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On matched asymptotic analysis for laminar

channel flow with a turning point ∗

Chunqing Lu

Abstract

This paper presents a formal analysis of the asimptotic behaviour of
solutions of type III for the Berman equation

εf iv = ff ′′′ − f ′f ′′, f(0) = f ′′(0) = f ′(1) = f(1)− 1 = 0 ,

where f describes a laminar flow in a channel with porous walls. A solution
has a nonlinear turning point (1−∆), i.e. f(1−∆) = 0 for some ∆(ε). It
is shown that

f(η) ∼ −
1−∆

π∆
sin

πη

1−∆
,

as ε→ 0+, for η ∈ [0, 1−∆) where ∆ satisfies

∆

ε
e∆/ε ∼

1

2eπ9ε8
.

1 Introduction

The laminar flow of a viscous fluid in a rectangular channel with porous walls
is governed by the Berman equation [1]

f iv = R(ff ′′′ − f ′f ′′) (1)

with boundary conditions

f(0) = f ′′(0) = 0, f(1) = 1, f ′(1) = 0 (2)

where f = f(η) is the unknown function related to the stream function of the
flow, and R is the Reynold number of the flow. The case R > 0 corresponds
to suction while R < 0 to injection. Setting ε = 1/R, one gets a singular
perturbation problem for small |ε|:

εf iv = ff ′′′ − f ′f ′′ (3)
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110 On matched asymptotic analysis

subject to boundary conditions (2). The boundary value problem (3)-(2) has
been investigated by many authors. In [2, 8, 9] it is shown that there exists a
unique solution for each ε ≤ 0. When ε is positive and sufficiently small, the
boundary value problem admits at least three solutions [7] which are classified
as follows: Type I if the solution is increasing concave down, type II if the
solution is increasing with an inflection point, and type III if the solution is
non-monotone with a turning point.
A turning point, denoted by zε = 1 − ∆ε, is defined as the value in (0, 1)

at which the solution vanishes. Among the most interesting questions is the
asymptotic behavior of the solutions as ε → 0, [2, 4, 10]. Hastings et. al. [2]
showed that as ε→ 0−, f(η)→ sin 2π η uniformly on [0, 1]. As ε→ 0+, however,
type I and type II solutions approach the linear function in compact subsets of
[0, 1) (see [4]), but type III solutions become unbounded on the left side of the
turning point [5]. In addition, for type III solutions, the turning point zε → 1 or
∆ε → 0, as ε→ 0+. Transcendentally small terms in the asymptotic expansion
of the solutions of types I and II have been found by Robinson, Terrill and
Lu et. al. Their validity has been confirmed by McLeod [6]. As for the type
III solutions, the unboundedness and the existence of turning points cause the
asymptotic analysis to be more difficult than for types I and II. Robinson [7] and
Zaturska et. al. [11] used the method of matched asymptotic expansions and gave
estimates on the asymptotic behavior for the type III solutions in the seventies
and the eighties respectively. In 1994, MacGillivrary and Lu [5] considered the
transcendental terms and formally obtained an asymptotic formula for type III
solutions,

f ∼ −κ sin
πη

1−∆

for η ∈ [0, 1−∆), where κ ∼ 1−∆
π∆ and ∆ = ∆ε satisfies the asymptotic formula

∆

ε
e
∆
ε ∼

1

2π9ε8

for sufficiently small ε > 0. It was shown in [5], with numerical comparison,
that this result is better than those given by Robinson and Zaturska et. al.. In
1997, Lu [3] rigorously proved that for the type III solutions, as ε→ 0+,

f(η) ∼ −
1−∆

π∆
sin

πη

1−∆

uniformly on [0, 1−∆], and ∆ satisfies

∆

ε
e
∆
ε ∼

1

2eπ9ε8
.

Interested readers may find that the formal result of [5] and the rigorous proof
in [3] are of the same orders, but the coefficients are different. The purpose
of this paper is to improve the formal matching method used in [5] to get the
correct asymptotic result. It implies that the rigorous analysis is important for
not only confirming but also improving the formal matching method, although
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sometimes it is hard and tedious. Also, the paper shows that the formal match-
ing technique can exactly provide the asymptotic behavior of the solution when
it is properly applied. The aim of the paper is to provide a general method of
the formal asymptotic analysis to deal with the singular perturbation problems
with boundary and internal layers. The paper is organized as follows. The outer
solution that behaves like a sine function on the left side of the turning point is
studied in §2. The inner solution near the turning point is given in §3 and §4.
The Poincaré expansion is studied in §3, and the transcendentally small terms
in §4. Finally, in §5, the relation between ∆ and ε is determined by a formal
matching process on the right side of the turning point.
Throughout the paper, the process ε → 0 means ε → 0+, and the solution

of the boundary value problem means the type III solution. Also, the crucial
property f iv(η) < 0 for η ∈ (0, 1], whose proof can be found in [2], is applied
repeatedly in the paper.

2 Approximation on the left side of the turning
point

Setting ε = 0 in (3), we obtain the reduced equation

ff ′′′ − f ′f ′′ = 0 . (4)

The initial condition f(0) = f ′′(0) = 0 is then imposed. We see that equation
(4) may have three possible solutions: Cη, C sinλη, and C sinhλη where C and
λ are constants. Recall that the turning point is defined by f(1−∆) = 0. Thus,
the outer solution on [0, 1−∆] that satisfies f(1−∆) = 0 must be neither the
linear function nor the hyperbolic sine function. Thus, the solution of (4) with
f(0) = f(1−∆) = 0 is C sinλη. Since f(η) ≤ 0 on [0, 1−∆], we can write

f(η) ∼ −κ sin
πη

1−∆
, (5)

where κ > 0 is a constant related to ε, and assume the convergence is valid
uniformly on compact subintervals of [0, 1 −∆). This is the outer solution on
the left side of the turning point. It then remains to determine the values of κ
and ∆ in terms of ε as ε→ 0.

3 The Poincaré expansion at the turning point

Noting that the turning point is moving toward the right end-point of the inter-
val [0,1] as ε→ 0, we introduce the interior-layer variable τ = η−1+∆

∆ . Then, the
turning point, which is τ = 0, becomes immobilized as ε → 0, and the interval
[1−∆, 1] of η becomes the interval [0, 1] of τ .
Let f(η) = f(∆τ + 1−∆) = f̄(τ) and denote ε̄ = ε

∆ . The original equation
(3 ) then takes the form

ε̄f̄ iv = f f̄ ′′′ − f̄ ′f̄ ′′, (6)
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with boundary conditions

f̄ (0) = 0, f̄(1) = 1, f̄ ′(1) = 0. (7)

As suggested in [5], assume ε̄→ 0 as ε→ 0, which implies that (6)-(7) is again
a singular perturbation problem.
Now we set ε̄ = 0 to get the reduced equation,

f̄ f̄ ′′′ − f̄ ′f̄ ′′ = 0, (8)

which must have a linear solution in a outer region [0, 1 − µ(ε)] of τ where
µ(ε) = o(1). This is seen from f̄(0) = 0, f̄ ′ > 0 for all τ ≥ 0, and f̄(1) = 1. In
general, equation (8) would have three solutions: a linear function, sin π2 τ and
sinhλτ
sinhλ where λ > 0 is a constant. The other two are excluded because they have
positive fourth derivatives, which contradicts the property f iv < 0 for η > 0.
Thus, the outer solution, up to order O(1), for τ ∈ [0, 1) is a linear function,
i.e.,

f(τ) = λτ + . . . (9)

where λ is to be determined.
The inner solution near the right end-point τ = 1 can be formally found by

introducing the boundary layer variable x∗ defined by

ε̄x∗ = 1− τ. (10)

Let f̃(x∗) = f̄(1−τ
ε̄
). Then, the equation (6) becomes

f̃ iv = −f̃ f̃ ′′′ + f̃ ′f̃ ′′. (11)

At x∗ = 0, the initial conditions are f̃(0) = 1 and f̃ ′(0) = 0. Assume that f̃ ∼ 1
is valid for x∗ ∈ [0, A] where A is any positive constant. Then, we can set

f̃(x∗) = 1 + ε̄f1(x
∗) + ε̄2f2(x

∗) + . . . . (12)

Substituting (12) into (11) and extract the powers of ε̄, we get the following
system of equations:

f iv1 + f
′′′
1 = 0, f1(0) = f

′
1(0) = 0, (13)

f iv2 + f
′′′
2 = −f1f

′′′
1 + f

′
1f
′′
1 , f2(0) = f

′
2(0) = 0,

f ivk + f
′′′
k = −

k−1∑
i=1

fif
′′′
k−i +

k−1∑
i=1

f ′if
′′
k−i, fk(0) = f

′
k(0) = 0, k = 3, 4, . . . .

The general solution of (13) is

f1(x
∗) = a1(−1 + x

∗ + e−x
∗

) +
1

2
b1x

∗2

where a1 and b1 are constant to be determined by matching with appropriate
terms from the outer solution. So, the inner expansion is

f̃(x∗) = 1 + ε̄[a1(−1 + x
∗ + e−x

∗

) +
1

2
b1x

∗2] + o(ε̄). (14)
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Recall that the leading term of outer solution is given in (9 ). Thus, the Poincaré
expansion of the outer solution can be written as

f̄(τ) = λτ +

∞∑
i=1

εigi(τ). (15)

If we match (14) with (15) to order O (1), then λ = 1. Substituting (15) with
λ = 1 into (6) and comparing the powers of ε̄, we obtain

τg′′′1 − g
′′
1 = 0, (16)

τg′′′i − g
′′
i = g

iv
i−1 −

i−1∑
j=1

gjg
′′′
i−j +

i−1∑
j=1

g′jg
′′
i−j , (17)

for i = 2, 3, . . .. Since f(0) = 0, the boundary conditions

gi(0) = 0, i = 1, 2, . . . (18)

are imposed. We may also assume that all the functions gi, i = 1, 2, . . ., are
analytic at τ = 0. Thus, the function g1 can be solved from (16) and (18), which
is

g1 =
1

6
A1τ

3 +B1τ

for some constantA1 andB1. Writing the outer expansion f(τ) = τ+εg1(τ)+. . .
in terms of the variable x∗, one obtains

f̄(τ) = (1− ε̄x∗) + ε̄[
1

6
A1(1− ε̄x

∗)3 +B1(1− ε̄x
∗)] + o(ε̄)

= 1 + ε̄[−x∗ +
1

6
A1 +B1] + o(ε̄). (19)

Now, matching the outer and inner expansions (14) and (19) to order O(ε̄), we
find that

a1 = −1, b1 = 0,
1

6
A1 +B1 = 1.

Thus, at this stage, we have the following outer and inner approximations up
to O(ε̄) :

outer: f̄ = τ + ε̄[
1

6
A1τ

3 +B1τ ] + o(ε̄), (20)

and

inner: f̃ = 1 + ε̄[1− x∗ − e−x
∗

] + o (ε̄) . (21)

Next, we want to argue A1 = 0, which implies that B1 = 1, hence, g1 is linear.
To see this, we set i = 2 in (17) to obtain

τg′′′2 − g
′′
2 =
1

3
A21τ

3. (22)
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Differentiating the both sides of (22) produces τgiv2 = A
2
1τ
2. If A1 6= 0, the

fourth derivative formally satisfies

f̄ iv(τ) = ε2A21τ + o(ε
2),

hence, f̄ iv > 0 for τ ≥ 1
2 , which contradicts the property f

iv < 0 for η > 0.
Moreover, it can be argued that every function gi, i = 1, 2, 3, ..., is linear. To see
this, we use an argument by contradiction. Suppose not. Then, there would be
the smallest integer greater than two, say k, such that gk is the first nonlinear
function, and g1, g2, ..., gk−1 are linear. Substitution of g1, g2, ..., gk−1 into (17)
for i = k yields

τg′′′k − g
′′
k = 0,

which implies gk =
1
6Akτ

3 + Bkτ . If Ak 6= 0, from (17), the function gk+1
satisfies

τg′′′k+1 − g
′′
k+1 =

1

3
A2kτ

3,

which leads to τgivk+1 = A
2
kτ
2. Similar to the case k = 1 above, we would have

f iv > 0 for η > 0, again a contradiction. Thus, the Poincaré expansion is a
linear function γ(ε)τ where

γ(ε) = 1 + ε+B2ε+B3ε̄
3 + . . . . (23)

Following a similar procedure, one can determine the values of B2, B3, . . .. How-
ever, for the purpose of this paper, the result for B1(= 1) is enough. In addition,
we can assume that Bn, n = 2, 3, . . ., are all of order O(1) to guarantee the con-
vergence γ(ε̄) → 1 as ε̄ → 0. From the inner expansion (21) we see that the
exponentially small terms should be studied. This suggests that to have a pre-
cise outer expansion f̄(τ) for τ ∈ [0, 1), we may use a general form including
both power terms of ε and transcendentally small terms,

∞∑
i=0

εigi(τ) +

∞∑
i=1

δihi(τ) (24)

where the first series is the Poincaré expansion and the second are transcendental
terms. It turns out, from the discussion above, that

f̄(τ) = γ(ε)τ +
∞∑
i=1

δihi(τ) (25)

where δ1 = o(ε̄
n) for all positive integers n, δi = δi(ε̄), and δi+1 � δi for all

i = 1, 2, 3, ..., are transcendentally small. The outer expansion (25) is valid in a
neighborhood of the turning point, including [0, 1−ν(ε̄)] of τ , where ν(ε) = o(1).
It is interesting to point out here that the results in this section also show that
f̄ ′′(0), f̄ ′′′(0), and f̄ iv(0) are all transcendentally small, which agrees to the
rigorous proof in [3]. But there is no more information on those quantities
that can be provided from the right side of the turning point at this stage.
We must return to the left side of the turning point to determine the leading
transcendental terms in the next section.
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Remark The power expansion should be fully studied as above, but it was
not completely given in [5].

4 The transcendental terms at the turning point

Note that the outer approximation on the right side of the turning point is the
interior layer approximation which, from the previous section, is assumed as

f̄ = γτ + δ1h1(τ) + δ2h2(τ) + . . . (26)

where γ = γ(ε̄) is given in (23), and δ1 = o(1), δ2 = o(δ1), and hi, i = 1, 2, are to
be determined. Here o(1) = o(ε̄n), for all positive integers n, is transcendentally
small in terms of ε̄ (not the original ε). Since, from here on, the reasoning is
similar to that in [5], only key steps of the formal analysis will be given in the
remainder of the paper for completeness. The interior layer approximation (26)
must be valid in the small neighborhood of η = 1−∆ which should also include
a small part of left side of the turning point, in terms of the original variable η.
Thus, it may be assumed, for the interior variable τ , that the expression (26)
is valid on any compact intervals of [−M, 1), where M > 0 is any constant, for
sufficiently small ε̄ > 0. Substitution of (26) into (6) leads to

γ−1ε̄hiv1 = τh
′′′
1 − h

′′
1 (27)

which has a solution (see [5] for details)

h1 =
τ3

6
+ r1τ, (28)

where r1 is a constant. Note that this h1 is valid for not only τ < 0 but also for
τ ∈ [0, 1− ν(ε̄)]. Replace h1 using (28), and substitute (26) into (6) again. We
then balance the terms to get δ2 = δ

2
1 and

γ−1ε̄hiv2 = τh
′′′
2 − h

′′
2 − γ

−1 τ
3

3
, (29)

from which one obtains

hiv2 = −
1

ε̄
e
γ
2ε̄ τ

2

∫ τ
0

s2e−
γ
2ε̄ s

2

ds−D2e
γ
2ε̄ τ

2

, (30)

where D2 is a constant. To determine D2, we choose τ < 0 bounded away from
τ = 0 and apply integration by parts to evaluate the integral of (30). The result
is

hiv2 ∼ −
1

ε̄
e
γ
2ε̄ τ

2

{−(
2ε̄

γ
)3/2[

√
π

4
− (

√
γ
2ε̄ |τ |

2
e−

γ
2ε̄ τ

2

+
1

4|τ |
√
γ/ (2ε̄)

e−
γ
2ε̄ τ

2

)]}

−D2e
γ
2ε̄ τ

2

. (31)
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To have δ2h2(τ) � ε̄n for all positive integers n, the first and last terms in
the right hand side of (31) must be balanced each other, for otherwise, h2(τ)
would be exponentially large if τ is bounded away from zero. This may cause a
contradiction. Thus, balancing the two terms, one obtains

D2 =

√
2ε̄π

2γ
√
γ
.

Then, from (31), for τ < 0 bounded away from 0,

hiv2 ∼ γ
−1τ

which gives that h2 is asymptotically equal to a polynomial of fifth degree,

p(x) = γ−1( τ
5

5! + . . .). Then, the inner expansion on the left side of the turning
point is

f̄ = γτ + δ1(
τ3

6
+ r1τ) + δ

2
1γ
−1(
τ5

5!
+ . . .) + . . . (32)

for τ < 0. Now, we match the expression (32) with the outer solution (5). Let
η − (1−∆) = t. Then, t = τ∆. Expand the sine function at the turning point:

−κ sin
πη

1−∆
= κ

πτ∆

1−∆
−
κ

3!

(
πτ∆

1−∆

)3
+
κ

5!

(
πτ∆

1−∆

)5
+ . . . . (33)

Compare the corresponding terms in (32) and (33). We then see from the linear
term that κ π∆1−∆ ∼ γ. Since γ ∼ 1, we have

κ ∼
1−∆

π∆
. (34)

Then, from the cubic term,

δ1 ∼ −

(
1−∆

π∆

)2
.

In closing this section, we write the interior layer approximation which is the
out expansion of the solution on the right side of the turning point as follows:

f̄(τ) = γτ −

(
1−∆

π∆

)2
τ3

6
+

(
1−∆

π∆

)4
h2 (τ) + . . . , (35)

where h2 satisfies (30).

5 On ∆ and ε

The asymptotic relation between κ and ∆ has been determined by (34). To
complete the formal asymptotic analysis, our final task is to determine the
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asymptotic value of ∆ in terms of ε. This can be done by matching (35) with
the inner expansion (21). For τ ∼ 1, from §4,

hiv2 = −
1

ε̄
e
γ
2ε̄ τ

2

∫ τ
0

s2e−
γ
2ε̄ s

2

ds−

√
2ε̄π

2γ
√
γ
e
γ
2ε̄ τ

2

= −

√
2ε̄π

γ
√
γ
e
γ
2ε̄ τ

2

+ τ + . . . . (36)

Differentiating (35) four times and applying (36), we find

d4f̄

dτ4
= −π9/2

∆7/2

(1−∆)4
√
2ε̄e

γ
2ε̄ τ

2

+

(
π∆

1−∆

)4
τ + . . . (37)

Writing this equation in terms of the boundary-layer variables x∗ by substituting
(10) into (37), we obtain

1

ε̄4
d4f̃

dx∗4
= −π9/2

∆7/2

(1−∆)4
√
2ε̄e

γ
2ε̄ e

εγ
2 x

∗2

e−γx
∗

+

(
π∆

1−∆

)4
(1− ε̄x∗)+. . . . (38)

Then, from the inner expansion (21),

1

ε̄4
d4f̃

dx∗4
= −

1

ε̄3
e−x

∗

+ o

(
1

ε̄2

)
(39)

Comparison of (38) and (39) shows the overlap domain must be such that

ε̄γ

2
x∗2 � 1and x∗ � 1,

and hence

−π9/2
∆7/2

(1 −∆)4
√
2ε̄e

γ
2ε̄ ∼ −

1

ε̄3
. (40)

Using the expression (23) and ε̄ = ε/∆, and comparing the leading terms in
(40), we finally obtain

∆

ε
e∆/ε =

1

2eπ9ε8
.

This result is the same as the rigorous result in [3].

6 Conclusion

The paper shows that when formal matching method is applied on the singular
perturbation problem with a nonlinear turning point, like the Berman problem,
an application of a full expansion of the asymptotic approximation is very im-
portant (see §2). This means that both the power terms and transcendental
terms should involve. To determine the coefficients of their leading terms, the
formal matching, in usual, must travel around the turning point several times.
In other words, we have to match the inner and outer solutions repeatedly. Of
course, it makes the computation tedious, but is necessary and important.
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