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A numerical method for solving heat equations

involving interfaces ∗

Zhilin Li & Yun-Qiu Shen

Abstract

In 1993, Li and Mayo [3] gave a finite-difference method with second
order accuracy for solving the heat equations involving interfaces with
constant coefficients and discontinuous sources. In this paper, we expand
their result by presenting a finite-difference method which allows each
coefficient to take different values in different sub-regions of the interface.
Our method is useful in physical applications, and has also second order
accuracy.

1 Introduction

Consider the heat equation

ut = (βux)x + (βuy)y + f(x, y, t) , (1)

where t is in [a,∞) and (x, y) in an open region Ω ⊂ R2 which is divided into
two sub-regions Ω+, Ω− by an irregular interface Γ.
Let Ω = Ω+ ∪ Γ ∪ Ω− be an open rectangular region in R2, and let

β(x, y) =

{
β+, if (x, y) ∈ Ω+,
β−, if (x, y) ∈ Ω−,

where β+ and β− are positive constants. Assume that f is continuous in each
sub-region, and may have jumps of discontinuty across Γ. The solution u(x, y, t)
and its normal derivative un(x, y, t) crossing the curve Γ have prescribed jumps

[u] ≡ u+(x(s), y(s), t) − u−(x(s), y(s), t) = ω(s, t), (2)

[un] ≡ u+n (x(s), y(s), t) − u
−
n (x(s), y(s), t) = g(s, t), (3)

where s is a parameter of Γ, the superscripts + and − denote the limiting
values of a function from one side in Ω+ and another side in Ω− respectively.
Throughout this paper, we use [G] = G+ −G− to denote the difference of the
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limiting values of a function G from different sides of the interface as in (2), (3).
We also assume that the initial condition at t = a and the boundary condition
on ∂B are known. In 1993, Li and Mayo [3] gave a finite-difference method
with second accuracy for solving (1), assuming that f is discontinuous but β
is constant. In this paper, we present a finite-difference method for solving
(1), which allows β to be taken different values in different sub-regions of the
interface. This feature is useful in physical applications.
We organize this paper as follows: In Section 2, we establish local coordinate

systems around the interface. In Section 3, we give the correction terms for the
finite-difference method. In Section 4, we show that our method is second order
accurate. Finally, in Section 5, we give some numerical examples, in which the
actual solutions are known, to confirm the theoretical result.

2 Local Coordinate Systems

We first give local coordinate systems along the interface Γ, as in [2, 3]. When a
point (x0, y0) on the interface is fixed for the origin, we use the normal direction
as the ξ-direction, which has an angle θ with the x-axis. Rotating the ξ-direction
by ninety degrees counter-clockwise, we obtain the η-direction. Now we express
the curve Γ as a function of the independent variable η locally.

ξ = χ(η). (4)

We express (2),(3) locally by using the η coordinate.

[u] ≡ u+ − u− = ω(η, t), (5)

[un] ≡ u+n − u
−
n = g(η, t), (6)

where ω and g are known in advance. From (4) and (6), we have

g = [un] =
−[uη]χη + [uξ]√

1 + χ2η

.

Using differentiation with respect to η, noting χη(0) = 0, we have

[uη] = ωη, (7)

[uξ] = g, (8)

[uηη] = −gχηη + ωηη, (9)

[uξη] = ωηχηη + gη. (10)

Changing (1) locally, using

ξ = (x− x0)cosθ + (y − y0)sinθ, (11)

η = −(x− x0)sinθ + (y − y0)cosθ, (12)

we have
uxx + uyy = uξξ + uηη,
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therefore,

ut = βuξξ + βuηη + f̃(ξ, η, t), (13)

where f̃(ξ, η, t) = f(x(ξ, η), y(ξ, η), t). (13) implies

[uξξ] = [uξξ]1 +

[
ut

β

]
, (14)

where

[uξξ]1 = gχηη − ωηη −

[
f̃

β

]
. (15)

In (7)-(10)and (14)-(15), all functions in the right-hand sides are known except
for [ut/β] in (14) which will be explored in the next section.

3 Correction Terms

We first discretize in both of the x-direction and the y-direction with a mesh of
size h.

uxx ≈ δxui,j ≡
1

h2
(ui−1,j − 2ui,j + ui+1,j), (16)

uyy ≈ δyui,j ≡
1

h2
(ui,j−1 − 2ui,j + ui,j+1). (17)

We group all the grid points in Ω into two sets. The set Sreg consists the regular
points, each point in one sub-region has no neighbor point in the another sub-
region. The set Sirr consists the irregular points, each point in one sub-region
has at least one neighbor point in the other sub-region. For a regular grid point,
the local truncation error of (16),(17) from βuxx + βyy + f is O(h

2).
For an irregular grid point, we need add some correction terms in (16),(17)

such that the local truncation error is O(h), therefore the global error of the
solution for solving the heat equation is O(h2) after the discretization of time
t in certain way. At first, we relate the jumps with respect to x and y to the
jumps with respect to ξ and η by (11) and (12).

[ux] = [uξ] cos θ − [uη] sin θ,

[uy] = [uξ] sin θ + [uη] cos θ, (18)

[uxx] = [uxx]1 +

[
ut

β

]
cos2 θ,

where

[uxx]1 = [uξξ]1 cos
2 θ − 2[uξη] cos θ sin θ + [uηη] sin

2 θ,

[uyy] = [uyy]1 +

[
ut

β

]
sin2 θ, (19)
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where
[uyy]1 = [uξξ]1 sin

2 θ + 2[uξη] cos θ sin θ + [uηη] cos
2 θ.

By (7)-(10) and (14)-(15), all the terms in the right-hand sides of (18)-(19) are
known except for [ut/β].

Now we consider an irregular grid point in the x-direction, there are four
cases:

(a) (xi, yj) ∈ Ω−, (xi+1, yj) ∈ Ω+

(b) (xi, yj) ∈ Ω+, (xi−1, yj) ∈ Ω−

(c) (xi, yj) ∈ Ω+, (xi+1, yj) ∈ Ω−

(d) (xi, yj) ∈ Ω−, (xi−1, yj) ∈ Ω+

For case (a), let the intersection of the line segment connecting (xi, yj), (xi+1, yj)
and Γ be (x∗, yj). Using Taylor’s series around x

∗, we have

1

h2
(u(xi−1, yj)− 2u(xi, yj) + u(xi+1, yj))

=
1

h2

{
[u] + [ux](xi+1 − x

∗) +
[uxx]

2!
(xi+1 − x

∗)2
}
+ u−xx +O(h),

which implies

uxx = δxui,j + Cxui,j −
[ut
β
](xi+1 − x∗)2

2h2
+O(h), (20)

where

Cxui,j = −
1

h2

{
[u] + [ux](xi+1 − x

∗) +
[uxx]1
2!
(xi+1 − x

∗)2
}
.

Similarly, for case (b), we have

uxx = δxui,j + Cxui,j +
[ut
β
](xi−1 − x∗)2

2h2
+O(h), (21)

where

Cxui,j =
1

h2

{
[u] + [ux](xi−1 − x

∗) +
[uxx]1
2!
(xi−1 − x

∗)2
}
.

For case (c), we have

uxx = δxui,j + Cxui,j +
[utβ ](xi+1 − x

∗)2

2h2
+O(h), (22)

where

Cxui,j =
1

h2

{
[u] + [ux](xi+1 − x

∗) +
[uxx]1
2!
(xi+1 − x

∗)2
}
.
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For case (d), we have

uxx = δxui,j + Cxui,j −
[ut
β
](xi−1 − x∗)2

2h2
+O(h), (23)

where

Cxui,j = −
1

h2

{
[u] + [ux](xi−1 − x

∗) +
[uxx]1
2!
(xi−1 − x

∗)2
}
.

Analogously, in the y-direction, we also have four cases. We add correction
terms such that the local truncation is O(h).
Now using these correction terms in both x-and y-directions, we obtain a

system of ordinary differential equations

(ui,j)t = β(δxui,j + δyui,j) + fi,j

+β
∑

(xi0 ,y
∗)∈Sirr

{
Cxui,j +

[
ut

β

]
τx0(xi0 − x

∗)2 cos2 θ

2h2

}
(24)

+β
∑

(x∗,yj0 )∈Sirr

{
Cyui,j +

[
ut

β

]
τy0(yj0 − y

∗)2 sin2 θ

2h2

}
+O(h),

where i0 = i− 1 or i + 1, j0 = j − 1 or j + 1. τx0 , τy0 = 1 or −1 according to
(20)-(23). We have[

ut

β

]
= u−t

[
1

β

]
+
[ut]

β+
= u+t

[
1

β

]
+
[ut]

β−
,

which imply [
ut

β

]
= (ui,j)t

[
1

β

]
+
ωt

β̃
+O(h), (25)

where β̃ = β− if β = β+, β̃ = β+ if β = β−, and ω is defined in (5). Using (25),
we have the following system of ordinary differential equations

(ui,j)t = F (ui,j−1, ui−1,j , ui,j, ui+1,j , ui,j+1)

with the right-hand side F is equal to

β(δxui,j + δyui,j +
∑
(xi0 ,y

∗)∈Sirr
C̃xui,j +

∑
(x∗,yj0 )∈Sirr

C̃yui,j) + fi,j

1−
∑
(xi0 ,y

∗)∈Sirr
β[ 1
β
]
τxi0

(xi0−x
∗)2 cos2 θ

2h2 −
∑
(x∗,yj0)∈Sirr

β[ 1
β
]
τyj0

(yj0−y
∗)2 sin2 θ

2h2

,

(26)
where

C̃xuij = Cxuij +
ωt

β̃

τxi0 (xi0 − x
∗)2 cos2 θ

2h2

and

C̃yuij = Cyuij +
ωt

β̃

τyj0 (yj0 − y
∗)2 sin2 θ

2h2
.
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At a regular grid point, the local truncation error of the right-hand side of
(26) from βuxx+ βyy + f is O(h

2). In the next section, we will show that at an
irregular grid point, the local truncation error is O(h).
Finally, we discretize time t by choosing ∆t = h. We use Crank-Nicholson

method.

ui,j,k+1 = ui,j,k +∆t(0.5F (ui,j−1,k, ui−1,j,k, ui,j,k, ui+1,j,k, ui,j+1,k) (27)

+0.5F (ui,j−1,k+1, ui−1,j,k+1, ui,j,k+1, ui+1,j,k+1, ui,j+1,k+1)),

which implies the local truncation error for discretizing on t is O((∆t)2), [1, 4].
To solve for ui,j,k+1, from (27), we use S.O.R. iteration with a certain parameter
λ. Set

u
(0)
i,j,k+1 = ui,j,k,

and for n = 1, 2, . . ., set

u
(n+1)
i,j,k+1 = (1− λ)u(n)i,j,k+1 + λ(ui,j,k

+0.5F (ui,j−1,k, ui−1,j,k, ui,j,k, ui+1,j,k, ui,j+1,k) (28)

+0.5F (u
(n+1)
i,j−1,k+1, u

(n+1)
i−1,j,k+1, u

(n)
i,j,k+1, u

(n)
i+1,j,k+1, u

(n)
i,j+1,k+1)) .

4 Accuracy Analysis

We first show that the denominator of the right-hand side of (26) is bounded
below and above by positive constants. Let

Di,j ≡ 1−
∑

(xi0 ,y
∗)∈Sirr

β

[
1

β

]
τxi0 (xi0 − x

∗)2 cos2 θ

2h2
(29)

−
∑

(x∗,yj0)∈Sirr

β

[
1

β

]
τyj0 (yj0 − y

∗)2 sin2 θ

2h2
.

and

Ei,j ≡ 1 +
∑

(xi0 ,y
∗)∈Sirr

∣∣∣∣∣β
[
1

β

]
τxi0 (xi0 − x

∗)2 cos2 θ

2h2

∣∣∣∣∣ (30)

+
∑

(x∗,yj0 )∈Sirr

∣∣∣∣∣β
[
1

β

]
τyj0 (yj0 − y

∗)2 sin2 θ

2h2

∣∣∣∣∣ .
Lemma 4.1 Let Di,j and Ei,j be as defined above. Then

Di,j ≥
min(β+, β−)

max(β+, β−)
and Ei,j ≤ 1 + max(β+, β−)

∣∣∣∣[ 1β
]∣∣∣∣ , (31)

where i0 = i− 1 or i+ 1, j0 = j − 1 or j + 1. τxi0 , τyj0 = 1 or −1 according to
(20)-(23).
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Proof: At first we prove the lower bound. Look at the first summation. In
x-direction, we have four cases.

(a) (xi, yj) ∈ Ω−, (xi+1, yj) ∈ Ω+. Then xi0 = xi+1, τxi0 = −1, β = β
−, and

β
[
1
β

]
τxi0 = 1−

β−

β+
which is positive iff β− < β+.

(b) (xi, yj) ∈ Ω+, (xi−1, yj) ∈ Ω−. Then xi0 = xi−1, τxi0 = 1, β = β
+, and

β
[
1
β

]
τxi0 = 1−

β+

β− which is positive iff β
+ < β−.

(c) (xi, yj) ∈ Ω+, (xi+1, yj) ∈ Ω−. Then xi0 = xi+1, τxi0 = 1, β = β
+, and

β
[
1
β

]
τxi0 = 1−

β+

β− which is positive iff β
+ < β−.

(d) (xi, yj) ∈ Ω−, (xi+1, yj) ∈ Ω+. Then xi0 = xi−1, τxi0 = −1, β = β
−, and

β
[
1
β

]
τxi0 = 1−

β−

β+ which is positive iff β
− < β+.

For all cases, a term in the first summation is positive iff β = min{β+, β−}.
Similarly we can show that a term in the second summation is positive iff β =
min{β+, β−} too. Only the positive terms will reduce the lower bound of the
left-hand side of (29). So the left-hand side is bounded below by

Di,j ≥ 1− 0.5
(
1−
min(β+, β−)

max(β+, β−)

)
− 0.5

(
1−
min(β+, β−)

max(β+, β−)

)
=
min(β+, β−)

max(β+, β−)
.

Now we turn to the upper bound which can be proved directly from (30).

Ei,j ≤ 1 + 0.5β

∣∣∣∣[ 1β
]∣∣∣∣+ 0.5β ∣∣∣∣[ 1β

]∣∣∣∣ ≤ 1 + max(β+, β−) ∣∣∣∣[ 1β
]∣∣∣∣ .

The lower bound (31) is useful for the stability of the numerical scheme and the
upper bound (31) will be used in the proof of the following theorem.

Theorem 4.2 At irregular grid points (xi, yj) in Ω,

F (ui,j−1, ui−1,j, ui,j , ui+1,j, ui,j+1)− (βuxx + βuyy + f)(xi, yj) = O(h) . (32)

Proof: From (24), (25), (26), and (31), we have

F (ui,j−1, ui−1,j , ui,j, ui+1,j , ui,j+1) = (ui,j)t

= β
(
δxui,j + δyui,j +

∑
(xi0 ,y

∗)∈Sirr

C̃xui,j +
∑

(x∗,yj0)∈Sirr

C̃yui,j

)

+fi,j + (ui,j)t

{ ∑
(xi0 ,y

∗)∈Sirr

β

[
1

β

]
τxi0 (xi0 − x

∗)2 cos2 θ

2h2

+
∑

(x∗,yj0 )∈Sirr

β

[
1

β

]
τyj0 (yj0 − y

∗)2 sin2 θ

2h2

}
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= β(δxui,j + δyui,j) + fi,j

+β
∑

(xi0 ,y
∗)∈Sirr

{
Cxui,j +

[
ut

β

]
τxi0 (xi0 − x

∗)2 cos2 θ

2h2

}

+β
∑

(x∗,yj0 )∈Sirr

{
Cyui,j +

[
ut

β

]
τyj0 (yj0 − y

∗)2 sin2 θ

2h2

}
+O(h)

= (βuxx + βuyy + f)(xi, yj) +O(h),

which proves (32).

At a regular grid point, the local truncation error is O(h2). At an irregular
grid point, the local truncation error is O(h) by Theorem 4.2. The local trunca-
tion error from the discretization of time is O((∆t)2) = O(h2). All these imply
that the numerical solution has global error O(h2).

5 Numerical Examples

We choose some examples in which the actual solutions are known; therefore,
numerical error computations can be obtained to confirm the theoretical result
of our method. We choose

Ω = (−1, 1)× (−1, 1), t ∈ [1,∞),

Ω+ = {(x, y) ∈ Ω |x2 + y2 > 1/4},

Ω− = {(x, y) ∈ Ω |x2 + y2 < 1/4},

Γ = {(x, y) ∈ Ω |x2 + y2 = 1/4}.

The exact solution for f = 0 is

u(x, y, t) =
1

t
e−(x

2+y2)/(4βt). (33)

We give the initial condition when t = 1, and the Dirichlet boundary condition
when x and y are equal to 1 or −1. We choose λ=1.75 in (28). For different
pairs β+ and β−, in t from 1.0 to 1.5, we obtain the data shown in Table 1.
The error is computed using the infinity norm. It shows that when h is

divided by 2, the error becomes approximately a quarter of its previous value,
which confirms that the numerical solution has second order accuracy.
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h β+ β− error ratio
0.100 1000 1 2.227782D-04 –
0.050 1000 1 5.391984D-05 4.13
0.025 1000 1 1.307318D-05 4.12
0.100 1 1000 2.392997D-05 –
0.050 1 1000 6.703319D-06 3.57
0.025 1 1000 1.766744D-06 3.79
0.100 5 1 2.629529D-04 –
0.050 5 1 6.351060D-05 4.14
0.025 5 1 1.550294D-05 4.10
0.100 1 5 5.461059D-05 –
0.050 1 5 1.309861D-05 4.17
0.025 1 5 3.263757D-06 4.01

Table 1: Accuracy of computations
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