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THE MATHEMATICS OF SUSPENSIONS: KAC WALKS AND

ASYMPTOTIC ANALYTICITY

EUGENE C. ECKSTEIN, JEROME A. GOLDSTEIN, & MARK LEGGAS

Abstract. Of concern are suspension flows. These combine directed and
random motions and are typically modelled by parabolic partial differential
equations. Sometimes they can be better modelled (in terms of fitting the data
generated by certain blood flow experiments) by hyperbolic equations, such as
the telegraph equation, which have parabolic (or analytic) asymptotics.

1. Motivation

Engineering models for practical suspension flows depict the erratic motions of
the individual particles with the mathematics of Brownian motion and diffusion.
The particles in such flows include blood cells that move through the body’s vessels
or the passages of an artificial kidney or lung, the pulpy material in fruit juice that
is being processed or sipped through a straw, and bits of coal in a coal-oil slurry
being fed to a burner in an electrical power generation plant. These particles are far
from small, usually are not present as a dilute species, and often exhibit large-scale
erratic motions due to interaction with one another in the shearing flow. Despite
these differences from true Brownian motion, the engineering models are functional,
as Acrivos [1] noted in his recent review. But he also noted that aspects remain
to be described well. In particular, the question of scaling for the strength of the
erratic motion is open - there is no direct equivalent of the temperature / thermal
energy that is linked to the motion of Brownian particles.
Such models depend on experimental measurements of effective properties to

represent the diffusion coefficient and the viscosity. The methods and representa-
tions used to compile and reduce data for such measurements originate in basic
mathematics and physics. Typically, experimental methods quantify the erratic
motion by timing displacements of known extents i.e., by observing the jumps in
the walk or related measures. Two particular random walks are of interest. One is
the simple drunkard’s walk that well is linked to the diffusion equation; the other is
the persistent random walk, which is linked to the telegraphers’ equation. The first
expects that the particle is essentially stationary at a position and will go in either
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direction; the next position depends only on the current position. The latter walk
assumes that the particle is moving with a velocity and the probabilistic aspect is
whether the sign of the velocity changes; it depends on the current and previous
position. Other aspects of the walks and the models are described in two other
papers related to our work [3, 13]. One paper explores the physical rationale for
describing the random motion in particular ways, and the other describes the initial
experimental results and an alternative means to obtain effective coefficients. In
this paper linkages between the two random walk models and their related differ-
ential equations and semigroups are explored. To motivate the treatments below,
a few aspects of suspension flows are reviewed below; more material appears in the
other papers and in a thesis by Leggas [12].
The small particles are coupled to the general flow by viscous tractions acting

on their surfaces. The Reynolds number that provides a fractional measure of the
inertia and viscous traction on the particle is typically of the order 0.001 or less,
which reflects small sizes and the small relative velocities between particles and the
local averagemotion of the suspensions. The axial speed then provides a reasonable,
but not perfect, indication of lateral position. Reasons for the imperfections include
that particles can tumble temporarily in groups as faster and slower bodies pass
one another. Also, many small inertial events either individually or cumulatively
act and lead to differences between the motion of points in an ideal continuum fluid
and the actual motion of suspended, bodies among many molecules that are much
closer to the point approximation.
The experimental method involves tracking identifiable bodies among equivalent

unmarked bodies. An identifiable body is found at a time when it has a velocity
similar to that of the reference frame in which the observations are being made. In
the initial studies, this reference frame speed is approximately the average speed of
the flow and the suspension flow occurs in a rectangular channel. The time incre-
ments needed for the body to move selected net distances in either axial direction
are measured. These first passage times are used to estimate the stochastic process
that is associated with the suspension flow. As noted above, the change of appar-
ent axial speed occurs because the particle changes its lateral location in a related
fashion.
The form of the experiments is similar to a model of Taylor dispersion devised

by Van den Broeck [18]. He assumed that the identifiable body would jump among
parallel tracks of known velocities and that the body would jump at times that
followed a Poisson distribution. The experiments collect observations of particle
motions while moving along the flow axis as if one of the Van den Broeck tracks
were being followed. The measured time increments are a means of approximating
the first passages to other tracks by a continuous time random walk. The particle
waits on the initial track until it jumps to some other track. The jump occurs
instantly with a change of velocity that is sufficient to make it match the speed of
the new track and provide an overall continuity of flow. A kind of dilute condition
is implicit in this analogy because a landing space always exists in the receiving
track.
One basic question is whether the velocity-based walk is a more fundamental

representation of the events than the more commonly used drunkard’s walk. The
drunkard’s walk implies a kind of local equilibrium; the history of the past motion
is not applicable. Use of the velocity-based requires extra initial knowledge, which
is reflected in its initial conditions. Improved engineering models of the complex



KAC WALKS AND ASYMPTOTIC ANALYTICITY 41

events in suspension flows may require that such detailed considerations be a part
of the measurements of effective properties that are entered into the model. This
paper explores the connections among the two random walks and especially focuses
on the incorporation of initial and boundary conditions in them and their duals.

2. The Kac Walk

We begin with the random walk model leading to the telegraph equation. The
idea of this model originated with G. I. Taylor [16]. It was developed by S. Goldstein
[7]. The connection with the Poisson process was noted by M. Kac [11]. Kac was
the main pioneer in using stochastic processes to help in understanding hyperbolic
partial differential equations, so we like to refer to this model as a “Kac walk”.
A particle starts at the origin 0 ∈ R on the real line. After each time interval

of length ∆t > 0 it will move, either to the left or right, a distance ∆x > 0. The
speed is c = ∆x/∆t. The first step is determined by the flip of a fair coin; one
moves either to the left or to the right with probability 1/2. On each subsequent
step, the direction of the move is determined by the flip of a weighted coin. Let a
be a positive constant so that a∆t < 1. The probability of reversing direction is
a∆t; the probability of continuing in the same direction is 1− a∆t. Let Sn be the
position of the random walk after n steps, or, at time n∆t. We want to compute
E(f(Sn)) for arbitrary functions f .
We shall reproduce Kac’s calculation. We do this to persuade the reader that

the surprising appearance of the telegraph equation and the Poisson process in the
description of the solutions is really elementary.
We now define the coin flips probabilistically. Let ξ be +1 or −1, with probability

1− a∆t or a∆t, respectively. Let ξ1, ξ2, . . . be independent identically distributed
random variables, distributed as ξ. Suppose for definiteness that the first step is to
the right. Then

Sn = S
+
n = c∆t(1 + ξ1 + ξ1ξ2 + . . .+ ξ1 . . . ξn−1).

If the first step were to the left, we would have

Sn = S
−
n = −S

+
n .

Let us now write Sn in place of S
+
n and consider

u±n (x) = E(f(x± Sn))

for x ∈ R. Conditioning on ξ1, we have

u+n (x) = E{f(x+ c∆t+ c∆tξ1(1 + ξ2 + . . .+ ξ2 . . . ξn−1))}

= E{f(x+ . . . )|ξ1 = −1}P{ξ1 = −1}

+E{f(x+ . . . )|ξ1 = 1}P{ξ1 = 1}

= a∆t u−n−1(x+ c∆t) + (1− a∆t)u
+
n−1(x − c∆t). (2.1)

Similarly

u−n (x) = a∆t u
+
n−1(x− c∆t) + (1− a∆t)u

−
n−1(x− c∆t). (2.2)

Equation (2.1) leads to

u+n (x)− u
+
n−1(x)

∆t
=
u+n−1(x+ c∆t)− u

+
n−1(x)

∆t

−au+n−1(x+ c∆t) + au
−
n−1(x+ c∆t).
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Taking the limit as ∆t,∆x→ 0 with a > 0 and c = ∆x/∆t fixed and with n∆t→ t,
we obtain functions u±(x, t) satisfying

∂u+

∂t
= c
∂u+

∂x
+ au+ + au−.

Similarly (2.2) leads to

∂u−

∂t
= −c

∂u−

∂x
+ au+ − au−.

Letting u = u++u−

2 , v = u+−u−

2 , we can add and subtract the above differential
equations to obtain

∂u

∂t
= c
∂v

∂x
,
∂v

∂t
= −c

∂u

∂x
− 2av. (2.3)

If we take ∂/∂t of the first equation in (2.3), ∂/∂x of the second, and eliminate
∂2v/∂t∂x we finally obtain the telegraph equation

1

c

∂2u

∂t2
= c
∂2u

∂x2
−
2a

c

∂u

∂t
,

or

∂2u

∂t2
+ 2a

∂u

∂t
= c2

∂2u

∂x2
. (2.4)

The initial conditions are

u(x, 0) = f(x),
∂u

∂t
(x, 0) = 0. (2.5)

The first is clear; the second is perhaps not, but it is a result of the assumption
that the first step determined the direction to move by flipping a fair coin.
When a = 0, each ξi is 1 and so

u±(x) = f(x± nc∆t),

whence

u(x, t) =
f(x+ ct) + f(x− ct)

2
.

This is the unique solution of the wave equation

∂2u

∂t2
= c2

∂2u

∂x2
(2.6)

(which is (2.4) with a = 0) with initial conditions (2.5). This helps explain the
second initial condition in (2.5).
If one lets ∆t,∆x → 0 in such a way that a → ∞, c → ∞, n∆t → t and

c2

a
→ D > 0, then the heat equation

∂u

∂t
=
D

2

∂2u

∂x2

would emerge, as it did in the classical (independent) work of Einstein, Bachelier,
and Smoluchowski. This gives the first formal connection between the telegraph
equation and the heat equation; more on this later.
Kac’s next calculation is especially interesting. Redo the random walk analysis in

continuous time. Thus we study one dimensional continuous motion with constant
speed c, which changes direction in a time interval of length dt with probability adt
(and maintains the same direction in this time interval with probability 1− adt).
This leads to a Poisson process {N(t) = Na(t) : t ≥ 0} with intensity a. That is,
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N(t) takes values in N0 = {0, 1, 2, . . .}, N(0) = 0, P{N(t) = k} = e−at(at)k/k! for
k ∈ N0, and for 0 ≤ t1 < t2 < . . . ,

N(t2)−N(t1), N(t3)−N(t2), N(t4)−N(t3), . . .

are independent. Then the number of sign changes in the velocity process up to
time t is (−1)N(t). Hence the position (or displacement) is

S(t) =

∫ t
0

v(τ)dτ = c

∫ t
0

(−1)N(τ)dτ,

which is the continuous analogue of Sn. This led Kac to derive (and prove) that
the solution of the telegraph equation problem (2.4), (2.5) is

u(x) =
1

2
{E[f(x+ c

∫ t
0

(−1)N(τ)dτ)] +E[f(x− c

∫ t
0

(−1)N(τ)dτ)]}

= E[v(x,

∫ t
0

(−1)N(τ)dτ)]

where v is the unique solution of the wave equation (2.6), (2.5). Thus to get the
solution u(x, t) of the telegraph equation, take the corresponding solution v(x, σ) of

the wave equation, but evalutate it at a random time σ =
∫ t
0 (−1)

N(τ)dτ determined
by a Poisson process (with intensity a) and then average. For more on random walk
models, see [18, 20].
We view the Kac calculations as a precise version of some heuristic reasoning

based on some old (1930) but very interesting discussion of Uhlenbeck and Ornstein
[17]. They were interested in the kinetic theory of gases and Brownian motion.
Consider the formula [17, p.826]

βs2 = α1t− 1− e
−α2t (2.7)

where β = f21 /2mkT, αj = fj/mj, represents distance and t time, f is for friction
and m for mass. This equation is due to Fürth [4] and Ornstein [14]. For large t,
this is approximately βs2 = αt, which is Einstein’s (1905) equation

βs2 = 2Dk =
2kT

f1
t. (2.8)

This corresponds to a free particle of mass m1, where the friction coefficient f1 only
depends on the surrounding medium. (Here T is the absolute temperature and k is
Boltzmann’s constant.) Suppose we consider a tagged particle in a suspension, and
look at its associated parameter α2 = f2/m2. Thus f2 = f1 (since the surrounding
medium is unchanged) but m2 > m1 since the particle carries some of the sur-
rounding fluid with it and thus has an effective mass exceeding its free mass. Thus
we take α1 > α2, while the earlier authors took α1 = α2. For small t, we replace
e−α2t by it second order Taylor expansion 1− α2t+ α22t

2/2, and (2.7) becomes

βs2 = (α1 − α2)t+
α22
2
t2. (2.9)

Now think of s [resp. t] as representing ∂
∂x
[resp. ∂

∂t
]. Then (2.8), (2.9) are formally

the first and second order (in time) equations

β
∂2u

∂x2
= α
∂u

∂t
, (2.10)
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β
∂2u

∂x2
= (α1 − α2)

∂u

∂t
+
α22
2

∂2u

∂t2
. (2.11)

Velocities play no role in (2.10) (Brownian particles have infinite speed), but they
play a crucial role in the telegraph equation (11). (In the Ornstein-Uhlenbeck
stochastic process, particles have finite velocity but infinite acceleration.)

3. The Cosine Function Version

The initial value problem for

v′′(t) = Av(t) (t ≥ 0), (3.1)

v(0) = f, v′(0) = 0 (3.2)

(for v′′ = d2v/dt2, v : (0,∞) → X , and A a linear operator on a Banach space X)
is well posed if and only if A generates a cosine function C = {C(t) : t ≥ 0} on X ,
in which case the unique solution of (3.1), (3.2) is given by

v(t) = C(t)f ;

it is a strong solution if f ∈ Dom(A) and a mild solution otherwise (Cf. [5].) If we
replace (3.2) by

v(0) = f, v′(0) = g, (3.3)

and if A is injective, then the corresponding solution of (3.1) is

v(t) = C(t)f +
d

dt
C(t)A−1g = C(t)f +

∫ t
0

C(s)gds. (3.4)

It is not difficult to show that the unique solution to the abstract telegraph equation

u′′(t) + 2au(t) = Au(t) (3.5)

with (3.2) is

u(t) = E

[
v

(∫ t
0

(−1)N(τ)dτ

)]
, (3.6)

where v(t) = C(t)f is the solution of the corresponding abstract wave equation. As
before {N(t) : t ≥ 0} is a Poission process of intensity a > 0.
Continue to suppose that A is injective. The unique solution of (3.5), (3.3) is

given by

u(t) = E{C

(∫ t
0

(−1)N(τ)dτ

)
(f − 2aA−1g)

+

∫ t
0

C

(∫ s
0

(−1)N(τ)dτ

)
gds+ 2aA−1g}. (3.7)

To see this, let v satisfy

v′′ + 2av′ = Av, v(0) = h, v′(0) = g.

Then w = v′ satisfies

w′′ + 2aw′ = Aw, w(0) = g, w′(0) = Ah− 2ag.

If h = 2aA−1g, then

w(t) =

[
C

(∫ t
0

(−1)N(τ)dτ

)
g

]
.
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Then, z = u− v satisfies z” + 2az′ = Az,

z(0) = f − 2aA−1g, z′(0) = 0;

and so u = z + v and (3.7) follows. ♦

Note that this reduces to our previous result (3.4) for the wave equation where
a = 0.
Kac [11] gave a rigorous proof of the representation formula (3.6) for the solution

of (3.5) with u(0) = f , u′(0) = 0 and A = c2d2/dx2 on L2(R) using Laplace trans-
forms. The proof uses power series constructions. The same proof works when A has
enough analytic vectors. The power series for cos(ta) is

∑∞
n=0(−1)

n(ta)2n/(2n)!,
and this function satisfies u′′ = −a2u (as a function of t). Thus we expect C(t)f ,
the solution of u′′ = Au, u(0) = f, u′(0) = 0 to be given by

C(t)f =
∞∑
n=0

(−1)n
t2nAnf

(2n)!
,

at least for all f for which the above series converges nicely. We define f to be an
entire vector for A if the series

∑∞
n=0 t

nAnf/n! has an infinite radius of convergence

(in the complex t-plane). Let E(A) be the set of such vectors. Let Ẽ(A) = {f ∈
X :
∑∞
n=0 t

2nAnf/(2n)! has an infinite radius of convergence}. Here we clearly are

assuming that X is a complex Banach space. Clearly E(A) ⊂ Ẽ(A). If Ẽ(A) is
dense in X , then Kac’s arguments [11] establish the validity of (3.6).
Now let A be a normal operator on a Hilbert space H. By the spectral theorem,

A = UMαU
−1

where U : L2(Ω, µ)→ H is unitary and (Ω, µ) represents some measure space; and
α : Ω → C is measurable, and Mαu(x) = α(x)u(x) for x ∈ Ω, Dom(Mα) = {u :
u, αu ∈ L2(Ω, µ)}. The case when A generates a cosine function corresponds to the
range of α being (essentially) contained in a parabolic region of the form

conv{x+ iy ∈ C : x = −c1(y − c2)
2 + c3}

(conv = convex hull) for any positive constants c1, c2, c3. Let Bn = {z ∈ C : |z| ≤
n}, χn = the characteristic function of Bn,

En = U(Range(χn))U
−1 ⊂ X ;

then E =
⋃∞
n=1En is a dense set of entire vectors for A.

This completes the proof of (3.6) (and also of (3.7)) for the only cases we shall
consider. For more general information see [8, 9, 10, 15, 6].

4. Remarks on Higher Dimensions

In the previous section we showed how the Kac ideas involving the Poisson
process to represent solutions of the abstract telegraph equation work in great
generality. But the random walk model is usually given in just one dimension. We
make a few remarks here about extensions.
Griego and Hersh [8] and Pinsky [15] considered the first order hyperbolic system

∂ui

∂t
= ci

∂ui

∂x
+

n∑
j=1

qijuj ,

ui(x, 0) = fi(x), (4.1)
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where ui : R× [0,∞)→ R (i = 1, . . . , n), Q = (qij) generates an n-state Markov
chain (i.e. P (t) = etQ is an n × n matrix of nonnegative numbers and P (t)1 = 1
where 1 = (1, 1, . . . 1)tr; equivalently, qij ≥ 0 for i 6= j and the row sums

∑n
i=1 qij

are all zero), and ci ∈ R. Let pij(t) be the ijth entry of P (t) = etQ, and let ξ(t)
be the position at time t of a particle whose velocity v(t) at time t switches from
ci to cj with probability pij(t). Then we have the representation

ui(x, t) = Ex,i[fv(t)(ξ(t))]

= E{fv(t)(ξ(t)) : ξ(0) = x, ξ
′(0) = i}. (4.2)

If n = 2, Q =
(
−a a
a −a

)
, and c2 = −c1 = −c, then the system (4.1) reduces to the

single equation

utt + 2aut = c
2uxx. (4.3)

If we replace (4.1) by

dui

dt
= Aiui +

n∑
i=1

qijuj

with A1 = −A2 = A, a (C0) group generator, then (4.3) becomes

utt + 2aut = A
2u,

and the representation formula (4.2) can be shown to imply the Kac formula (3.6)
for the solution of (3.5).
Now let x = (x1, . . . , xn) vary over R

n, and let ei be the unit vector in the
positive direction of the ith coordinate axis Li, 1 ≤ i ≤ n. Perform the Kac
construction on each line Li. Then the unique solution of

∂2ui/∂t
2 + 2ai ∂ui/∂t = c

2
i ∂
2ui/∂x

2
i ,

ui(xi, 0) = fi(xi), ∂ui(xi, 0)/∂t = 0

is

ui(xi, t) = E[vi(x,

∫ t
0

(−1)Ni(s)ds)]

where vi satisfies the same problem but with ai replaced by zero. If N1 = . . . =
Nn = N , so that there is only one Poisson process of intensity a = a1 = . . . = an,
then

U(x, t) = E[V (x,

∫ t
0

(−1)N(s)ds)]

satisfies

Utt + 2aUt =

n∑
i=1

c2iUxixi ,

U(x, 0) =

n∑
i=1

fi(xi), Ut(x, 0) = 0,

where V satisfies the same problem but with u replaced by zero. Thus a very
special case of an n-dimensional telegraph equation is governed directly by the Kac
random walk, but the initial function F (x) =

∑n
i=1 fi(xi) must be very special.

Nevertheless, the conclusion of Section 3 shows that this representation formula
holds even for general F in L2(Rn).
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5. Asymptotic Analyticity

Of concern is the problem

utt + 2aut +A
2u = 0, (5.1)

where a is a positive constant and A = A∗ ≥ 0 is a nonnegative selfadjoint operator
on a Hilbert space H. By the spectral theorem [5], the general solution of (5.1) is
given by

u(t) =
2∑
j=1

Tj(t)fj

where

Tj(t) = e
tAj ,

A1,2 = −aI ± (a
2I −A2)

1
2 ;

here the subscript 1 [resp. 2] goes with the + [resp. -] sign. Recall that by the
spectral theorem,

A = UMmU
−1

where U : H → L2(Ω, µ) is a unitary operator from H to an L2 space on some
measure space, and Mm is the operation of multiplication by the µ-measurable
function

m : Ω→ [0,∞).

Hence for any Borel function g on (0,∞),

g(A) = UMg(m)U
−1.

Thus A1,2 and Tj(t) are all well defined (for t ≥ 0).
Let

F (x) = −1 + (1− x)
1
2

for 0 < x < 1. Then F ′(x) = − 12 (1 − x)
− 12 , F ′′(x) = − 14 (1 − x)

− 32 , and so (since

F (0) = 0, F ′(0) = − 12 , F
′′(0) = − 14 )

F (x) = −
x

2
+©(x2)

= −
x

2
−
x2

8
+©(x3)

as x → 0, by Taylor’s theorem. Using the spectral theorem, U−1T1(t)U can be
approximated by the multiplication operator

et(−a+(a
2−m2)

1
2 ) = exp{−ta(1− (1−

m2

a2
)
1
2 )}

∼= e−ta
m2

2a2 = e−tm
2/2a,

which implies that T1(t) is approximately e
−tA2/2a.

Write A =
∫∞
0 λdP (λ), so that P (B) =

∫
B
dP (λ) orthogonally projects onto the

maximal invariant closed subspace of H for A in which A has spectrum contained
in B, for B any Borel set in [0,∞).
Let 0 < ε < a. Then any solution u of (5.1) is equal to

et(−a+(a
2−A2)

1
2 )f =©(e−t(a

2−ε2)
1
2 )
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(as t→∞) for some f in P ([0, ε]). In that sense, the solution is given by an analytic
semigroup plus a small error in the asymptotic limit, t→∞. By the analysis given
above, this analytic semigroup solution is approximately

e−tA
2/2af,

which is a solution of the variant of equation (5.1) with the u′′ term missing.
This analysis becomes most transparent when A has an orthonormal basis {ϕn}

of eigenvalues. Thus Aϕn = λnϕn, 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn → ∞. Suppose M
is such that λM < a ≤ λM+1. Then any solution u of (5.1) satisfies, for suitable
constant cj ,

u(t) =

M∑
j=1

exp{t(−a+ (a2 − λ2j )
1
2 )}cjϕj +©(e

−ta),

which approximately equals

M∑
j=1

e−tλ
2
1/2acjϕj +©(e

−ta).

The above calculations are correct but not “canonical”, and so they are nonoptimal.
If our original solution of (5.1) is

u(t) = etA1h1 + e
tA2h2,

then we approximate it by

et(−a+(a
2−A2)

1
2 )P ([0, ε])h,

with an error of ©(exp[t(−a+ (a2 − ε2)
1
2 ]), and this in turn can be approximated

by

e−tA
2/2aP ([0, ε])h1.

But there is no natural way of choosing ε. In the orthonormal basis case, if λ1 is a
simple eigenvalue, we can write

u(t) = exp{t(−a+ (a2 − λ21)
1
2 )}c1ϕ1

∼= e−tλ
2
1/2ac1ϕ1

with an error of ©(exp[−t(a − (a2 − λ22)
1
2 ]). This gives all relevant ergodic infor-

mation, but says very little in the case when c1 = 0.
We summarize the above results.

Theorem 5.1. Let A = A∗ be a nonnegative selfadjoint operator on a Hilbert space
H and let a be a positive constant. Then the unique solution u of

u′′ + 2au′ +A2u = 0, u(0) = f u′(0) = g

satisfies, for any given ε > 0,

u(t) = exp{t(−a+ (a2 −A2)
1
2 )}`+ δ(t)

where

δ(t) =©(e−t(a
2−ε2)

1
2 )

as t→∞. This solution is approximately equal to

e−tA
2/2a`.
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This choice of ` depends on ε and so is not made in a canonical fashion. We
expand on this point.
Clearly solutions of the abstract telegraph equation (5.1) are asymptotically

given by an analytic semigroup, but there is not a unique way to make this associ-
ation. If the initial conditions for (5.1) are u(0) = h, u′(0) = k, then

u(t) = etA1f1 + e
tA2f2

where f1, f2 case be explicitly computed in terms of h and k. We focus on f1
and throw f2 into the error term. In projecting f1 onto P ([0, ε])(H), we demand
0 ≤ ε < a, and we want this projected vector to be nonzero; but we have no natural
way of choosing ε, especially in the case of continuous spectrum, which is the case
in the Kac model of A2 = −d2/dx2 on L2(R).

6. Fractional Derivatives

The model telegraph equation

D2u(t) + 2aDu(t) +A2u(t) = 0 (6.1)

(with D = d/dt) can alternatively be replaced by a fractional differential equation
of the form

(Dγ)2u(t) + 2aDγu(t) +A2u(t) = 0, (6.2)

where 12 ≤ γ ≤ 1, γ = 1 corresponding to (6.1). The motivation comes from
self similarity and experimental considerations. This will be studied in a separate
article [2].

7. Concluding Remarks

Compared to the heat equation, the telegraph equation seems to be a superior
model for describing certain fluid flow problems involving suspensions. For the
telegraph equation (or for its fractional derivative analogue), one needs to specify
two pieces of initial data; the heat equation only requires one. If the telegraph
equation is to describe an experiment, the experiment must be able to give enough
data to produce two initial conditions. One of these conditions may need to be
linked strongly to the experimental method and its limitations, which accordingly
would not be natural in a mathematical sense. If or when such an arrangement to
set a value of ε cannot be provided, one may be forced to use a first order (in time)
equation as a model.
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