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Spectral Riesz–Cesàro means:

How the square root function helps us to see

around the world ∗

S. A. Fulling, E. V. Gorbar, & C. T. Romero

Abstract

The heat-kernel expansion for a nonanalytic function of a differential
operator, and the integrated (Cesàro-smoothed) spectral densities associ-
ated with the corresponding nonanalytic function of the spectral param-
eter, exhibit a certain nonlocal behavior. Because of this phenomenon,
care is needed in applying the pseudodifferential symbolic calculus to non-
analytic functions. We demonstrate this effect by both analytical and
numerical calculations for the square root of the Laplace operator in the
model of a “twisted” scalar field over the circle. This shows that the effect
cannot be attributed solely to boundaries.

1 Motivation

In the late seventies many physicists working in quantum gravity or gauge the-
ories learned about the symbolic calculus of pseudodifferential operators, pri-
marily from the writings of Peter Gilkey [11]. In particular, let H be a positive
self-adjoint second-order linear differential operator (on scalars, for simplicity).
Then the small-time asymptotic expansion of the heat kernel (on diagonal) can
be calculated from the high-frequency expansion of the “resolvent symbol” σ by
the relation

e−tH(x, x) ∼

∫
T∗x

dξ

∫
C

dλ e−tλσ(x, ξ, λ). (1)

(C is an appropriate complex contour, and T ∗x is “momentum space” relativized
to x so that the formula will make sense on a manifold. A(x, y) is the integral
kernel of the operator A (written 〈x|A|y〉 in Dirac notation).)
It is tempting to extrapolate this construction to such objects as

e−t
√
H(x, x) ∼

∫
T∗x

dξ

∫
C

dλ e−t
√
λσ(x, ξ, λ) (2a)
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or
√
He−tH(x, x) ∼

∫
T∗x

dξ

∫
C

dλ
√
λe−tλσ(x, ξ, λ). (2b)

Then (2b) or the time derivative of (2a) would give a regularized expression for
(at least part of) the vacuum energy density of the quantum field theory with

field equation Hφ = −∂
2φ
∂t2
, from which the exact energy could be obtained by

renormalization and taking the limit t ↓ 0 [20, 14].
However, if this procedure were correct in general, there would be no Casimir

effect! The asymptotic series σ(x, ξ, λ) is completely determined by the symbol
of H at the point x (that is, the coefficients in the differential operator H and
their derivatives at the point); it is merely a parametrix, not an exact formula
for the resolvent operator (H − λ)−1. Therefore, the small-t expansions of
(1) and (2) also are purely local expressions. Now consider the system with
H = −∇2 and M = I × Rm−1, where I is a finite interval furnished with
suitable boundary conditions. Then the expansions of (1) and (2) are identical
to those for M = Rm (namely, all terms after the first are zero). It would
therefore appear that the renormalized vacuum energy is zero, contrary to the
well-known direct calculations for such models ([3], [5], . . . ).

There are actually two kinds of “Casimir” energy in the scalar-field scenario
just described, with m = 3 and I an interval of length L. First, there is a
constant energy density throughout the space, proportional to L−4. This is also
present (with a different coefficient) if the boundary conditions are periodic —
i.e., there actually is no boundary. It is not visible at all in the heat-kernel expan-
sion, local or integrated. Second, there is a buildup of energy near the boundary,
with an x−4 dependence of energy density on distance from the boundary. This
contribution also does not show up in the local heat-kernel expansion in the in-
terior of M (which is not uniform in x). However, its effect on the total energy,
through the density of eigenvalues, can be calculated by expanding the exact
heat kernel in distance from the boundary, integrating, and only then expanding
in t (cf. [18]). Both these effects can be calculated either from the expansion
of the field in normal modes or by the construction of Green functions by the
method of images. (More details have been reviewed in [7, 10, 9].)

It should be noted that the local expansion of the heat kernel (1) is correct in
Casimir-type situations, and it gives the correct counterterms for renormalizing
effective actions, for instance. From the point of view of solutions by the method
of images, the difference between the heat kernel and the objects (2) is that the
off-diagonal heat kernel for M = Rm decreases exponentially as t ↓ 0,

e−tH(x, y) ≤ const.× e−‖x−y‖
2/4t,

while most such Green functions do not. (We give a detailed example in the
next section.) It is thus a miraculous accident that image terms for the heat
kernel do not contribute to the small-t expansion, rather than a surprise that
image terms do contribute to such expansions for more general functions such
as (2).
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Our purpose here is to explore the true limitations of the calculation of the
local energy density by (2). One approach would be to examine carefully the
proof of (1) to find where it breaks down in more general contexts; in fact,
the square-root function’s branch point at the origin is critical here, as follows
from one of the theorems of [7]. Perhaps more compelling in practice, however,
would be explicit examples of nonlocality in solvable models. Among some
physicists there is an impression that such effects are limited to spaces that are
“cluttered” by boundaries (or perfect conductors, in electromagnetism), so we
want an example without a boundary.

2 A Model

The operator considered is

H = −
d2

dx2
(3)

(m = 1). It acts on functions defined on the interval (0, L) with “boundary”
conditions

u(L) = eiθu(0), u′(L) = eiθu′(0), (4)

where θ is a fixed parameter in [0, 2π). There is actually no boundary: The
functions u are sections of a line bundle over the circle that is completely ho-
mogeneous spatially. (In particular, for θ = π we have antiperiodic boundary
conditions, alias the Möbius strip.)
The eigenfunctions of this operator are

un(x) =
1
√
L
eiknx, (5)

where n is any integer and

kn =
2πn+ θ

L
. (6)

The corresponding eigenvalues are

λn = kn
2 =
(2πn+ θ)2

L2
. (7)

The integral kernel of the operator e−t
√
H has been called the cylinder kernel

because it solves Laplace’s equation on a semi-infinite cylinder with boundary
data on its base, the manifold M (here, the circle). (It is also the heat kernel
of the first-order pseudodifferential operator

√
H , but our main point is that

it does not behave like the familiar heat kernel of a second-order differential
operator.) This kernel is

T (t, x, y) ≡ e−t
√
H(x, y)

=

∞∑
n=−∞

e−t
√
λnun(x)u

∗
n(y)
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=

∞∑
n=−∞

e−t|kn|

L
e
i(2πn+θ)(x−y)

L . (8)

It can be broken into a sum of geometric series and thus can be evaluated in
terms of elementary functions:

T (t, x, y) =
e
iθ(x−y)
L

(
sinh (2π−|θ|)t

L
+ sinh |θ|t

L
cos2π(x−y)

L
− isinh θt

L
sin2π(x−y)

L

)
L(cosh2πt

L
− cos2π(x−y)

L
)

.

(9)
We observe the following properties and limiting cases:

• Complex conjugation and the interchange x↔ y give the same result, as
should be the case for matrix elements of an Hermitian operator.

• If x is advanced by Lm, then T (t, x, y) is multiplied by eiθm, as expected.

• If θ = 0, then (9) coincides with formula (17) of [10] for the cylinder heat
kernel with periodic boundary conditions (except for a redefinition of L
by a factor 2).

• If L→∞, then the cylinder kernel becomes

t

π(t2 + (x− y)2)
. (10)

This coincides with formula (11) of [10] for the cylinder heat kernel on the
real line.

• For t→ 0, T (t, x, y) is {
O(t) if x 6= y + Lm,
eiθm

πt
if x = y + Lm.

(11)

• Most significantly, for x = y the cylinder kernel is real and is equal to

T (t, x, x) =
sinh (2π−|θ|)tL + sinh |θ|tL

L
(
cosh2πt

L
− 1
) . (12)

As t ↓ 0 this function has an expansion whose first two terms are

T (t, x, x) ∼
1

πt
+
(2π2 − 6π|θ|+ 3|θ|2)t

6πL2
+ · · · . (13)

If θ = 0, then this is
1

πt
+

πt

3L2
,

which agrees with formula (18) of [10] for the cylinder kernel expansion
on a circle.
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In contrast, the heat kernel for this operator is

K(t, x, y) ≡ e−tH(x, y)

=

∞∑
n=−∞

e−tλn

L
e
i(2πn+θ)(x−y)

L . (14)

The alternative form

K(t, x, y) =
1
√
4πt

∞∑
n=−∞

e
−

(
(x−y+Ln)2

4t +inθ

)
(15)

is obtained from (14) by the Poisson sum formula, or directly as an image sum
from the heat kernel for the real line. Unlike T , the K of this model cannot be
expressed through elementary functions.
The natural counterparts of the first four properties and limits stated above

hold. The contrast comes in the fifth and sixth properties:

• For t→ 0, K(t, x, y) is{
O(t∞) if x 6= y + Lm,
eiθm√
4πt
+O(t∞) if x = y + Lm.

(16)

• For x = y the heat kernel is real and is equal to

K(t, x, x) =
θ3

(
θ
2 , e

−L2

4t

)
√
4πt

, (17)

where [15], for |q| < 1,

θ3(u, q) ≡
∞∑

n=−∞

qn
2

e2nui = 1 + 2

∞∑
n=1

qn
2

cos(2nu). (18)

It is clear from (16) that the diagonal heat kernel expansion is local and does
not “feel” the finiteness of space (L) or the nontrivial bundle boundary condition
(θ). That expansion is the same as for ordinary periodic boundary conditions or
for the whole line. On the other hand, the corresponding expansion (13) for the
cylinder kernel contains this nonlocal information, because it manifestly depends
on θ and L. Those parameters are not part of the pseudodifferential resolvent-
symbol expansion, so the latter is inherently incapable of providing (13).
Note also that (13) is uniform (in fact, constant) in x, so it can be integrated

rigorously to give eigenvalue asymptotics that depend on θ. The latter will be
investigated directly in Sec. 4.
Here we have concentrated on the cylinder kernel, (2a). Similar calculations

can be conducted for the kernel (2b), with similar conclusions; details will be
published elsewhere.
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3 General Theory

We need to put the previous discussion into a general framework of Riesz–Cesáro
means for eigenvalue distributions and other spectral functions. We will be brief,
referring to earlier papers for the details [9, 6, 10, 7, 8]. Some aspects of the
subject were known to Hörmander by 1968 [17], and others to Riesz and Hardy
by 1916 [16]. One of the most recent related papers is by Gilkey and Grubb
[13]; it is primarily concerned with the logarithmic terms that, in the most
general circumstances, accompany those power terms that we call “nonlocal”,
but its Theorem 1.7 proves this nonlocality property in generality. (We should
emphasize, incidentally, that even when the coefficient of such a logarithmic term
turns out to be zero, the accompanying pure power term is generally present
and is not locally determined by the symbol of the [pseudo]differential operator
involved.)
Consider a function defined by a Stieltjes integral with respect to some mea-

sure:

f(λ) ≡

∫ λ
0

a(σ) dµ(σ). (19)

Its iterated indefinite integrals can be expressed as single integrals,

∂−αλ f(λ) ≡

∫ λ
0

dσ1 · · ·

∫ σα−1
0

dσα f(σα)

=
1

α!

∫ λ
0

(λ− σ)α df(σ), (20)

and then its Riesz means are defined by dividing by the volume of the simplex
of size λ:

Rαλf(λ) ≡ α!λ
−α∂−αλ f(λ) =

∫ λ
0

(
1−

σ

λ

)α
df(σ). (21)

Rαλf is to be thought of as an averaged or smoothed version of f itself. In our
applications, µ(λ) is N(λ) (the number of eigenvalues less than or equal to λ) or
Eλ(x, y) (the kernel of the spectral projection) for some self-adjoint operator H .
Then one can study the spectral quantities themselves by taking a = 1, f = µ;
these Riesz means have asymptotic expansions that give rigorous meaning to
the formal high-energy expansions of µ obtained from the rigorous asymptotics
of the corresponding heat kernel by formally inverting the Laplace transform.
Alternatively, taking a(σ) = e−iσt (for instance) and letting λ→∞ with α > 0
fixed yields a generalization (to possibly continuous spectrum) of the classic
Cesàro summation of the eigenfunction expansion for the Green function of the
time-dependent Schrödinger equation (for instance).
Of principal importance to us is the matter of Riesz means with respect to

different variables. Let
λ ≡ ω2 (22)

and consider the new set of means, Rαλf , defined by (20)–(21) with integration
over ω instead of λ. When one works out the relationship between the Rαλf
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and the Rβωf [16, 17, 10], one finds that the asymptotic behavior as λ → ∞
of the Rλ quantities is entirely determined by that of the Rω quantities, but
the asymptotics of the Rω depends on integrals of the Rλ over all (arbitrarily
small) λ. Put another way, in passing from λ-means to ω-means one encounters
constants of integration from the lower limit (λ = 0) that cannot, in principle, be
determined from the large-λ behavior; in going the other way, there is a purely
algebraic (nonintegral) relationship, and furthermore, the extra constants in the
asymptotic formulas for the Rω get multiplied by zero, so that they disappear
from the λ asymptotics.
For eigenvalue distributions on compact manifolds, and for local spectral

densities Eλ(x, x) in general (for second-order linear operators), the typical be-
haviors are [10]

Rαλµ(λ) =

α∑
s=0

aαsλ
(m−s)/2 +O(λ(m−α−1)/2), (23)

Rαωµ(ω) =
α∑
s=0

cαsω
m−s +

α∑
s=m+1
s−m odd

dαsω
m−s lnω +O(ωm−α−1 lnω), (24)

where m is the dimension of the manifold and

• cαs = constant× aαs if s ≤ m or s−m is even;

• cαs is undetermined by aαs if s > m and s−m is odd;

• dαs = constant× aαs if s > m and s−m is odd.

(The error terms are those that arise in passing from heat-kernel expansions
(which extend to arbitrarily high order) to Riesz-mean asymptotics by general-
ized Tauberian theorems (e.g., [17]).)
The major conclusion, therefore, is that the coefficients of the Riesz–Cesàro

ω expansion of µ contain more information that the coefficients of its λ expan-
sion. In the principal application to differential operators and quantum field
theory, these new data are “global” and the old ones are “local”.
The λ and ω expansion coefficients are in direct correspondence with those

in the small-t expansions of the Laplace transforms of µ with respect to λ and
ω, respectively; the latter generalize the heat and cylinder kernels. If

K(t) ≡

∫ ∞
0

e−λt dµ(λ) ∼
∞∑
s=0

bst
(−m+s)/2 (25)

and

T (t) ≡

∫ ∞
0

e−ωt dµ ∼
∞∑
s=0

est
−m+s +

∞∑
s=m+1
s−m odd

fst
−m+s ln t, (26)

then

bs =
Γ((m+ s)/2 + 1)

Γ(s+ 1)
ass , (27)
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and

es =
Γ(m+ 1)

Γ(s+ 1)
css if s−m is even or negative, (28)

but

es =
Γ(m+ 1)

Γ(s+ 1)
[css + ψ(m+ 1)dss], fs = −

Γ(m+ 1)

Γ(s+ 1)
dss (29)

if s − m is odd and positive. (Coefficients with α 6= s contain no additional
information.) Therefore (by comparison with the discussion of (24)), the es
in case (29) are “new” objects containing information not present in the heat
coefficients bs .

4 Numerical Verification

Modern computer algebra systems make it possible to investigate directly the
sums and Riesz means of eigenvalues, spectral densities, energy densities, etc.,
providing “experimental” verification of the conclusions obtained from rigorous
analysis of Green functions. We have used Maple to study the model in Sec. 2
(with L = π) and some other simple problems; details appear on a Web page
[19]. A crucial tool is Maple’s floor (greatest integer) function.
In (21) let f be N(λ), the number of the eigenvalues (7) less than λ. Then

RαωN is a finite sum, and we begin by defining it in Maple:

exact := (alpha,omega) ->

Sum((1 - (2*n+(theta/Pi))/omega)^alpha,

n=0..floor((omega-(theta/Pi))/2))

+ Sum((1 - (2*n-(theta/Pi))/omega)^alpha,

n=1..floor((omega+(theta/Pi))/2));

exact := (α, ω)→

floor(1/2ω−1/2

θ

π
)∑

n=0


1− 2n+

θ

π
ω



α


+



floor(1/2ω+1/2

θ

π
)∑

n=1


1− 2n−

θ

π
ω



α


 .

There are two separate series of eigenfunctions, since n in (6) can be either
positive or negative.
We define the identity function

id := p -> p

and tell the computer to replace floor by id in R0ωN ; the result is ω + 1,
showing that c00 = 1 in (24), in agreement with Weyl’s eigenvalue distribution
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law and with (13), (26), (28). (The π in the denominators of (13) is removed
by the integration over the manifold.)

The leading term, ω, in R0ωN corresponds via (21) to a leading term
1
2ω in

R1ωN . Subtracting this from the exact sum R1ωN yields

−
1

2πω

(
ω2 π − 2 floor

(
1

2

ω π − θ

π

)
ω π − 2ω π + 2 θ floor

(
1

2

ω π − θ

π

)
+ 2 θ

+ 2 π floor

(
1

2

ω π − θ

π

)2
+ 2 π floor

(
1

2

ω π − θ

π

)
− 2 floor

(
1

2

ω π + θ

π

)
ω π

− 2 θ floor

(
1

2

ω π + θ

π

)
+ 2 π floor

(
1

2

ω π + θ

π

)2
+ 2 π floor

(
1

2

ω π + θ

π

))
.

(Fortunately, Maple is able to evaluate in closed form all the sums that arise
in this simple model.) Again substituting the identity function for the floor
function, we get

1

2

θ (θ − 2 π)

π2 ω
.

The relevant term at this order is the one of order ω0, which is zero. Thus
c11 = 0, consistently with (13), (26), (28), which show that css = 0 for all odd s.
Conceptually subtracting this term also, we obtain the exact remainder in the
first Riesz mean (the O term in (24) — where the lnω factor can actually be
ignored, because in fact there are no logarithmic terms in this case). Setting
θ = π

6 for definiteness, we plot this remainder:
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Perhaps more revealingly, we plot the remainder times ω:
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This amplified error is neatly confined between horizontal lines, demonstrating
that the error is precisely of order O(ω−1). The gaps and striations in these
graphs are artifacts purely of the sampling in the plotting routine; plotting over
a smaller interval always reveals beautifully periodic oscillations, as we shall
exemplify below.

Continuing in this way, we can empirically determine each css in turn, and we
can plot the remainder times each power of ω until the noise has been amplified
to the level O(1). In particular, at the second step we get

c22ω
−1 =

1

3

2 π2 − 6 θ π + 3 θ2

π2 ω
,

in precise agreement with (13). Similarly, we find

c44ω
−3 =

1

15

−60 θ3 π − 8 π4 + 60 θ2 π2 + 15 θ4

ω3 π4
, (30)

c66ω
−5 =

1

21

−126 θ5 π + 21 θ6 + 210 θ4 π2 − 168 θ2 π4 + 32 π6

ω5 π6
. (31)
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The plot of the remainder in R6ωN times ω
6 is
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At large ω there is roundoff error in the numerical evaluation of the function
(now a very long sum of floor terms of both signs, which cancel to a high
order). This is a good excuse for replotting on a smaller interval, which shows
the periodicity advertised earlier:

–0.4

–0.2

0

0.2

0.4

42 44 46 48 50
omega



98 Spectral Riesz–Cesàro Means

We can do the same thing for RαλN , with, of course, a more trivial result.
For variety let’s look at the Dirichlet case, where the eigenvalues are

En = n
2

with n positive only. The exact Riesz mean is

exact := (α, λ)→

floor(
√
λ)∑

n=1

(
1−

n2

λ

)α
.

Evaluating for α = 0 and replacing floor by id yields the Weyl term,
√
λ.

Subtracting the corresponding term, 23
√
λ, from the first Riesz mean, one sees

that there is still an error of order O(λ0), whose leading term is − 12 . This
is precisely what is expected from two Dirichlet endpoints in dimension 1 [12].
Subtracting this and replacing floor by id, one finds that the rest of the second
Riesz mean, R2λN , behaves like O(λ

−3/2). That is, the term a22λ
−1/2 in (23) is

zero. The error in this approximation to R2λN is of order O(λ
−1), as we check

by plotting it times λ:
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Continuing in this way, one sees that the correction term is always zero from
this point on. This reflects the triviality of the local heat kernel expansion (16)
(with (25), (27)), and also the fact that there are no higher-order contributions
from the endpoints in this case [12].

5 Future Questions

Presumably the reader is now convinced that the nonlocality of the cylinder
kernel has nothing to do with boundaries. However, it may be objected that
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the effect exhibited in our model is “topological”. Perhaps there is nothing
wrong with (2a) or (2b) when applied to a system whose configuration space
is Rm? Consider a Hamiltonian

H = −
d2

dx2
+ V (x)

for which V (x) = 0 in a neighborhood of x = 0 but V (x) has a huge hump
(or well) elsewhere. We believe that it is clear from the general properties of
Green functions that the existence of the distant potential hill will affect the
energy density (and the local spectral density, etc.) at 0. After all, there is little
physical difference between a high potential barrier and a perfectly reflecting
boundary. Unfortunately, we have not yet found a model of this sort in which
calculations can be done in an elementary way.
A related question is whether the energy density at, say, the origin of the

harmonic oscillator potential V (x) = x2 reflects the quadratic growth of the
potential at infinity, or is determined completely by the power series of V at
the point concerned. This question may be algebraically tractable, given the
solvability of the Schrödinger equations with potentials x2 and 1− cosh−2 x; we
hope to return to it in later work. The issue is more subtle than it may appear
at first glance, because for analytic potentials there is no distinction between
local and distant behavior, while for potentials that are not C∞ the situation
will be clouded by boundary-like effects associated with the singular points.
Here is another question of the same sort, whose answer can actually be

extracted from the physics literature of a decade or two ago [2, 1]. In quantum
field theory on a curved manifold, one expects a contribution to the renormalized
energy density from the local curvature of space. Thus, for example, in a static
universe whose spatial sections arem-spheres (m ≥ 2) there should be a vacuum
energy that is a (decreasing) function of the radius of the sphere. On the
other hand, we have seen that when m = 1 there is already such an energy
(L ≡ 2π × radius), even though the 1-sphere has no intrinsic curvature. In
higher dimensions, can these two effects be disentangled? How much of the
vacuum energy of the m-sphere is due to its curvature, and how much simply
to its finite volume? In view of Gauss–Bonnet-type theorems, does the question
even make any sense? The answer that emerges from the work of Bunch and
others [2, 1] is this: For a massless, conformally coupled scalar field in a static,
infinite universe of constant negative curvature, the vacuum energy is zero. By
analytic continuation or algebraic analogy, the vacuum energy produced by local
positive curvature is also zero for such a field, and the nonzero vacuum energy
of a sphere arises entirely from the replacement of an integration over normal
modes by a discrete sum — that is, it is just Casimir energy related to the
finite volume of the space. However, if the field’s mass is positive, or it has
nonconformal coupling to the curvature scalar, or the metric is time-dependent,
then in general there is also a genuine curvature energy.
A more general question is this: Through the work of Balian and Bloch,

Gutzwiller, Duistermaat and Guillemin, and others, it is now generally under-
stood (e.g., [4]) that the unsmoothed structure of an eigenvalue distribution has
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periodicities (in energy) reciprocal to the periods of the closed trajectories of
the associated classical mechanical system. What is the relation between this
fact and the nonlocal structure of the asymptotics of the cylinder kernel and
the square-root Riesz means? In the simple one-dimensional models we have
studied, the periodic orbits are dictated by the length L, which also plays the
major role in the asymptotics of T and RαωN . If there is a more general connec-
tion, if all or part of the information about periodic orbits is encoded in RαωN
(or in Rα

λ1/p
N for all p), the implications for calculational tractability could be

significant.

Acknowledgments We thank Yu. A. Sitenko for raising the question of an
inconsistency between [20] and [9], and the authors of [13] for providing that
and other references.

References

[1] P. R. Anderson and L. Parker, Adiabatic regularization in closed Rob-
ertson–Walker universes, Phys. Rev. D 36, 2963–2969 (1987).

[2] T. S. Bunch, Stress tensor of massless conformal quantum fields in hyper-
bolic universes, Phys. Rev. D 18, 1844–1848 (1978).

[3] H. B. G. Casimir, On the attraction between two perfectly conducting
plates, Proc. Kon. Ned. Akad. Wetenschap B 51, 793–795 (1948).

[4] J. B. Delos and M.-L. Du, Correspondence principles: The relationship be-
tween classical trajectories and quantum spectra, IEEE J. Quantum Elec-
tronics 24, 1445–1452 (1988).

[5] B. S. DeWitt, Quantum field theory in curved spacetime, Phys. Reports
19, 295–357 (1975).
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