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ON OSCILLATORY SOLUTIONS OF THIRD ORDER

DIFFERENTIAL EQUATION WITH QUASIDERIVATIVES

Miroslav Bartušek

Abstract. This paper gives sufficient conditions under which all oscillatory solu-

tions of a third order nonlinear differential equation with quasiderivatives vanish at

infinity. Applications to third order differentials equation with a middle term are

also given.

I. Introduction

Consider the differential equation

y[3] =

(
1

a2

(
1

a1
y′
)′)′

= r(t) f(y) (1)

where J = [0, T ), T 6 ∞, r ∈ C◦(J), f ∈ C◦(R), R = (−∞,∞), ai ∈ C1(J),
i = 1, 2, ai are positive on J ,

r(t) > 0 on J, f(x)x > 0 for x 6= 0 , (H1)

and y[i], i = 0, 1, 2, 3, is the i-th quasiderivative of y defined by

y[0] = y , y[i] =
1

ai(t)

(
y[i−1]

)′
, i = 1, 2, y[3] =

(
y[2]
)′
. (2)

Let a function y : I → R have the continuous quasiderivatives up to the order 3
on I and let (1) hold on I. Then y is called a solution of (1). A solution y is called
oscillatory if it is defined on J , sup

τ6t<T
|y(t)| > 0 for an arbitrary τ ∈ J and if there

exists a sequence of its zeros tending to T . Denote by O the set of all oscillatory
solutions of (1).
Due to the methods used, we will study two cases:

(
a2(t)

a1(t)

)′
6 0 , t ∈ J , (H2)
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and (
a2(t)

a1(t)

)′
> 0 , t ∈ J . (H3)

A great effort has been exerted to the study of the asymptotic behaviour of
oscillatory solutions of (1) and its special cases, see e.g. [1–6, 8, 10, 12].
If a2 ≡ a1 ≡ 1 and T = ∞, sufficient conditions are given in [1,10] for every

oscillatory solution y of (1) to vanish at infinity, i.e.

lim
t→∞

y(t) = 0 . (3)

Theorem A ([10]). Let T = ∞, (H1) hold, a1 ≡ a2 ≡ 1, and 0 < M 6 r(t) on
R+. If y ∈ O, then (3) holds.

The same problem is solved for (1) in [6].

Theorem B. Let (H1) and (H3) hold and let

0 < M 6 r(t) , a1(t) a2(t) 6M1 <∞ on J . (4)

If y be an oscillatory solution of (1), then lim
t→T−

y(t) = 0.

Proof. The assertion is proved in [6] if T = ∞ and (4) holds on R+. But in the
proof, the fact that J is infinite is not used; thus the statement holds for T < ∞
as well. �
The following example shows that (3) can not be valid.

Example 1. The differential equation((
e−t y′

)′)′
= 2e−t y , t ∈ R+

has an oscillatory solution y = sin t and (3) does not hold. Note that (H1) and
(H2) are valid.

Besides (3), other asymptotic behaviour of oscillatory solutions of (1) with T =
∞ are often investigated. In [3, 4] we give sufficient conditions under which the
sequences of the absolute values of all local extrema of y[i], i ∈ {0, 1, 2}, in a
neighbourhood of∞ are monotone for an oscillatory solution y of (1) in case r(t) 6
0.
In this paper, the above mentioned results are extended to (1) under the hy-

pothesis (H1). In the last paragraph, applications to the third order differential
equation with a middle term are given.
We do not discuss the problem of the existence of oscillatory solutions of (1). It

is solved in [8, 12], and for the case of usual derivatives (i.e., for a1 ≡ a2 ≡ 1), in
the monographes [1] and [10] (for T =∞).
The following lemma is a simple consequence of the definition of quasiderivatives

and of (H1).

Lemma 1. Let (H1) hold and let y be a solution of (1) defined on I = [t1, t2] ⊂ J ,
t1 < t2. Let y

[−1] ≡ y[2]. If i ∈ {0, 1, 2} and y[i](t) > 0 (< 0) on I, then y[i−1] is
increasing (decreasing) on I.

Remark 1. Note that < and increasing (> and decreasing) can be replaced by 6
and nondecreasing (> and non-increasing).
The following lemma describes the structure of oscillatory solutions of (1).
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Lemma 2 ([2]). Let y ∈ O. Then sequences {tik}, i = 0, 1, 2, k = 1, 2, . . . exist
such that lim

k→∞
t0k = T ,

t0k < t1k < t2k < t0k+1 , y[i](tik) = 0 , i = 0, 1, 2 ,

(−1)j+1y[j](t) y(t) > 0 on (t0k, t
j
k) ,

< 0 on (tjk, t
0
k+1) , j = 1, 2; k = 1, 2, . . .

Remark 2. Note that according to Lemmas 1 and 2, the sequences {|y(t1k)|}
∞
1 ,

{|y[1](t2k)|}
∞
1 and {|y

[2](t0k)|}
∞
1 are the sequences of the absolute values of all local

extrema of y, y[1] and y[3] on [t00, T ), respectively.
Sometimes it is useful to express (1) in an equivalent form.

Lemma 3. Let a0 ∈ C◦(J) be positive. Then the transformation

x(t) =

∫ t
0

a0(s) ds , Y (x) = y(t) , t ∈ J, x ∈ [0, x
∗) , x∗ = x(T )

transforms (1) into (
1

A2

(
1

A1

•
Y

)•)•
= R(x) f(Y ) (5)

where Ai(x) =
ai(t(x))
a0(t(x))

, i = 1, 2 , R(x) = r(t(x))
a0(t(x))

, d
dx
= • and t(x) is the inverse

function to x(t). At the same time,

Y {i}(x) = y[i](t) , i = 0, 1, 2, 3 , (6)

where

Y {0} = Y , Y {j} =
1

Aj(x)

(
Y {j−1}

)•
, j = 1, 2 , Y {3} =

(
Y {2}

)•
.

Proof. Use a direct computation or see [4]. �

2. Case (H2)

Some results will be used that are obtained for (1) under a different assumptions
than (H1). Consider (

1

b(σ)
Z ′′
)′
+ r̄(σ) f(Z) = 0 (7)

where I ⊂ R+, b ∈ C1(I), r̄ ∈ C1(I), f ∈ C◦(I), f(x)x > 0 for x 6= 0,

b(σ) > 0 , r̄(σ) > 0 on I , f ′(x) > 0 on R .

The quasiderivatives are given by

Z [0] = Z , Z [1] = Z ′ , Z [2] =
Z ′′

b(σ)
.

Note that the sign of r̄ is opposite to the one of r.
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Lemma 4. Let b′ > 0 and r̄′ > 0 on I. Let Z be a solution of (7) the second
quasiderivatives Z [2] of which has three consecutive zeros σ0, σ1 and σ2 ∈ I, σ0 <
σ1 < σ2. Then √

2|Z ′(σ2)| < |Z
′(σ1)| .

Proof. The assertion is proved for T =∞ and for an oscillatory solution in [4] (see
Lemma 2.4 and Definition 2.1). But it follows from the proof that only information
on [σ1, σ2] and the existence of the zero σ0 were used. Thus, the statement is valid
under our assumptions as well. �
The following theorem investigates the asymptotic behaviour of the first and the

second quasiderivatives of an oscillatory solution of (1).

Theorem 1. Let (H1) and (H2) hold. Let y ∈ O and {tik}, i = 0, 1, 2, k = 1, 2, . . . ,
be given by Lemma 2.

(i) Then the sequence {|y[1](t2k)|}
∞
1 of the absolute values of all local extrema of y

[1]

on [t01, T ) is decreasing.

(ii) Let r ∈ C1(J), f ∈ C1(R), f ′ > 0 on R and
(
r(t)
a1(t)

)′
6 0 on J .

Then lim
t→T

y[1](t) = 0 and

∣∣∣y[1](t2k)∣∣∣ 6 2 1−k2 ∣∣∣y[1](t21)∣∣∣ , k = 1, 2, . . . (8)

(iii) Let r ∈ C1(J), f ∈ C1(R), f ′ > 0 on R and
(
r(t)
a2(t)

)′
6 0 on J .

Then the sequence
{
|y[2](t0k)|

}∞
1
of the absolute values of all local extrema of y[2]

on [t01, T ) is decreasing.

Proof. Note that according to Remark 2, the sequences
{
|y[1](t2k)|

}∞
1
and{

|y[2](t0k)|
}∞
1
are the sequences of the absolute values of all local extrema of y[1]

and y[2], respectively.

(i) Let k ∈ {2, 3, . . . } and suppose, without loss of generality, that

y(t) > 0 on (t0k, t
0
k+1) .

Thus, according to Lemmas 1 and 2 there exists t∗k such that

t∗k ∈ (t
0
k, t
1
k) , y(t

∗
k) = y(t

2
k) ,

y is increasing (decreasing) on [t∗k, t
1
k] (on [t

1
k, t
2
k]) ,

y[1](t) > 0 (< 0) on [t∗k, t
1
k) (on t

1
k, t
2
k) ,

y[1](t1k) = 0 , y[1](t2k−1) > y[1](t∗k) > 0 ,

y[2](t) < 0 and |y[2]| is decreasing on [t∗k, t
2
k) , y

[2](t2k) = 0 .

(9)

Let ϕ and ψ be the inverse functions to y:

t∗k 6 ϕ(v) 6 t1k , y(ϕ(v)) = v ,

t1k 6 ψ(v) 6 t2k , y(ψ(v)) = v ,

v ∈ I = [y(t∗k), y(t
1
k)] .
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We prove by an indirect proof that

y[1](ϕ(v)) >
∣∣∣y[1](ψ(v))∣∣∣ , v ∈ I . (10)

Observe that (9) yields y[1](ϕ(v)) > 0 and y[1](ψ(v)) < 0 for v ∈ I1 =
[
y(t∗k), y(t

1
k)
)
.

Define

S(v) = y[1](ϕ(v)) − |y[1](ψ(v))| , v ∈ I .

Suppose, contrarily, that there exists v̄ ∈ I1 such that

S(v̄) < 0 . (11)

Then using (2), (9) and (H2), we have

d

dv
S(v) =

y[2](ϕ(v))a2(ϕ(v))

y′(ϕ(v))
+
y[2](ψ(v))a2(ψ(v))

y′(ψ(v))

=
y[2](ϕ(v))

y[1](ϕ(v))

a2(ϕ(v))

a1(ϕ(v))
+
y[2](ψ(v))

y[1](ψ(v))

a2(ψ(v))

a1(ψ(v))

6 y[2](ψ(v))a2(ψ(v))
a1(ψ(v))

[
1

y[1](ϕ(v))
+

1

y[1](ψ(v))

]
, v ∈ I1 .

Thus

v ∈ I1 , S(v) < 0 R+ightarrow
d

dv
S(v) < 0 .

¿From this and from (11), it is clear that

S(v) < 0 on [v̄, y(t1k)] ,

and this contradicts S(y(t1k)) = 0. Thus, (10) holds and using v = y(t
∗
k) in (10) and

(9), y[1](t2k−1) > |y
[1](t2k)|.

(ii) Let t0 < t1 < t2, t
1
0 6 t0 be consecutive zeros of y

[2]. Let us transform (1)
into (5) according to Lemma 3 with a0 ≡ a1. Then xi, xi = x(ti), i = 0, 1, 2, are
the consecutive zeros of Y {2}, x0 < x1 < x3.
The next transformation

σ = x2 − x , Y (x) = Z(σ) , x ∈ [x0, x2] , σ ∈ [0, x2 − x0] , (12)

transforms (5) into (7) where

b(σ) =
a2(t(x2 − σ))

a1(t(x2 − σ))
, r̄(σ) =

r(t(x2 − σ))

a1(t(x2 − σ))

and according to (H2) and d
dt

(
r(t)
a1(t)

)
6 0, we have

b′(σ) > 0 and r̄′(σ) > 0 on [0, x2 − x0] ,
d

dσ
= ′ .
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As σ0 = 0, σ1 = x2 − x1, and σ2 = x2 − x0 are consecutive zeros of Z [2], Lemma 4
yields √

2|Z ′(x2 − x0)| < |Z
′(x2 − x1)| . (13)

Using (12) and (6) we have

|y[1](t0)| = |Y
{1}(x0)| = |

•
Y (x0)| = |Z

′(x2 − x0)| ,

|y[1](t1)| = |Y
{1}(x1)| = |

•
Y (x1)| = |Z

′(x2 − x1)|

and thus (13) yields
√
2|y[1](t1)| < |y[1](t0)|.

¿From this the inequality (8) holds and lim
t→T−

y[1](t) = 0.

(iii) We prove the third statement for (5) with a0 ≡ a2

((
1

A1

•
Y

)•)•
= R(x) f(Y ) ,

A1(x) =
a1(t(x))

a2(t(x))
, R(x) =

r(t(x))

a2(t(x))
, Y {1} =

1

A1(x)
Y • , Y {2} = (Y {1})• ;

then according to (6), it will hold for (1) too.

Applying Lemma 2 to (5), sequences {xik}, k = 1, 2, . . . , i = 0, 1, 2 exist such
that

x0k < x1k < x2k < x0k+1 , k = 1, 2, . . . , lim
k→∞

x0k = x(T ) ,

Y {i}(xik) = 0 , (−1)
j+1Y {j}(x)Y (x) > 0 on (x0k, x

j
k) ,

< 0 on (xjk, x
0
k+1) ,

k = 1, 2, . . . ; j = 1, 2 .

(14)

Let k ∈ {1, 2, . . . }. Put τ0 = x1k, τ1 = x2k, τ2 = x0k+1, ∆1 = [τ0, τ1], ∆2 = [τ1, τ2],

δ1 = τ1 − τ0, δ2 = τ2 − τ1 and suppose, for simplicity, that Y {1}(x) 6 0 on ∆1.
Then (14) and Lemma 1 yield

Y (x) > 0 , Y {1}(x) < 0 , Y {2}(x) < 0 , Y and |Y {2}| are decreasing

and |Y {1}| is increasing on (τ0, τ1) ;

Y (x) > 0 , Y {1}(x) < 0 , Y {2}(x) > 0 , Y and |Y {1}| are decreasing

and Y {2} is increasing on (τ1, τ2) .

(15)

The statement will be valid if we prove that

|Y {2}(x0k)| > |Y
{2}(τ0)| > Y {2}(τ2) .

As the first inequality follows from (14) and Lemma 1, the second one only must
be proved. Thus, suppose that

|Y {2}(τ0)| 6 Y {2}(τ2) . (16)
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According to (15) and the assumptions of the theorem, the function Y {2} is concave
on [τ0, τ2]:

(
Y {2}(x)

)••
=
(
Y {3}(x)

)•
=

[
r(t(x))

a2(t(x))
f(Y (x))

]•
=

=

(
r(t(x))

a2(t(x))

)•
f(Y (x)) +

r(t(x))

a2(t(x))
f ′(Y (x))Y {1}(x)

a1(t(x))

a2(t(x))
6 0 ,
(17)

x ∈ ∆1 ∪∆2 .

Thus, Y {2} is above the secant line on ∆1 ∪∆2, and using (14) and (15), we have

|Y {1}(τ1)| =

∫
∆1

|(Y {1}(x))•| dx =

∫
∆1

|Y {2}(x)| dx 6 |Y {2}(τ0)|
δ1
2
,

|Y {1}(τ1)| > Y {1}(τ2)− Y {1}(τ1) =
∫
∆2

Y {2}(x) dx > Y {2}(τ2)
δ2
2
.

¿From this and (16),

δ1 > δ2 . (18)

Furthermore, according to (1), (15) and (17), Y {3} > 0 is decreasing on ∆1 ∪∆2.
From this it follows that

|Y {2}(τ0)| =

∫
∆1

Y {3}(x) dx > Y {3}(τ1) δ1 ,

Y {2}(τ2) =

∫
∆2

Y {3}(x) dx < Y {3}(τ1) δ2 .

Thus, with respect to (16), δ1 < δ2 and this contradicts (18). �

The following theorem states a sufficient condition under which oscillatory solu-
tions tend to zero as t→ T .

Theorem 2. Let (H1) and (H2) hold, r ∈ C1(J), f ∈ C1(R), f ′ > 0 on R,

(
r(t)

a1(t)

)′
6 0 , (19)

and let one of the following assumptions hold:

(i)
(
r(t)
a2(t)

)′
6 0, 0 < M 6 r(t)

a1(t)
for t ∈ J ;

(ii) a2(t)
a21(t)

r(t) >M > 0 for t ∈ J ;

(iii)
T∫
0

a1(s) ds <∞.

If y ∈ O, then lim
t→∞

y(j)(t) = 0 for j = 0, 1.
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Proof. Let y ∈ O. According to Lemma 3 with a0 ≡ a1, it is sufficient to prove the
results for(5) only:

(
1

A2(x)
Y ••

)•
= R(x) f(Y ) ,

d

dx
= • , (20)

A1 ≡ 1 , A2(x) =
a2(t(x))

a1(t(x))
, R(x) =

r(t(x))

a1(t(x))
, x ∈ I = [0, x∗) , x∗ = x(T ) ,

Y {1} = Y • , Y {2} =
1

A2(x)
Y •• . (21)

Denote by {xik}, i = 0, 1, 2, k = 1, 2, . . . , the sequences given by Lemma 2 for (20)
(i.e. xik = t

i
k) and put

∆k = [x
0
k, x

1
k] .

Then, according to Lemmas 1 and 2,

Y {1}(x)Y (x) > 0 , Y {2}(x)Y (x) 6 0 for x ∈ ∆k , (22)

|Y {1}| and |Y {2}| are decreasing on ∆k .

Furthermore, using (19),

(
R(x)

A1(x)

)•
= R•(x) =

(
r(t)

a1(t)

)′
t•(x) 6 0 on I ,

the assumptions of Th. 1 (ii), applied to (20), are fulfilled. Thus, lim
x→x∗

Y {1}(x) = 0

and
|Y {1}(x0k)| 6 |Y {1}(x2k−1)| 6 2

2−k
2 |Y {1}(x21)| , k > 2 ; (23)

note that the first inequality follows from Lemmas 1 and 2.
We prove indirectly that

lim
t→T

Y (t) = 0 . (24)

Thus suppose, without loss of generality, that

|Y (x1k)| >M1 > 0 , k = 1, 2, . . .

Then, according to Lemmas 1 and 2, there exists a sequence x̄k ∈ (x0k, x
1
k) such

that

|Y (x̄k)| =
M1
2
,
M1
2
6 |Y (x)| 6M1 on ∆̄k = [x̄k, x1k] . (25)

Let δk = x
1
k − x̄k. Using (22) and (23), we have

M1
2
6 |Y (x1k)− Y (x̄k)| =

∫
∆̄k

|Y {1}(x)| dx

6 |Y {1}(x0k)| δk 66 2
2−k
2 δk|Y

{1}(x21)|

and thus
lim
k→∞

δk =∞ . (26)
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(i) According to (19) and (22),

|Y {2}(x0k)| >
[
Y {2}(x1k)− Y

{2}(x̄k)
]
sgn Y (x1k) =

∫
∆̄k

Y {3}(x) sgn Y (x) dx

=

∫
∆̄k

R(x) f(Y (x)) sgn Y (x) dx >Mδk min
M1
2 6s6M1

|f(s)| > 0

and thus (26) yields limk→∞ Y {2}(x0k) =∞ which contradicts Theorem 1 (iii).

(ii) Using (22), (H2) and the assumptions, we have for x ∈ ∆̄k:

A2(x)|Y
{2}(x)| > A2(x)

[
Y {2}(x1k)− Y

{2}(x)
]
sgn Y (x1k) =

= A2(x)

∫ x1k
x

|Y {3}(s)| ds >
∫ x1k
x

R(s)A2(s)|f(Y (s))| ds >

>MM2(x
1
k − x) , M2 = min

M1
2 6s6M1

|f(s)| > 0 .

¿From this and from (21),

Y {1}(x̄k) =

∫
∆̄k

A2(x)|Y
{2}(x)| dx >MM2

∫
∆̄k

(x1k − x) dx =
MM2
2

δ2k .

Since lim
x→x∗

Y {1}(x) = 0, Y {1}(x̄k) is bounded, say

|Y {1}(x̄k)| 6M3 , k = 1, 2, . . . ,

and we can conclude that δk is bounded as well. This contradiction to (26) proves
the statement.

(iii) In this case, x∗ <∞ and I is bounded which contradicts (26). �

Remark 3. (i) Note that
(
r(t)
a1(t)

)′
6 0 follows from (H2) and the fact that(

r(t)
a2(t)

)′
6 0 :

(
r

a1

)′
=

(
r

a2

a2
a1

)′
=

(
r

a2

)′
a2
a1
+

r

a2

(
a2
a1

)′
6 0 .

(ii) The differential equation in Ex. 1 fulfills all assumptions of Th. 2 (i) with the

exception of 0 < M 6 r(t)
a1(t)
.

3. Case (H3)

In this section (1) will be studied under the assumption (H3).

Theorem B gives us a sufficient condition for every oscillatory solution to vanish
at T . We generalize this result as follows.
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Theorem 3. Let (H1) and (H3) hold and let

M ∈ (0,∞), a1(t) a2(t) 6Mr2(t), t ∈ J .

Then for every oscillatory solution y of (1), lim
t→T−

y(t) = 0.

Proof. Using Lemma 3 with a0 = r, the statement follows from Theorem B applied
to (5). �

Remark 4. (i) It is proved in [6] that if (H3) holds, then
{√

a1
a2
|y[1]|

∣∣
t=t2

k

}∞
k=1
is a

decreasing sequence.
(ii) Note that Theorem B is the special case of Theorem 3. Furthermore, if

a1(t) = a2(t) = r(t) = e
−t, J = R+ ,

then the assumptions of Theorem 3 are fulfilled and the ones of Theorem 3 not.
Thus Theorem 3 is a generalization of Theorem B.

4. Applications

We apply the previous results to the equation

y′′′ + q(t)y′ = s(t) f(y) (27)

where q ∈ C◦(R+), s ∈ C◦(R+), f ∈ C(R),

s(t) > 0 on R+ , f(x)x > 0 for x 6= 0 . (H4)

A solution y of (27) is called oscillatory if it is defined on R+, sup
τ6t<∞

|y(t)| > 0 for

every τ ∈ R+ and there exists a sequence of zeros of y tending to ∞.

Let h be a positive solution on [τ,∞), τ ∈ R+, of the equation

h′′ + q(t)h = 0 . (28)

Then (27) is equivalent to (1) (see [5] or make a direct computation) on J = [τ,∞),
where T =∞,

a1(t) = h(t) , a2(t) =
1

h2(t)
, r(t) = s(t)h(t) ,

y[1] =
y′

h
, y[2] = h2(y[1])′ .

(29)

Thus (H1) is satisfied, (H2) holds if h is increasing, and (H3) holds if h is decreasing.

Theorem 4. Let (H4) hold,

q(t) 6 0 , s(t) >M > 0 for t ∈ [M1,∞)

and
∞∫
0

t|q(t)| dt <∞ whereM andM1 are positive constants. Then every oscillatory

solution of (27) tends to zero as t→∞.

Proof. If follows from [11] and from
∞∫
0

t|q(t)| dt < ∞ that (28) is non-oscillatory

and there exists a positive solution h of (27) that is decreasing for large t and
lim
t→∞

h(t) = h0 ∈ (0,∞). Thus, the conclusion follows from Theorem 3. �
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Theorem 5. Let (H4) hold, s ∈ C1(R+), f ∈ C1(R), f ′ > 0 on R,

q(t) > 0 , 0 < M 6 s(t) , s′(t) 6 0 for t ∈ [M1,∞) ,

and
∞∫
0

tq(t) dt <∞ where M and M1 are positive constants. Then every oscillatory

solution of (27) tends to zero as t→∞ along with its first derivative.

Proof. It follows from [7] and from
∫ t
0
tq(t) dt < ∞ that (28) is nonoscillatory

and there exists a positive solution h of (28) that is increasing for large t and
lim
t→∞

h(t) = h0 ∈ (0,∞). Then (27) is equivalent (1) and (29). Thus, the statement

follows from Theorem 2 (ii) and the fact that lim
t→∞

y′(t) = lim
t→∞

y[1](t)h(t) = 0 (see

Theorem 1 (ii)). �
Remark 5. Theorems 4 and 5 expand the results obtained in [9].
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