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Monotonicity and bounds on Bessel functions ∗

Larry Landau

Abstract

I survey my recent results on monotonicity with respect to order of
general Bessel functions, which follow from a new identity and lead to best
possible uniform bounds. Application may be made to the ‘spreading of
the wave packet’ for a free quantum particle on a lattice and to estimates
for perturbative expansions.

On my arrival as a graduate student at Berkeley in September 1964, I was
amused to see a Volkswagen Beetle with Schrödinger’s equation written on it
drive past. (I don’t recall if it was the time-dependent or time-independent
equation.) As I stood in line to enroll, a table off to the side with a ‘Free
Speech’ banner caught my eye. Soon were to begin the student demonstrations
which culminated in Vietnam war protests. I managed to complete the typing
of my thesis in 1969 even as tear gas wafted in through the open window. I
had asked Eyvind Wichmann if he would supervise my Ph.D. studies, and after
checking that Emilio Segrè had given a good report on my oral examination, he
agreed to take me on. I’d like to thank Eyvind for helping to make my stay at
Berkeley a successful one.

1 Motivation

The free evolution of a quantum particle is important for understanding the
“spreading of the wave packet,” the large time behavior of scattering states, the
Dyson perturbative expansion (each term of which is expressed in terms of the
free evolution), and other aspects of the evolution of the quantum particle. The
free evolution of a quantum particle on a one-dimensional lattice is described
by Bessel functions of integer order, as reviewed below. In higher dimensions,
the free evolution is given by products of the one-dimensional evolution, and so
Bessel functions again describe the evolution. A detailed study of the behavior
of Bessel functions of integer order is therefore necessary if the free evolution
on a lattice is to be as well understood as in the continuum.
Computer packages such as Maple yield precise plots of Bessel functions,

and I carried out computer experiments which yielded a very detailed picture of
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the variation of the Bessel function with respect to order and precise bounds on
the magnitude of the Bessel function. Rough bounds were no longer satisfying
when I could see the precise behavior on the computer screen. (Of course, com-
puter generated pictures can be misleading and rigorous mathematical proof
is required.) Just as a physical theory should give precise agreement with ex-
periment, so too one should prove results in precise agreement with computer
experiments and hence “best possible.”
Recalling that the Bessel function of integer order satisfies

J−n(x) = Jn(−x) = (−1)
nJn(x)

we need only consider n ≥ 0 and x ≥ 0. The dependence of Jn(x) on the
order n is best elucidated by replacing the discrete n with a continuous ν. Thus
generalizing from Bessel functions of integer order, we are led to study the Bessel
function of the first kind Jν(x), the second kind Yν(x), and the general Bessel
function Cν(x) = aJν(x) + bYν(x), for ν ≥ 0 and x ≥ 0.

A Quantum Particle on a Lattice

A quantum particle on the one-dimensional lattice L = {0,±`,±2`, . . .} has a
wave function ψ(n), position operator Q and shift operator U , where [Qψ](n) =
n`ψ(n) and [Uψ](n) = ψ(n − 1). The finite-difference Laplacian may be ex-
pressed in terms of the shift operator as

∇2 =
U + U−1 − 2I

`2

the free Hamiltonian then being

H = −
~
2

2m
∇2 .

The position operator at time t is

Q(t) = eitH/~Qe−itH/~

and the momentum operator is

P = m
d

dt

∣∣∣∣
t=0

Q(t) =
~

i

1

2`
[U−1 − U ] .

It then follows that P (t) = P and

Q(t) = Q+
t

m
P . (1)

We’ll call equation (1) Newton’s Law, which has the same form as in the contin-
uum. A consequence of Newton’s law is that when observed on a large space-
time scale, the free quantum particle on a lattice follows straight line trajectories.
(See [3], and for additional discussion of the large space-time limit [4].)
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Bessel Functions

A comparison of the unitary evolution

e−itH/~ = e−it~/m`
2

et~/2m`
2[(iU)−(iU)−1]

with the generating function for Bessel functions

ex/2(ρ−1/ρ) =

∞∑
n=−∞

ρnJn(x)

leads to the expression

e−itH/~ = e−it~/m`
2

∞∑
n=−∞

inJn
(
t~/m`2

)
Un .

The kernel of the free evolution on the lattice is therefore

Kt(n, k) = e
−it~/m`2 in−kJn−k(t~/m`

2), (2)

which may be compared with the kernel in the continuum

Kt(x, y) =

√
m

2π~it
eim(x−y)

2/2~t .

The t−1/2 bound, uniform in x, for the continuum kernel must be replaced by
a t−1/3 bound, uniform in n, on the lattice.
Remark. It’s amusing that the well-known Bessel function identity

nJn(x) =
x

2
[Jn−1(x) + Jn+1(x)]

may be thought of as an expression of Newton’s law, as follows by writing
Newton’s law as

e−itH/~Q = (Q−
t

m
P )e−itH/~

and substituting the kernel (2).

2 Method and Results

Our approach is based on a new Bessel function identity which leads to mono-
tonicity properties and in turn to best possible uniform bounds. The main
ingredients in the derivation of the new identity are the Wronskian [8, p.76(1)]

Jν(x)Y
′
ν (x)− Yν(x)J

′
ν(x) =

2

πx
(3)
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where ′ denotes derivative with respect to the argument x, and the Nicholson
integral (this one actually proved by Watson) [8, p.444(2)] relating derivatives
with respect to the order ν:

Jν(x)
∂Yν(x)

∂ν
(x)− Yν(x)

∂Jν(x)

∂ν
(x) = −

4

π
Aν(x) (4)

where

Aν(x) =

∫ ∞
0

K0(2x sinh t)e
−2νt dt

and K0 is the modified Bessel function of the second kind of order 0, where in
general:

Kν(x) =

∫ ∞
0

e−x cosh u cosh νu du .

The identity concerns the derivative with respect to order of the function

fν(x) = F (x)Cν(x)

where Cν(x) = aJν(x) + bYν(x) and a and b are real constants (independent of
ν and x), and F (x) is a differentiable function of x. The analysis [5] proceeds
by introducing also the function

gν(x) = F (x)Dν(x)

where
Dν(x) = cJν(x) + dYν(x)

and γ
.
= ad− bc 6= 0. A straightforward computation using (3) and (4) yields

[
gν(x)

fν(x)

]′
=
2γF 2

πxf2ν
(5)

∂

∂ν

[
gν(x)

fν(x)

]
= −

4γF 2Aν
πf2ν

(6)

Now setting the derivative of (5) with respect to ν equal to the derivative of (6)
with respect to x gives [5]

∂fν

∂ν
= x

[
(F 2Aν)

′

F 2
fν − 2Aνf

′
ν

]
. (7)

This is the new identity which leads to monotonicity and then to best possible
uniform bounds. Notice that it expresses a derivative with respect to order ν
(which is in general difficult to analyze) in terms of derivatives with respect to
argument x (which are easier to deal with). The main advantage of (7) becomes
apparent at a stationary point of fν , where f

′
ν(x) = 0, and hence

∂fν

∂ν
= x

[
F 2Aν

]′
F 2

fν .
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Multiplying through by fν then yields

∂f2ν
∂ν
= 2x

f2ν
F 2
[
F 2Aν

]′
. (8)

Notice that the sign of the right-hand-side of (8) is the same as the sign of
[F 2Aν ]

′. (Recall that we are taking x ≥ 0 and ν ≥ 0.) Thus the magnitude of
fν at a stationary point is increasing or decreasing in ν depending on whether
F 2Aν is increasing or decreasing in x at the stationary point.

Case 1: F (x) = 1

Here fν(x) = Cν(x), the general Bessel function. According to equation (8)
we need to consider A′ν . But as is easily seen, K0(x) decreases monotonically
in x and hence Aν(x) decreases monotonically in x. Indeed, A

′
ν(x) < 0 for all

positive x. We conclude that the magnitude of Cν(x) is decreasing in ν at all its
positive stationary points. In the case of Jν(x), its value at the first stationary
point is equal to supx |Jν(x)|, which therefore decreases monotonically in ν.

Case 2: F (x) = x1/2

Here fν(x) = x
1/2Cν(x). According to equation (8) we need to consider [xAν(x)]

′.
Now by a change in the variable of integration we may express xAν(x) as

xAν(x) =

∫ ∞
0

K0(2x sinh(y/x))e
−2νy/xdy . (9)

Since 2νy/x and x sinh(y/x) decrease with x, it follows that the integrand (9)
increases and thus xAν(x) is increasing in x. Indeed [xAν(x)]

′ > 0 for all
positive x. We conclude that the magnitude of x1/2Cν(x) in increasing in ν at
all its positive stationary points.

Case 3: F (x) = xα, 0 < α < 1/2

Here fν(x) = x
αCν(x). According to equation (8) we need to consider [x

2αAν(x)]
′.

An analysis [5] of x2αAν(x) shows that it tends to 0 as x→ 0 and∞, and has a
unique stationary point at x = xν , which is the location of its maximum. The
point xν increases with ν [5]. The magnitude of x

αCν(x) at a stationary point
x = Xν is increasing in ν if Xν < xν and decreasing in ν if Xν > xν .

The most important case is α = 1/3 and Cν = Jν , so fν(x) = x1/3Jν(x).
We first locate the maximum of x1/3Jν(x) at its first stationary point x = Xν ,
using a Sturm comparison argument. If we could show that Xν > xν for all ν,
we could conclude that supx |x

1/3Jν(x) decreases in ν and hence is bounded by
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its value at ν = 0, which is c = 0.7857 · · · (which would therefore be the best
possible constant in such a bound):

|Jν(x)| ≤ c|x|
−1/3 . (10)

However, we do not show Xν > xν for all ν, but nevertheless we are able to
prove (10) by a combination of monotonicity for ν ≤ 3 and a bound for ν ≥ 3.
Thus we prove (10) in two steps:

Step 1. For 0 ≤ ν ≤ 3, we prove (10) by showing Xν > xν for 0 ≤ ν ≤ 3.
This is shown by computing the values (given in table 1) of Xν and xν
for ν = 0, 0.5, 1, 2 and 3, and using the fact that both xν and Xν are
increasing in ν. (For the increase in Xν see [7],[2], or [1]. Note that Xν
is a root of the equation 13Jν(x) + xJ

′
ν(x) = 0. The general qualitative

behavior with respect to order ν, including monotonicity and multiplicity,
of all the positive roots of αJν(x) + xJ

′
ν(x) = 0 for all real α and ν, is

derived in [6].)

Then for 0 ≤ ν ≤ 0.5,

xν ≤ x0.5 < X0 ≤ Xν .

A similar argument works for the other intervals, finally giving xν < Xν
for all ν in the interval [0, 3].

ν xν Xν
0 0.1726 0.7837
0.5 0.5918 1.4569
1 1.0595 2.0694
2 2.0336 3.2315
3 3.0231 4.3540

Table 1: Values of xν (the location of the maximum of Aν(x)) and Xν (the
location of the maximum of |x1/3Jν(x)|).

Step 2. For ν ≥ 3, we prove (10) by the bound:

sup
x
|x1/3Jν(x)| = X

1/3
ν Jν(Xν) =

[
Xν

ν

]1/3
ν1/3Jν(Xν) ≤

[
X3

3

]1/3
b (11)

This bound uses two facts:

• the decrease in ν of Xν/ν ([2] and [1], see also [6])

• the bound
ν1/3 sup

x
|Jν(x)| < b (12)

where b = 0.6748 · · · is the best possible such constant. This bound
is proved in [5] using a Sturm comparison argument, which shows
that ν1/3 supx |Jν(x)| strictly increases to b.



Larry Landau 153

Substituting values into the right-hand-side of (11) gives 0.7641 · · ·, which
is less than c. Hence (10) is proved for ν ≥ 3.

3 Summary

1. The magnitude of the general Bessel function Cν(x) of order ν is decreasing
in ν at all its positive stationary points. It follows that supx |Jν(x)| is
decreasing in ν.

2. The magnitude of x1/2Cν(x) is increasing in ν at all its positive stationary
points.

3. ν1/3 supx |Jν(x)| is increasing in ν to the value b, yielding the bound,
uniform in the argument x,

|Jν(x)| <
b

ν1/3

which is best possible in the exponent 1/3 and constant b = 0.6748 · · ·.

4. The bound, uniform in the order ν,

|Jν(x)| ≤
c

x1/3

is best possible in the exponent 1/3 and constant c = 0.7857 · · ·.
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