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A singular nonlinear boundary-value problem ∗

Robert M. Houck & Stephen B. Robinson

Abstract

In this paper we prove an existence and uniqueness theorem for the
singular nonlinear boundary-value problem

(|y′(t)|py′(t))′ +
φ

yλ(t)
= 0 in (0, 1),

y(0) = 0 = y(1),

where p ≥ 0, λ > 0 and φ is a positive function in L1loc(0, 1). Moreover, we
derive asymptotic estimates describing the behavior of the solution and
its derivative at the boundary.

1 Introduction

In this paper we study the singular nonlinear boundary value problem

(|y′(t)|py′(t))′ +
φ

yλ
= 0 in (0, 1),

y(0) = y(1) = 0 ,
(1)

where we assume throughout that p ≥ 0, λ > 0 and φ is a positive function
in L1loc(0, 1). Boundary value problems such as (1) occur in a wide variety of
applications. For example, see [3], [4] and [7] for applications to fluid dynamics.
The primary motivation for our work comes from [8], in which Taliaferro

studied (1) for the case where p = 0 and φ ∈ C(0, 1). Taliaferro showed that
(1) has a smooth positive solution iff∫ 1

0

t(1− t)φ(t) dt <∞,

and that the given solution is unique. Taliaferro also showed that limt→0+ y
′(t)

exists and is finite iff ∫ 1/2
0

φ(t)

tλ
dt <∞,
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76 A singular boundary-value problem

where a similar condition applies at t = 1. Moreover, Taliaferro derived asymp-
totic formulae describing the behavior of the solution near the boundary for
both the finite and infinite slope cases. Generalizations of Taliaferro’s paper
include Gatica, Oliker, and Waltman [5], Gatica, Hernandez, and Waltman [6],
Baxley [1], and Baxley and Martin [2]. The papers [5], [6] and [1] study the case
p = 0, and the work in [2] is related to the case −2 ≤ p < 0.
In this paper we generalize Taliaferro’s work to the case p ≥ 0. This general-

ization allows us to study fluids with velocity dependent diffusion, and it forces
us to confront the inevitable difficulties that follow when a well understood
linear differential operator is replaced by a nonlinear differential operator.

One example of the differences between the cases p = 0 and p > 0 is that
in the latter case the problem has an additional singularity where y′(t) = 0.
Moreover, this singularity cannot be avoided, because a positive solution of (1)
must be concave down and must be 0 at the boundaries, and therefore must
have a unique critical point where it achieves a maximum. To get a different
point of view on this singularity assume that y is twice differentiable and rewrite
(1) as

y′′(t) +
φ

(p+ 1)|y′|pyλ
= 0 in (0, 1),

y(0) = 0 = y(1),

which is similar in form to the problem studied in [2]. From this representation
of the problem it is clear that a solution cannot be twice differentiable at its
critical point.

In Section 2 we prove that (1) has a positive solution iff φ ∈ L1loc(0, 1) such
that ∫ 1

0

( ∫ 1/2
t

φds
) 1
p+1 dt <∞,

and that this solution is unique. (This is equivalent to Taliaferro’s condition
when p = 0.) The argument begins by examining initial value problems that
start in the interior of the interval and then “shoot” towards the boundary. Of
particular interest are the solutions whose initial slopes are 0. Thus we shoot
from the singularity mentioned above, and it is important to check that suitable
existence, uniqueness, comparison, and continuous dependence theorems are
still available. We prove these lemmas and then show that for each T ∈ (0, 1)
there exist left and right half solutions y0 and y1 defined on [0, T ] and [T, 1],
respectively, such that y0(0) = 0 = y1(1) and y

′
0(T ) = 0 = y′1(T ). Finally, we

show that the parameter T can be adjusted until y0(T ) = y1(T ), thus bringing
the half solutions together to create the unique solution to (1).

In Section 3 we examine the boundary behavior of the solution. We prove
that the solution has finite slope at t = 0 iff

∫ 1/2
0

φ(t)

tλ
dt <∞,



Robert M. Houck & Stephen B. Robinson 77

just as in [8], where a similar condition applies at t = 1. For the finite slope
case we quickly obtain the asymptotic formulae

y′(t) =

(
1

A

) λ
p+1 ( ∫ T

t

φ

sλ
(1 + o(1)) ds

) 1
p+1

,

and

y(t) =

(
1

A

) λ
p+1
∫ t

0

(∫ T

t

φ

sλ
(1 + o(1)) ds

) 1
p+1

,

which are similar to those in [8]. For the remainder of Section 3 we concentrate
on the infinite slope case. Using comparison arguments we prove that if ψ is

positive and locally integrable such that limt→0+
ψ(t)
φ(t) = 1 and if z(t) is any

solution of

(|z′(t)|pz′(t))′ +
ψ(t)

zλ(t)
= 0 in (0, δ),

z(0) = 0,
(2)

for some δ > 0, then limt→0+
z′(t)
y′(t) = limt→0+

z(t)
y(t) = 1. We apply this general

result to the special case where φ behaves like a power of t. In this case we
see that if φ is asymptotically comparable to ctr, then y(t) is asymptotically
comparable to γtρ for appropriate γ and ρ . These results complement those in
[8] and [2].

2 Existence and Uniqueness

In this section we prove

Theorem 1 The boundary-value problem (1) has a positive solution iff∫ 1
0

( ∫ 1/2
t

φds
) 1
p+1

dt <∞ .

Moreover, this solution is unique.

Let T ∈ (0, 1) and consider the initial value problem

(|y′(t)|py′(t))′ +
φ

yλ
= 0,

y(T ) = h, y′(T ) = k,
(3)

where h > 0 and k ≥ 0. We begin this section by investigating the positive
solutions of (3) on intervals whose right endpoint is T .
Before proceeding it is helpful to rewrite (3) as an equivalent integral equa-

tion. Assuming that y is a smooth positive solution of (3) on the interval (a, T ],
we integrate once to get

|y′(t)|py′(t) = kp+1 +

∫ T

t

φ(s)

yλ(s)
ds, t ∈ (a, T ].
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Clearly, y′ is nonnegative, so

y′(t) =
(
kp+1 +

∫ T

t

φ

yλ
ds
) 1
p+1

, t ∈ (a, T ].

A second integration yields the equation

y(t) = h−

∫ T

t

(
kp+1 +

∫ T

τ

φ

yλ
ds
) 1
p+1

dτ, t ∈ (a, T ]. (4)

Our proofs will be based upon this representation of the problem. Several
straightforward comments regarding (4) are collected in the following lemma.

Lemma 1 Suppose that y ∈ C(a, T ] is a positive function satisfying (4). Then
y is increasing and concave down, y ∈ C[a, T ]

⋂
C1(a, T ], |y′|py′ = (y′)p+1 is

differentiable a.e., and y satisfies (3) .

Thus for any positive y ∈ C(a, T ] we define

Fy(t) = h−

∫ T

t

(
kp+1 +

∫ T

τ

φ

yλ
ds
) 1
p+1

dτ,

and it is clear that positive solutions of (3) correspond to fixed points of F .

Theorem 2 Suppose that T > 0, h > 0, and k ≥ 0. Then there exists an
a ∈ [0, T ) and a unique positive y ∈ C[a, T ]

⋃
C1(a, T ] such that y is a solution

of (3) on [a, T ]. Moreover we may assume that the interval [a, T ] is maximal in
the sense that either a = 0 or y(a) = 0.

Proof: We begin by proving existence and uniqueness over some interval
[a0, T ]. Our primary tool will be the Contraction Mapping Theorem. The
estimates below will be useful in later arguments, so they are proved in slightly
greater generality than is needed for this theorem. Suppose that y ∈ C[a0, T ]
such that 0 < m ≤ y(t), where a0 is to be determined. Then, for t ∈ (a0, T ), we
have

0 ≤ (Fy)′ − k =
(
kp+1 +

∫ T

t

φ

yλ
ds
) 1
p+1

−
(
kp+1

) 1
p+1 ≤

(∫ T

t

φ

yλ
ds
) 1
p+1

,

since |b
1
p+1 − a

1
p+1 | ≤ |b− a|

1
p+1 for any a, b ≥ 0. Therefore

k ≤ (Fy)′ ≤ k +

(
1

m

) λ
p+1 (∫ T

t

φds
) 1
p+1

.

Integrating from t to T yields

k(T − t) ≤ h− Fy ≤ k(T − t) +

(
1

m

) λ
p+1
∫ T

t

(∫ T

τ

φds
) 1
p+1

dτ. (5)
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Recall that φ ∈ L1loc(0, 1). Thus, given any ε ∈ (0, h), we can choose a0 close
enough to T so that

k(T − t) ≤ h− Fy ≤ k(T − t) +
ε

2
.

Further restricting a0 so that |a0 − T | < ε
2k we have |Fy(t) − h| ≤ ε for all

t ∈ [a0, T ]. In particular, for m = h− ε, and an appropriate choice of a0, we get
F : Bε(h)→ Bε(h), where Bε(h) := {y ∈ C[a0, T ] : |y(t)− h| ≤ ε ∀t ∈ [a0, T ]}.
Now we show that, given a further restriction on a0, F is a contraction on

Bε(h). Assume that y1, y2 ∈ C[a0, T ] such that 0 < m ≤ y1(t), y2(t) ≤M <∞
for all t ∈ [a0, T ]. An application of the Mean Value Theorem implies

∣∣(Fy1)′ − (Fy2)′∣∣ = ∣∣∣(kp+1 + ∫ T

t

φ

yλ1
ds
) 1
p+1

−
(
kp+1 +

∫ T

t

φ

yλ2
ds
) 1
p+1
∣∣∣.

≤

(
1

p+ 1

)
(c(t))

1
p+1−1

(∫ T

t

φ
∣∣ 1
yλ1
−
1

yλ2

∣∣ ds),
where

kp+1 +

∫ T

t

φ

yλi
ds ≤ c(t) ≤ kp+1 +

∫ T

t

φ

yλj
ds,

and either i = 1 and j = 2 or i = 2 and j = 1. In either case we see that

c(t) ≥

(
1

M

)λ ∫ T

t

φds.

Substituting the minimal value for c(t) leads to

|(Fy1)
′ − (Fy2)

′|

≤

(
1

p+ 1

)(
1

M

) λ
p+1−λ (∫ T

t

φds
) 1
p+1−1

( ∫ T

t

φ

∣∣∣∣ 1yλ1 −
1

yλ2

∣∣∣∣ ds),
Apply the Mean Value Theorem a second time to get∣∣∣∣ 1yλ1 (t) −

1

yλ2 (t)

∣∣∣∣ ≤ λ(c(t))−λ−1|y1(t)− y2(t)|,
where yi(t) ≤ c(t) ≤ yj(t) and either i = 1 and j = 2 or i = 2 and j = 1. In
either case we have c(t) ≥ m. Substituting the minimal value for c(t) leads to

|(Fy1)
′ − (Fy2)

′| ≤

(
λ

p+ 1

)(
1

M

) λ
p+1−λ

(
1

m

)λ+1 ( ∫ T

t

φds
) 1
p+1

‖y1 − y2‖,

where ‖ · ‖ represents the sup-norm on C[a0, T ]. Integration leads to

|Fy1 − Fy2| ≤

(
λ

p+ 1

)(
1

M

) λ
p+1−λ

(
1

m

)λ+1 ∫ T

t

(∫ T

τ

φds

) 1
p+1

dτ‖y1−y2‖.

(6)
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For the purposes of this theorem we choose m = h− ε and M = h+ ε, and then
refine our previous choice of a0 to get

‖Fy1 − Fy2‖ ≤
1

2
‖y1 − y2‖.

Hence F is a contraction on Bε(h), and we have established the existence of a
unique local solution.
We now extend the solution to a maximal subinterval of [0, T ] by a standard

form of argument. Suppose that [a, T ] is the maximal subinterval of [0, T ] such
that (3) has a unique positive solution y ∈ C[a, T ]

⋂
C1(a, T ]. If either a = 0 or

y(a) = 0, we are done, so suppose that a > 0 and y(a) > 0. We know that y′(t)
is decreasing and nonnegative. Also

0 ≤ y′(t) =
(
kp+1 +

∫ T

t

φ

yλ
ds
) 1
p+1

≤
(
kp+1 +

( 1
y(a)

)λ ∫ T

a

φds
) 1
p+1

<∞,

because φ ∈ L1loc(0, 1). Therefore limt→a+ y
′(t) exists and y ∈ C1[a, T ]. Using

h = y(a) > 0 and k = y′(a) ≥ 0, we apply the local existence result above
to extend y to a unique positive solution of (3) over some interval [a − δ, T ],
contradicting the assumption that [a, T ] is maximal. The theorem is proved.

Observe that for the case k > 0 Theorem 1 follows from the standard ex-
istence and uniqueness theory for ordinary differential equations, because we
can work on an interval where potential solutions are bounded away from the
singularities. It was our preference to treat the case k ≥ 0 as a whole. For the
remainder of this section we focus primarily on the case k = 0, and invite the
interested reader to generalize.
Before continuing we introduce some useful notation. We refer to the initial

value problem (3) with the additional restriction k = 0 as (3)0. Given T ∈ (0, 1),
let yh denote the positive solution of (3)0 satisfying y(T ) = h. We define

H−T := {h > 0 : yh has maximal interval [0, T ]},
h−T := infH

−
T

The − sign is a reminder that we are currently working to the left of T .

Lemma 2 If
∫ T
0

( ∫ T
s
φds

) 1
p+1 dt =∞ then (3)0 has no positive solution whose

maximal interval is [0, T ], i.e. H−T is empty.

Proof: If y ∈ C[0, T ] is such a solution, then

y = h−

∫ T

t

( ∫ T

τ

φ

yλ
ds
) 1
p+1

dτ

≤ h−

(
1

h

) λ
p+1
∫ T

t

(∫ T

s

φds
) 1
p+1

dτ,

(7)

because y ≤ h on (0, T ]. It follows that limt→0+ y(t) = −∞, a contradiction.
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An immediate consequence of this lemma is that
∫ T
0

(∫ T
s
φds

) 1
p+1

dt <

∞ is a necessary condition for the existence of a solution to (1). Similarly,∫ 1
T

(∫ T
s
φds

) 1
p+1

dt <∞ is necessary. Hence

∫ 1
0

(∫ T

s

φds
) 1
p+1

dt <∞

is necessary. Since φ is locally integrable is suffices to write this condition using
T = 1/2.

Lemma 3 Let K :=
∫ T
0

(∫ T
s
φds

) 1
p+1

dt. If K < ∞ then H−T is nonempty,

and is bounded below by K
p+1
p+1+λ

Proof: Let y be a solution of (3)0. Apply inequality (5) with m =
h
2 , k = 0,

and Fy = y to get

0 ≤ h− y ≤

(
2

h

) λ
p+1

K.

For large h we have 0 ≤ h−y ≤ h
4 , so y ≥

3h
4 > 0. Thus if y ≥ h

2 on an interval,

then y ≥ 3h
4 on that interval. Hence, for large h, the solution remains above

3h
4

no matter how far it is extended. Therefore the solution must have maximal
interval [0, T ].
Substitute t = 0 into inequality (7) to get

0 ≤ y(0) ≤ h−

(
1

h

) λ
p+1

K,

for h ∈ H−T . This simplifies to

h ≥ K
p+1
p+1+λ .

Before characterizing H−T and h
−
T further we need a comparison lemma.

Lemma 4 Let T ∈ (0, 1) and any let y1, y2 ∈ C[a0, T ] be solutions of (3) with
0 < y1(T ) ≤ y2(T ) and 0 ≤ y′2(T ) ≤ y′1(T ). Moreover, assume that at least one
of these inequalities is strict. Then y2 − y1 is strictly decreasing in [a0, T ].

Proof: Since at least one of the inequalities is strict, we know that y1(t) <
y2(t) in some interval (T − δ, T ]. Suppose that there exists a t0 ∈ (a0, T ) such
that y1(t0) = y2(t0) and y1(t) < y2(t) for t ∈ (t0, T ). Therefore, for t ∈ (t0, T ),

y′2(t) =
(
(y′2(T ))

p+1 +

∫ T

t

φ

yλ2
ds
) 1
p+1

<
(
(y′1(T ))

p+1 +

∫ T

t

φ

yλ1
ds
) 1
p+1

= y′1(t).
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Thus y2 − y1 is strictly decreasing in [t0, T ] with y2(T ) − y1(T ) ≤ 0, which
contradicts y1(t0) = y2(t0). Hence y1(t) < y2(t) in [a0, T ), and it follows, by the
same inequality, that y′2(t) < y′1(t) in [a0, T ).

Corollary 1 Let T ∈ (0, 1) and assume that
∫ T
0

(∫ T
s
φds

) 1
p+1

dt < ∞. If

h > h−T then h ∈ H
−
T , and if h < h−T then h 6∈ H

−
T .

Proof: We have already shown that H−T is nonempty and bounded below

by K
p+1
p+1+λ , so h−T > 0. Suppose that h1 ∈ H

−
T and h2 > h1. Let yh1 and

yh2 represent the corresponding solutions of (3)0. Then Lemma 4 shows that
yh2 > yh1 on any common interval of definition, and therefore h2 ∈ H

−
T . The

lemma follows.

Given Lemma 4 and its consequences, it is reasonable to guess that the
positive solution of (3)0 satisfying y(T ) = h−T will have maximal interval [0, T ]
and will satisfy y(0) = 0. This is indeed the case as the following lemmas will
show.

Lemma 5 Let T ∈ (0, 1) and assume that
∫ T
0

(∫ T
s
φds

) 1
p+1

dt < ∞. Let

y1, y2 ∈ C[a0, T ] be solutions of (3)0 and 0 < m ≤ y1(t) ≤ y2(t) ≤ M for all
t ∈ [a0, T ]. Then given any ε > 0 there is a δ > 0 such that if |y1(T )−y2(T )| < δ,
then |y1(t)− y2(t)| < ε for all t ∈ [a0, T ].

Proof: The proof will follow from an extension of estimate (6) to this special
case. Notice that we can substitute y′ for (Fy)′. Also, Lemma 4 shows that
y2(t)− y1(t) is positive and decreasing, so sup[t,T ] |y2 − y1| = (y2(t)− y1(t)) on
any [t, T ] ⊂ [a0, T ]. Thus

0 ≤ y′1(t)− y
′
2(t) ≤

( λ

p+ 1

)( 1
M

) λ
p+1−λ

( 1
m

)λ+1(∫ T

t

φds
) 1
p+1

(y2(t)− y1(t)).

Let C :=
(

λ
p+1

) (
1
M

) λ
p+1−λ

(
1
m

)λ+1
, P (t) := C

(∫ T
t
φds

) 1
p+1

and w := y1 − y2.

We restate the inequality above as

w′(t) + P (t)w(t) ≤ 0.

Thus (
eP (t)w(t)

)′
≤ 0,

and so
eP (T )w(T )− eP (t)w(t) ≤ 0.

Notice that P (T ) = 0 and w(T ) = y1(T )− y2(T ), so

e−P (t)(y1(T )− y2(T )) ≤ y1(t)− y2(t) ≤ 0.
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The assumption
∫ T
0

(∫ T
s
φds

) 1
p+1

dt <∞ guarantees that P (t) is bounded even

in the case a0 = 0. Therefore the lemma follows.

It is important to observe that the choice of δ in the previous proof depends
upon ε,m,M and K, but does not depend upon the interval [a0, T ].

Lemma 6 Let T ∈ (0, 1) and assume that
∫ T
0

(∫ T
s
φds

) 1
p+1

dt < ∞. Then

h−T ∈ H
−
T , and the solution, y, of (3)0 with y(T ) = h−T has maximal interval

[0, T ] and satisfies y(0) = 0.

Proof: Suppose that y has a maximal interval [a, T ] with a > 0. Recall that
y(a) = 0 in this case. Let h−a be defined as before, and choose a1 ∈ (a, T )
such that 0 < y(a1) < h−a . Let m = y(a1),M = h−T + 1 and ε < h−a − y(a1),
and choose δ as in Lemma 5. Let yδ represent the solution of (3)0 satisfying
yδ(T ) = h

−
T + δ. Since yδ(T ) > h−T we know that yδ has maximal interval [0, T ],

and by Lemma 5, we know that y(a1) < yδ(a1) < h−a . Since yδ is increasing it
follows that yδ(a) < h−a . Now compare yδ to the solution, y, of (3)0 satisfying
y(a) = yδ(a) . It is clear that y

′
δ(a) > 0, so, by Lemma 4, we know that yδ < y

on any common interval of definition. However, since y(a) < h−a we know that
y has maximal interval [a, a] for some a ∈ (0, a) and we know y(a) = 0. Thus
yδ(a) < 0, a contradiction. Therefore a = 0, and y ∈ C[0, T ]

⋂
C1(0, T ].

Suppose that y(0) = α > 0. Let m = α
2 ,M = h−T and ε =

α
4 , and choose

δ as in Lemma 5. Let yδ represent the solution of (3)0 with yδ(T ) = h−T − δ.
By Lemma 5 we know that if α2 ≤ yδ ≤ y ≤ h−T on some interval [a0, T ], then

|yδ−y| ≤
α
4 and thus

3α
4 ≤ yδ ≤ y ≤ h

−
T . It follows that yδ is bounded below by

3α
4 on any subinterval of [0, T ], and so its maximal interval is [0, T ]. However,

this contradicts the fact that yδ(T ) = h
−
T − δ 6∈ H

−
T . The theorem is proved.

It is easy to show, by Lemma 4, that h−T is the unique h ∈ H
−
T such that

the associated solution satisfies y(0) = 0. We refer to the solution, y, of (3)0
such that y(T ) = h−T as the left half solution on [0, T ]. By identical arguments,
which we omit, we introduce the quantity h+T and the right half solution on the
interval [T, 1].
The remaining lemmas in this section will prove that h−T = h+T for exactly

one T . This will allow us to join the two half solutions to create the unique
positive solution of (1).

Lemma 7 h−T is a monotone increasing function in T .

Proof: Let T1, T2 ∈ (0, 1) such that T2 < T1. Let y1, y2 represent the left half
solutions on [0, T1] and [0, T2], respectively. Suppose that y2(T2) = h

−
T2
≥ h−T1 =

y1(T1). Since y1 is increasing and y
′
1 is decreasing, it is clear that y1(T2) <

y2(T2) and y
′
1(T2) > 0 = y′2(T2). By Lemma 4 we know that y2 − y1 is strictly

decreasing, which implies that y1(0) < y2(0) = 0, a contradiction. Hence h
−
T2
<

h−T1 .
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Lemma 8 h−T is a continuous function of T .

Proof: Let {Tn} ⊂ (0, 1) be an increasing sequence that converges to T ∈
(0, 1), and let {yn} and y represent the corresponding left half solutions. From
the previous lemma we know that {h−Tn} is monotone increasing and bounded

above by h−T , and thus converges to some h ≤ h
−
T .

Observe that for m < n we can compare ym and yn on the interval [0, Tm].
We know that y′n(Tm) < 0. If yn(Tm) ≤ h−Tn , then Lemma 4 implies that

yn < ym in [0, Tm). Thus yn(0) < 0, a contradiction. Hence yn(Tm) > h−Tm , A
similar contradiction arises if yn(t) = ym(t) for any t ∈ (0, Tm], so ym(t) < yn(t)
for t ∈ (0, Tm].
In order to have a common interval for comparison we define

yn(t) :=

{
yn(t), 0 ≤ Tn
hTn , Tn < t ≤ T

It is clear that yn ∈ C[0, T ]
⋂
C1(0, T ] and that for m < n we have ym(t) <

yn(t) ≤ y(t) in (0, T ]. Thus {yn(t)} is bounded and increasing for any t ∈ (0, T ]
and we can define f(t) = limn→∞ yn(t). Moreover, if t < T , then t < Tn for all
n large enough and we have f(t) = limn→∞ yn(t).
Next we argue that the convergence is better than pointwise. For all t ≥

t0 > 0 we have

0 ≤ y′n(t) ≤ y
′
n(t0) =

( ∫ T

t0

φ

yλn
ds
) 1
p+1

≤

(
1

y1(t0)

) λ
p+1 ( ∫ T

t0

φds
) 1
p+1

<∞

Thus, by the Arzela-Ascoli theorem, me may assume, without loss of generality,
that {yn} converges uniformly to f on compact subsets of (0, T ].
Thus f ∈ C(0, T ] and for t ∈ (0, T )

f(t) = lim
n→∞

yn(t)

= lim
n→∞

(
h−Tn −

∫ Tn

t

( ∫ Tn

τ

φ

yλn
ds
) 1
p+1

dτ
)

= h−

∫ T

t

(∫ T

τ

φ

fλ
ds
) 1
p+1

dτ.

Hence f is a solution of (3)0 with maximal interval [0, T ]. Thus h ∈ H
−
T and

h ≥ h−T . But we already proved that h ≤ h
−
T so h = h

−
T , and thus limn→∞ h−Tn =

h−T . Moreover, f(t) ≡ y(t).
If {Tn} is a sequence converging to T from the right, then an analagous

argument holds. In fact the argument is simpler, because there is no need to
extend the functions to a common interval. We omit this part of the proof. The
lemma is proved.

Lemma 9 limT→0+ h
−
T = 0.
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Proof: Let y1 represent the left half solution of (3)0 over [0,
1
2 ], and let y2

represent the left half solution of (3)0 over [0, T ] where T ∈ (0,
1
2 ). Clearly,

y′1(T ) > 0 = y
′
2(T ). If y1(T ) ≤ h

−
T = y2(T ), then Lemma 4 implies that y1(0) <

y2(0) = 0, a contradiction. Thus 0 ≤ h
−
T < y1(T ). Hence limT→0+ h

−
T = 0.

Identical arguments show that h+T is continuous and decreasing in [0, 1) with
limT→1− h

+
T = 0. Therefore there is a unique T ∈ (0, 1) such that h

−
T = h

+
T . For

this T let y0 represent the left half solution over [0, T ] and let y1 represent the
right half solution over [T, 1], and define

y(t) :=

{
y0(t), t ∈ [0, T ]
y1(t), t ∈ (T, 1]

This y is the unique solution of (1). Thus Theorem 1 has been proved.

3 Boundary Behavior

In this section we assume throughout that
∫ 1/2
0

( ∫ 1/2
s

φds
) 1
p+1 dt <∞ is satis-

fied, and we investigate the boundary behavior of the unique positive solution of
(1). More specifically, we concentrate on behavior near 0 for left half solutions
of (3)0. Similar results apply for the behavior of right half solutions near 1.
We begin with the question of whether the slope at the boundary is finite

or infinite. Recall that the solution, y, is concave down, so the quantity y′(0) =
limt→0+ y

′(t) ∈ (0,∞] is well-defined.

Theorem 3 Let y be the left half solution of (3)0 on [0, T ]. Then y
′(0) is finite

if and only if
∫ 1/2
0

φ
tλ
dt <∞.

Proof: Assume that y′(0) = A <∞. We know that

(y′(t))p+1 =

∫ T

t

φ

yλ
ds,

and that 0 ≤ y′(t) ≤ A and thus 0 ≤ y(t) ≤ At in [0, T ]. Therefore

(y′(t))p+1 ≥

(
1

Aλ

)∫ T

t

φ

sλ
ds ≥ 0,

and it follows that

Ap+1+λ ≥

∫ T

0

φ

tλ
ds.

Hence
∫ 1/2
0

φ
yλ
dt <∞.

Assume y′(0) =∞. Let A > 0 such that y(t) ≥ At on [0, T ]. Then

(y′(t))p+1 ≤
1

Aλ

∫ T

t

φ

sλ
ds.
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Thus

lim
t→0+

∫ T

t

φ

sλ
ds ≥ Aλ lim

t→0+
(y′(t))p+1 =∞.

For the finite slope case we derive asymptotic formulae for y that are similar
to those in [8].

Theorem 4 Let y be a left half solution of (3)0 on [0, T ] with y
′(0) = A <∞.

Then

y′(t) =

(
1

A

) λ
p+1 (∫ T

t

φ

sλ
(1 + o(1)) ds

) 1
p+1

,

and

y(t) =

(
1

A

) λ
p+1
∫ t

0

(∫ T

τ

φ

sλ
(1 + o(1)) ds

) 1
p+1

dτ .

Proof: Substitute 1
yλ(s)

= 1
(As)λ

(1 + o(1)).

For the remainder of this section we concentrate on the infinite slope case

and assume
∫ 1/2
0

φ
tλ
dt = ∞. The following theorem provides a general tool for

comparing the boundary behavior of solutions.

Theorem 5 Let ψ ∈ L1loc(0, δ) be a positive function satisfying
∫ δ
0
ψ
tλ
dt = ∞,∫ δ

0

(∫ δ
t
ψ ds

) 1
p+1

dt < ∞, and limt→0+
ψ
φ
= 1. Let y be the left half solution of

(3)0 on [0, T ], and let z be a particular solution of

(|z′|pz′)′ +
ψ

zλ
= 0 in (0, δ),

z(0) = 0.

Then lim
t→0+

z′

y′
= lim

t→0+

z

y
= 1.

Before proving Theorem 5 we provide an interesting application.

Corollary 2 Assume that limt→0+
ctr

φ = 1 where c > 0 and −p−2 < r ≤ λ−1.

Let y be the left half solution of (3)0 on [0, T ], and let z(t) = γtρ such that

ρ = r+p+2
λ+p+1 and γ =

(
c

ρp+1(1−ρ)

) 1
λ+p+1

. Then limt→0+
z′

y′
= limt→0+

z
y
= 1.

Proof: The restrictions on r guarantee that ψ = ctr satisfies

∫ 1
0

( ∫ 1/2
t

ψ ds
) 1
p+1 dt <∞
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and
∫ 1/2
0

ψ
τλ
=∞. It is straight forward to check that z(t) is a solution of

(|z′|pz′)′ +
ψ

zλ
= 0 in (0,∞),

z(0) = 0 .

Hence the result follows from Theorem 5.

The proof of Theorem 5 depends upon several lemmas.

Lemma 10 Let ψ ∈ L1loc(0, δ) be a positive function satisfying
∫ δ
0
ψ
tλ
dt = ∞,

and
∫ δ
0

( ∫ δ
t
ψ ds

) 1
p+1 dt <∞. Let let z1 and z2 be solutions of

(|z′|pz′)′ +
ψ

zλ
= 0 in (0, δ),

z(0) = 0.

Then lim
t→0+

z′1
z′2
= lim
t→0+

z1

z2
= 1.

Proof: Assume that z1 and z2 are distinct solutions with z1(t) < z2(t) at some
point. If z′1(t) ≥ z′2(t) at this same point, then, by Lemma 4, z2 − z1 must be
decreasing on (0, t). But this leads to a contradiction of z1(0) = z2(0) = 0.
Thus z′1(t) < z′2(t). It follows that 0 ≤ z′1(t) < z′2(t) and 0 < z1(t) < z2(t) in
[0, δ]. Moreover,

z′2(t) =
(
(z′2(δ))

p+1 +

∫ δ

t

ψ

zλ2
ds
) 1
p+1

<
(
(z′2(δ))

p+1 +

∫ δ

t

ψ

zλ1
ds
) 1
p+1

=
(
(z′2(δ))

p+1 + (z′1(t))
p+1 − (z′1(δ))

p+1 ds
) 1
p+1

.

Thus

1 <
z′2(t)

z′1(t)
<
((z′2(δ)
z′1(t)

)p+1
+ 1−

(z′1(δ)
z′1(t)

)p+1) 1
p+1

.

Since
∫ δ
0

ψ
τλ
dτ =∞, we know that limt→0+ z

′
1(t) =∞. Hence limt→0+

z′2(t)
z′1(t)

= 1.

By L’Hospital’s rule we have limt→0+
z2(t)
z1(t)

= 1. The proof is done.

Lemma 11 Let ψ ∈ L1loc(0, δ) be a positive function satisfying
∫ δ
0
ψ
tλ
dt = ∞,∫ δ

0

(∫ δ
s
ψ ds

) 1
p+1

dt <∞, and ψ ≥ φ (ψ ≤ φ). Let y be the left half solution of

(3)0 on [0, T ], and let z be a particular solution of

(|z′|pz′)′ +
ψ

zλ
= 0 in (0, δ),

z(0) = 0.
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Then lim inft→0+
z
y
≥ 1 (lim sup

t→0+

z

y
≤ 1).

Proof: By the previous lemma we know that all solutions of

(|z′|pz′)′ +
ψ

zλ
= 0 in (0, δ),

z(0) = 0,

have asymptotically identical boundary behavior. Thus we may compare y to
the particular solution where z′(δ) = y′(δ).

Suppose that y(t) > z(t) at some point in (0, δ). Then y(t) > z(t) in some
interval (a0, b0) ⊂ (0, δ) such that z′(b0) ≥ y′(b0). For t ∈ (a0, b0) we have

lly′(t) =
(
(y′(b0))

p+1
+

∫ b0

t

φ

yλ
ds
) 1
p+1

<
(
(z′(t0))

p+1
+

∫ b0

t

ψ

zλ
ds
) 1
p+1

= z′(t) .

Thus y−z is decreasing in (a0, b0). Thus the maximal interval where y > z must
be (0, b0), and, by the same argument, y − z is decreasing on (0, b0). But this
implies 0 = y(0)− z(0) < y(b0)− z(b0) ≤ 0, a contradiction. Hence z(t) ≥ y(t)
in [0, δ]. The case ψ ≤ φ can be argued similarly so the lemma is proved.

Proof of Theorem 5: Let ε > 0 be given. Observe that for c > 0 we have
that w = cy is a left half solution on [0, T ] of the problem

(|w′|pw′)′ +
cλ+p+1φ1

wλ
= 0,

w(T ) = h, w′(T ) = 0,

(8)

Also, without loss of generality, we may assume that (1 − ε)λ+p+1φ ≤ ψ ≤
(1 + ε)λ+p+1φ in (0, δ). Therefore, the previous lemma and the observation
about (8) show that lim inft→0+

z
(1−ε)y ≥ 1 and lim supt→0+

z
(1+ε)y ≤ 1. Hence

limt→0+
z
y
= 1.

By further restricting the size of the interval (0, δ) we may now assume that

(1− ε) ≤ φzλ

ψyλ
≤ (1 + ε). We have

y′(t) =
(
(y′(δ))p+1 +

∫ δ

t

φ

yλ
ds
) 1
p+1

=
(
(y′(δ))p+1 +

∫ δ

t

ψ

zλ
φzλ

ψyλ
ds
) 1
p+1

.
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Thus

(
(y′(δ))p+1 +

1

(1 + ε)

∫ δ

t

ψ

zλ
ds
) 1
p+1 ≤ y′(t)

≤
(
(y′(δ))p+1 +

1

(1− ε)

∫ δ

t

ψ

zλ
ds
) 1
p+1 .

Divide this inequality through by z′(t) =
(
(z′(δ))p+1 +

∫ δ
t

ψ
zλ
ds
) 1
p+1 and let

t→ 0+ to get(
1

1 + ε

) 1
p+1

≤ lim inf
t→0+

y′(t)

z′(t)
≤ lim sup

t→0+

y′(t)

z′(t)
≤

(
1

1− ε

) 1
p+1

.

Hence limt→0+
z′(t)
y′(t) = 1, and Theorem 5 is proved.

In [8] Taliaferro applies a result similar to Theorem 5 to obtain a precise
description of boundary behavior for a more general collection of functions φ

than those described in Corollary 2. Taliaferro assumes that limt→0+
tf ′′(t)
f ′(t) =

R, where f(t) :=
∫ T
t
ψ/sλ ds and where ψ is a smooth function such that

limt→0+ ψ/φ = 1. We note that if tf
′′(t)/f ′(t) ≡ R then one can show that

ψ is of the form ctr, so Corollary 2 is applicable. Taliaferro’s more general con-
dition implies that for any ε > 0 ψ is bounded between some ctr−ε and ctr+ε

in some neighborhood of 0. Thus ψ still behaves much like ctr. Our methods
can be used to find corresponding estimates on the boundary behavior of the
solution, but we have not generalized Taliaferro’s argument and results to this
case.
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