ∇ · T̂ =
∂T̂

∂ξ(j)
· ~a(j) , where T̂ = ∇~u = u

(k)
(i,)~a(k)~a

(i)

= g(jk)[u
(m)
(,j)Γ

(i)
(mk) − u

(i)
(,m)Γ

(m)
(jk) +

∂u
(i)
(,j)

∂ξ(k)
]~a(i) (sum on i, j, k and m)

The time derivative of a scalar or a vector F is given as Warsi [5]:

∂F

∂t
|xi = [

∂F

∂τ
+
∂F

∂ξ(i)
∂ξ(i)

∂t
]|ξ(i) (13)

∂F

∂τ
|ξ(i) = [

∂F

∂t
+
∂F

∂xi

∂xi

∂τ
]|xi (14)

Here τ represents the time in an unsteady physical curvilinear coordinate sys-
tem. The grid speed can be easily evaluated by replacing F with ξ(i) in equation
(14).

w(i) =
∂ξ(i)

∂t
= −
∂ξ(i)

∂xl

∂xl

∂τ
= −

√
g
ii

J
bil
∂xl

∂τ
(sum on l) (15)

where

bil =
∂xm

∂ξj
∂xn

∂ξk
−
∂xn

∂ξj

∂xm

∂ξk

with i, j, k, and l,m, n in each cyclic order.
The divergence of the grid speed vector ~w is written as:

∇ · ~w =

√
g
ii

J

∂( J√g
ii

w(i))

∂ξ(i)
= −

l

J

∂J

∂τ

Governing equations in the unsteady

physical curvilinear coordinate system

By replacing F with ~u in equation (13), one can get the equations into an un-
steady coordinate system. The vector form of incompressible Reynolds-averaged
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Navier-Stokes equations, with the body force in unsteady coordinates system,
is given by equation (16).

∂~u

∂τ
+ (∇~u) · ~v = −∇P + νE∇

2~u+ [∇~u+ (∇~u)T ] · ∇νE , (16)

where

~v = ~u+ ~w, P = ρ+
z

Fn2
+
2

3
k and νE =

l

Reff
=
l

Re
+ νt .

Here ~w is a grid speed vector, Fn is a Froude number, P is total pressure, and
ρ is a static pressure. νt and Reff represent the eddy viscosity and the effective
Reynolds number, respectively.
The procedure for the transformation of the incompressible Reynolds-averaged

Navier-Stokes equations, based on an unsteady physical curvilinear coordinate
system, is now introduced using the derivations for the gradient, divergence op-
erator, Laplacian, and time derivative. An unsteady physical curvilinear compo-
nent form of the continuity and the Reynolds-averaged Navier-Stokes equations
can be presented as:

∂

∂ξi
(
J
√
g
ii

u(i)) = 0

Reff
∂u(i)

∂τ
+Reffv

(j)(
∂u(i)

∂ξ(j)
+ u(k)Γ

(i)
(kj)) (17)

= −Reff [g
(ij) ∂P

∂ξ(j)
−
∂νE

∂ξ(j)
[g(jk)

∂u(i)

∂ξk
+ g(jk)Γ

(i)
(lk)u

(l) + g(ik)
∂u(i)

∂ξk

+g(ik)Γ
(j)
(lk)u

(l)] ] + g(jk)[
∂2u(i)

∂ξ(k)∂ξ(j)
+
∂(u(l)Γ

(i)
(lj))

∂ξ(k)
+ Γ

(i)
(lk)u

(l)
,(j) − Γ

(l)
(jk)u

(i)
,(l)]

Equation (17), which has a nonconservative form, is rearranged into the
standard form for the use of the finite analytic method [6]. Using the stretched
coordinates ξi∗, the 12-point finite analytic discretization scheme based on the
local nonuniform grid spacing [6] is employed. The stretched coordinates ξi∗
are defined as:

ξi =
√
giiξi ∗ or ξi∗ =

l
√
gii
ξi

The first equation shows the relation between the curvilinear coordinates and
the stretched coordinates. The

√
gii are evaluated at ξk = constant and k 6= i.

Results and discussions

An unsteady three-dimensional incompressible flow solver based on the physi-
cal curvilinear coordinate system has been developed [6]. The 12-point finite
analytic scheme with enhanced kinematic boundary condition and numerical
approach was utilized in this development. The detailed discussions on the nu-
merical scheme can be found in [6]. The results of the following two test cases
to validate the pertinent numerical simulations are presented here.
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Figure 1: Convergence Histories for Different Time Steps

Re=100 Re=400 Re=1000

Figure 2: Comparison of the Centerline u-Velocity Profile

Lid-driven three-dimensional cavity flow

The velocity components on the wall are zero, except on the moving wall with a
velocity of 1. The computations are performed on a grid consisting of 16×16×16
grid points. The dimensionless time step is taken from 0.01 to 2. The matrix
that consists of the coefficients resulting from the finite analytic method was
solved using the GMRES (Generalized Minimal RESidual) method [9]. To ob-
tain the solution for the steady state, only one iteration per time step is used.
All computations are performed using a relaxation factor of 1. Figure 1 shows
that the rate of the convergence depends on the size of the time step in the range
from 0.01 to 2. The computations lead to a fully converged solution within fewer
than 200 iterations.

Figure 2 shows the comparison of the center line u-velocity profiles at the
different Reynolds numbers. The computations were performed on both uniform
and nonuniform grids. The time increment is set to ∆t = 1.

Peric [7] has reported that if the angle between the two coordinate lines is
greater than 135◦ or less than 45◦, then the pressure correction equation does not
converge at all, or the convergence rate is too slow. Cho and Chung [8] used a
new treatment method for nonorthogonal terms in the pressure-correction equa-
tion in order to enlarge the ranges for convergence and found that the smaller
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Re=400 Re=2000

Figure 3: Convergence Histories in Various Inclined Angles (Degree)

the angle, the narrower the region of relaxation factor. In the present research,
the computations are performed at several inclined angles
(90◦, 60◦, 45◦, 30◦, 15◦, 10◦, and5◦) to check the influence on the rate of the con-
vergence due to the grid skewness. As mentioned, all computations of the three-
dimensional cavity flow are performed using a relaxation factor of 1. The solu-
tion always converged, even for very small inclined angles, but more iterations
were required for convergence for small inclined angles. Figure 3 shows the
convergence histories in various inclined angles from 90 to 5 degrees.

Ship flow with the free surface

It has been shown that the present code is less mesh sensitive and converges
well even at the large grid skewness for the three-dimensional cavity flow. For
the next case, three-dimensional moving free surface turbulent flow was simu-
lated. The upper boundaries move arbitrarily with the flow, and the grid in the
computational domain is generated at every time step until the solution of the
steady state is obtained.

Table 1: Grid Dependence Tests for the Wigley Hull

I II III
Grid Points 125× 35× 34 125× 40× 40 125× 50× 48
Total Nodes 148,750 200,000 300,000
Time Increment 0.005 0.005 0.005
Total time steps 400 400 400
Total CPU (hours) 34.91 46.56 60.68
Reynolds Number 1.0× 106 1.0× 106 1.0× 106

Froude Number 0.289 0.289 0.289

Table 1 shows the information for these computations. The computations
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Figure 4: The Wave Elevations on the Hull Surface for different grid sizes and
a Perspective view of the wave elevation

were performed with three different grids under the same conditions. The
Baldwin-Lomax turbulence model [9] was used to calculate the eddy viscos-
ity in the turbulent flow. The Froude number and the Reynolds number used in
the experiment [10] are 0.289 and 3.3 × 106, respectively. The wave elevations
on the hull surface and a perspective view of the wave elevation is shown in Fig-
ure 4. A deviation of wave profiles is observed in the bow region, while better
agreement is seen toward the stern. The bow peak is not captured properly due
to the large spacing of (∆x) in a region of relatively high gradient. The residue
remains around 10−4after t = 0.5.

The comparison of these numerical simulations with the results reported in
open literature have shown very good agreement. It is demonstrated, especially
in the cavity flow simulation, that the numerical simulations involving a physical
curvilinear coordinate system are less mesh sensitive.
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