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An Inverse Problem in a Parabolic Equation ∗

Zhilin Li & Kewang Zheng

Abstract

In this paper, an inverse problem in a parabolic equation is studied.
An unknown function in the equation is related to two integral equations
in terms of heat kernel. One of the integral equations is well-posed while
another is ill-posed. A regularization approach for constructing an approx-
imate solution to the ill-posed integral equation is proposed. Theoretical
analysis and numerical experiment are provided to support the method.

1 Introduction

Consider a parabolic equation of the form:

ut = uxx + a(t)u, 0 < x, 0 < t < T, (1)

u(x, 0) = 0, 0 < x, (2)

u(0, t) = f(t), f(0) = 0, 0 < t < T, (3)

−ux(0, t) = g(t), g(t) > 0, 0 < t < T, (4)

where f(t) and g(t) are assumed to be known and strictly increasing functions.
We want to find the unknown function u(x, t) and a function a(t) to satisfy the
equations above. So this is an inverse problem.
Since the publication of the AMS monograph [7] in 1984, hundreds of re-

search papers on inverse problems have been published. For the problem studied
here, we refer the readers to the references in [1, 2, 3, 4, 5, 6, 8].
Assumed that (1)-(4) has a solution u(x, t), then it can be shown that

u(x, t) = 2

∫ t
0

K(x, t− τ) g(τ) eθ(t)−θ(τ)dτ, (5)

where K(x, t) =
e−x

2/4t

√
4πt
, (6)

and θ(t) =

∫ t
0

a(τ)dτ. (7)
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Let x approach to zero in (5). Using the boundary condition (3), we have an
integral equation for y(t):

∫ t
0

g(τ)
√
t− τ

y(τ) dτ =
√
πf(t)y(t), (8)

from which we can obtain θ(t) as follows,

y(t) = e−θ(t), y(0) = 1. (9)

Ideally we can solve the Volterra’s equation of the second type (8) to get y(t),
and then θ(t) from (9). Once we have θ(t), the inverse problem can be solved
from the second integral equation (7) to get a(t). With given data f(t) and g(t)
in C[0, T ], the integral equation (8) for y(t) is well-posed, so is θ(t) from (9).
However, the other integral equation (7) for a(t) in the space C[0, T ] is ill-posed
because a(t) does not depend on the data θ(t) continuously.

2 Regularization approach

From now on we shall focus our attention to the integral equation (7). The idea
of regularization method for ill-posed problem can be found in [8]. Let

A[a] =

∫ t
0

a(τ) dτ = θ(t),

where

θ(t) = − ln y(t). (10)

We start with the so-called smoothing functional

Mα[a, θ] = ||A[a]− θ||2L2[0,T ] + α ||a||
2
W 1
2 [0,T ]

. (11)

The solution of the minimization problem of the functional above will serve as an
an approximate solution to the ill-posed integral equation (7) with appropriate
choice of α. We have the following theorem.

Theorem 1 For every element θ(t) in L2[0, T ] and every parameter α > 0,
there exists a unique element aα(t) ∈ C[0, T ] for which the functional (11)
attains its greatest lower bound:

Mα[aα, θ] = inf
a∈C[0,T ]

Mα[a, θ].

Proof: Take the first variation of the functional (11) and set it to zero to
obtain the Euler integro-differential equation

α (a′′ − a) =

∫ T
τ

dt

∫ t
0

a(ξ) dξ −

∫ T
τ

θ(t) dt (12)
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with the boundary conditions:

a(0) = a∗0, a(T ) = a
∗
T , a

∗
0, a

∗
T are given. (13)

Under conditions (13), the associated homogeneous equation

α (a′′ − a) =

∫ T
τ

dt

∫ t
0

a(ξ) dξ

can not possess a non-trivial solution. In fact, if a(τ) were such a solution, then
multiplying both sides above by a(τ) and integrating with respect to τ from 0
to T , one should get the following equality

−α||a||2W 1
2 [0,T ]

= ||A[a] ||2L2[0,T ],

which would contradict the hypothesis that α > 0. Therefore, the inhomoge-
neous equation (12) has one and only one solution aα. Thus the theorem is
proved.
The above theorem means that an operator R(θ, α) into C[0, T ] is defined

on the set of pairs (θ, α), where θ ∈ L2[0, T ] and α > 0, so that the element
aα = R(θ, α) minimizes the functional M

α[a, θ]. We also need to show that the
operatorR(θ, α) is a regularizing one for equation (7) by selecting an appropriate
parameter α.

Theorem 2 Let aT be the solution of equation (7) corresponding to a given
θ = θT , that is, A[aT ] = θT . Then for any positive number ε, there exists a
number δ(ε) > 0 such that the inequality

||θ̄ − θT ||L2 ≤ δ ≤ δ(ε)

implies the inequality

||aα − aT ||C ≤ ε,

where

aα = R(θ̄, α), with α = α(δ) = δλ, 0 < λ ≤ 2.

Proof: Since the functional Mα[a, θ̄] attains its minimum when a = aα, we
have

Mα[aα, θ̄] ≤M
α[aT , θ̄].

Therefore

α||aα||
2
W 1
2 [0,T ]

≤Mα[aα, θ̄] ≤M
α[aT , θ̄] ≤ δ

2 + α||aT ||
2
W 1
2 [0,T ]

≤ δλd,

where

d = 1 + ||aT ||
2
W 1
2 [0,T ]

.



206 An Inverse Problem in a Parabolic Equation

Thus

||aα||
2
W 1
2 [0,T ]

≤ d, and ||aT ||
2
W 1
2 [0,T ]

≤ d.

Consequently, both aα and aT belong to the following compact subset of space
C[0, T ]

E =
{
a(t) : ||a||2W 1

2 [0,T ]
≤ d
}
.

By virtue of the continuity of the inverse A−1 defined on AE, for arbitrary
ε > 0, there exists a number η(ε) > 0 such that the inequality

||θα − θT ||L2[0,T ] ≤ η(ε), for θα = A[aα], θT = A[aT ] ∈ AE

implies the inequality

||aα − aT ||C[0,T ] ≤ ε.

Now for θ̄ and θα, we have

||θα − θ̄||L2[0,T ] = ||A[aα]− θ̄||L2[0,T ] ≤M
α[aα, θ̄] ≤M

α[aT , θ̄] ≤ δ
λd,

and thus

||θα − θT ||L2[0,T ] ≤ ||θα − θ̄||L2[0,T ] + ||θ̄ − θT ||L2[0,T ]

≤ δλ/2
√
d+ δ ≤ δλ/2(1 +

√
d).

If we set

δ(ε) =

(
η(ε)

1 +
√
d

)2/λ
,

then the conclusion of the theorem follows. Therefore it is justified to take aα
as an approximate solution of equation (7) with an approximate left hand side
θ = θ̄.
Finally, the continuous dependence of the θT on y is almost clear from the

following. If ||yδ||C = ||ȳ − yητ ||C ≤ δ, from (10), we can conclude:

||θ̄ − θT ||
2
L2[0,T ] =

∫ T
0

(ln ȳ(t)− ln yT (t))
2
dt ≤

∫ T
0

y2δ
y2T
dt ≤ c2δ2, (14)

where

c2 =

∫ T
0

1

y2T (t)
dt.

The following theorem shows that y(t) depends on the initial data f(t) and g(t)
continuously.
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Theorem 3 Suppose

||fδ||C = ||f̄ − fT ||C ≤ δ, and ||gδ||C = ||ḡ − gT ||C ≤ δ.

Define

D =

√
π
∫ T
0
yT (t) dt+

∫ T
0
yT (t)√
T−t
dt

√
π
∫ T
0 gT (t) dt+

∫ T
0
fT (t)√
T−t
dt
, (15)

then

||yδ||C = ||ȳ − yT ||C ≤ 2Dδ. (16)

Proof: From (8) we can write

∫ t
0

ḡ(τ)
√
t− τ

ȳ(τ)dτ =
√
πf̄(t)ȳ(t),

and

∫ t
0

gT (τ)√
t− τ

yT (τ)dτ =
√
πfT (t)yT (t).

This implies

√
π
(
f̄(t)yδ(t) + fδ(t)yT (t)

)
=

∫ t
0

ḡ(τ)yδ(τ) + gδ(τ)yT (τ)√
t− τ

dτ.

Multiplying both sides by 1/
√
T − t and integrating with respect to t over [0, T ],

we can obtain
∫ T
0

f̄(t)yδ(t) + fδ(t)yT (t)√
T − t

dt =
√
π

∫ T
0

(ḡ(t)yδ(t) + gδ(t)yT (t)) dt.

Thus∣∣∣∣∣
∫ T
0

(
f̄(t)
√
T − t

−
√
πḡ(t)

)
yδ(t) dt

∣∣∣∣∣ ≤ δ
∫ T
0

(
yT (t)√
T − t

+
√
πyT (t)

)
dt,

from which (16) follows. This completes the proof of the theorem.

3 A numerical example

In this section, we provide an example with exact solution to see how the regu-
larization method proposed in this paper works. Take

fT (t) = 2(t+ 1)
√
t/π, and gT (t) = t+ 1. (17)

From (7) and (8), it is easy to verify that

yT =
1

t+ 1
, and aT (t) =

1

t+ 1
. (18)
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For simplicity, we use a uniform grid with step size h = T/(n+1). The first step
in the numerics is to replace (8) and (12) with finite difference approximation
on the grid to get the following recursive relations

y1 = 2g0

√
h/π

f1

yi =
2
(
(
√
i−
√
i− 1)g0 +

∑i
j=2(
√
i− j + 1−

√
i− j)gj−1yj−1

)√
h/π

fi
,

i = 2, · · · , n ,

and the system of linear equations

α

(
aj−1 − 2aj + aj+1

h2
− aj

)
= h2

n∑
i=j

i∑
k=1

ak − h
n∑
i=j

θi, j = 1, · · · , n, (19)

with a∗0 = 1 and a
∗
T = 0.5 corresponding to T = 1, see (13). Next, we take the

regularization parameter α in the form

α = α(δ) = (2CDδ)λ, 0 < λ ≤ 2. (20)

Table 1 shows the exact solution and the solution using the regularization
approach with the perturbations fδ(t) = gδ(t) = δ sin(2πt), n = 79, δ = 10

−6

and λ = 0.6. The results agree with each other pretty well.

Table 1: Reconstruction of a(t) using the regularization method. aT (t) is the ex-
act solution. aα(t) is the solution of the regularization method. The parameters
are: n = 79, T = 1.0, δ = 10−6, and λ = 0.6.

t 0.05 0.1 0.15 0.2 0.25
aT (t) 0.95238 0.90909 0.86956 0.83333 0.8
aα(t) 0.95614 0.91484 0.87606 0.83978 0.80595

t 0.3 0.35 0.4 0.45 0.5
aT (t) 0.76923 0.74074 0.71429 0.68966 0.66667
aα(t) 0.77446 0.74520 0.71802 0.69274 0.66919

t 0.55 0.6 0.65 0.7 0.75
aT (t) 0.64516 0.62500 0.60606 0.58824 0.57143
aα(t) 0.64720 0.62661 0.60726 0.58903 0.57181

t 0.8 0.85 0.9 0.95
aT (t) 0.55556 0.54054 0.52632 0.51282
aα(t) 0.55555 0.54020 0.52578 0.51234

In practice, the exact solution aT is unknown. More work remains to be done
to study the behavior, such as accuracy and stability, of a numerical method
applied to the equation (19).
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In a summary, the regularization method proposed in this paper seems to
be an effcient way for solving the inverse problem described at the begining of
this paper. We have proved some good theoretical results about this method.
Naive numerical discretization gives reasonably accurate result for the example
provided in the paper. More work needs to be done on numerical study of such
problems especially for two or higher dimensional problems.
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