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Quantum electrodynamics and

the fundamental constants ∗

Peter J. Mohr & Barry N. Taylor

Abstract

The fundamental constants are evaluated by comparison of the results
of critical experiments and the theoretical expressions for these results
written in terms of the constants. Many of the theoretical expressions
are based on quantum electrodynamics (QED), so the consistency of the
comparison provides a critical test of the validity of the theory.

1 Introduction

This paper reviews the basic approach used in the 1998 adjustment of the values
of the fundamental constants, which is the subject of a long article by the authors
written under the auspices of the Committee on Data for Science and Technology
(CODATA) Task Group on Fundamental Constants [1, 2].

The purpose of the adjustment is to determine and recommend values of
various fundamental constants such as the

fine-structure constant α

Rydberg constant R∞

Avogadro constant NA

Planck constant h

electron mass me

muon mass mµ

and many others, which provide the greatest consistency between critical exper-
iments and predictions based on quantum electrodynamics (QED) theory and
condensed matter theory.
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232 QED and the fundamental constants

2 Background

A pioneering comprehensive determination of constants was done by Raymond
T. Birge at the University of California, Berkeley, and published in 1929. Ad-
justments done since 1950, including those sponsored by the National Research
Council/National Academy of Sciences, USA (NRC/NAS) and by CODATA,
are the following:

Bearden and Watts (1951) [3, 4, 5]

NRC/NAS: DuMond and Cohen (1951) [6, 7, 8];

Bearden and Thomsen (1957) [9];

NRC/NAS: Cohen and DuMond (1965) [10];

Taylor, Parker, and Langenberg (1969) [11];

CODATA: Cohen and Taylor (1973) [12];

CODATA: Cohen and Taylor (1987) [13].

Prior to the 1998 adjustment of the constants [1, 2], the CODATA recommended
values were based on the 1986 adjustment [13]. The current CODATA recom-
mended values for the constants, based on the 1998 adjustment, are available
on the World Wide Web at

physics.nist.gov/constants

3 Method of least squares

The method of least squares, as it is applied to the 1998 adjustment, is summa-
rized here. Input data, which are the results of measurements, or in some cases
calculations, are denoted by q1, q2, . . . , qN . The variables of the least-squares
adjustment, which are members of a suitable subset of the fundamental con-
stants termed adjusted constants, are denoted by z1, z2, . . . , zM , whereM ≤ N .
The input data and the adjusted constants are related by observational equa-
tions which are theoretical expressions for the qi as functions of the zj and are
denoted by

qi
.
= fi(z) ≡ fi(z1, z2, . . . , zM ) . (1)

We employ the symbol
.
= to indicate the unsymmetric relation between the item

of input data on the left-hand side and the corresponding theoretical expression
for that item as a function of the adjusted constants on the right-hand side. In
general, this set of equations is overdetermined, so the left- and right-sides will
not be equal, even for optimized values of the constants.
Almost all of the observational equations are non-linear, but they can be

linearized by expanding about less-accurately known starting values s for the
variables z by writing

qi
.
= fi(s) +

M∑
j=1

∂fi(s)

∂sj
(zj − sj) + · · · (2)
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or

yi
.
=
M∑
j=1

Aijxj + · · · , (3)

where yi = qi − fi(s), xj = zj − sj , and Aij =
∂fi(s)
∂sj

. Equation (3) can be

written compactly in terms of matrices as

Y
.
= AX (4)

with the standard uncertainties and covariances of the observational data ex-
pressed as elements of the covariance matrix

V = cov(Y ) . (5)

The least-squares adjustment is based on the solution X̂ for X that mini-
mizes

(Y −AX)>V −1(Y −AX) . (6)

The solution is [14]

X̂ = (A>V −1A)−1A>V −1Y (7)

cov(X̂) = (A>V −1A)−1 , (8)

so the constants and their covariance matrix are given by

Ẑ = S + X̂ (9)

cov(Ẑ) = cov(X̂) , (10)

and, as a corollary, the best estimates of the measured quantities are given by

Ŷ = AX̂ (11)

q̂i = fi(s) + ŷi . (12)

It should be remarked that the initial linear correction described above is
usually not sufficient. In most trials and variants of the 1998 least-squares
adjustment, several iterations were needed in which the resulting values of the
constants of one iteration become the starting values in the next.
Motivation for using the solution X̂ obtained by minimization of Eq. (6) is

provided by the following considerations. In the case where the observations Y
are uncorrelated, V is diagonal, and Eq. (6) reduces to the simple weighted sum
of differences given by

(Y − AX)>V −1(Y −AX) =
N∑
i=1

(Y −AX)2i
(δY )2i

, (13)
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where (δY )2i = Vii is the square of the standard uncertainty associated with

the input datum qi. In this case, the solution X̂ provides the best match of
the theoretical expressions to the input data as depicted in Eq. (13). However,
in general V is not diagonal, and we seek to optimize the constants taking
covariances of the input data into account. In this case, there is an alternative
criterion that may be applied. From Eqs. (7) and (11) we have

Ŷ = C Y , (14)

where

C = A(A>V −1A)−1A>V −1 . (15)

The elements of Ŷ so obtained are the best estimates for the quantities repre-
sented by Y in the following sense: If we consider an estimate of the quantities
represented by Y of the form Y ′ = DY such that the sum of the squares of the
uncertainties of Y ′ as given by the trace of the covariance matrix cov(Y ′) =
DVD> is a minimum, subject to the condition that the matrix D reproduces
any set of data of the form AX (that is, DAX = AX for any X), then D = C,
where C is just the matrix in Eq. (15), and hence Y ′ = Ŷ [14]. Thus, the solu-
tion X̂ obtained by minimizing Eq. (6) provides the set of constants for which
the observational equations make the most accurate theoretical predictions.
As mentioned above, a subset of the constants is adjusted by minimizing

Eq. (6); the rest are calculated from this subset. The choice of the subset
is arbitrary, provided the constants in it are independent. The results of the
adjustment will be the same for any such choice, as can be seen from the form
of the solution. If an alternate subset W were selected, then since both X and
W are independent sets, we can write W = BX , where B has an inverse, and
Y
.
= AB−1W . The solution would then be

Ŵ = ((AB−1)>V −1AB−1)−1(AB−1)>V −1Y = BX̂ (16)

cov(Ŵ ) = ((AB−1)>V −1AB−1)−1 = Bcov(X̂)B> , (17)

where the second line is just the standard formula for the propagation of un-
certainty. Hence, we reproduce the same optimized constants X̂ by finding the
least-squares solution for any independent setW , with its corresponding matrix
B, and forming

X̂ = B−1Ŵ (18)

cov(X̂) = B−1cov(Ŵ )(B−1)> . (19)

4 Adjusted Constants

The subset of constants used in the 1998 adjustment is given in Table 1. In
the table, the symbol Ar(x) denotes the relative atomic mass of particle x,
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Table 1: Variables of the 1998 least-squares adjustment.

Variable name Symbol

electron relative atomic mass Ar(e)

proton relative atomic mass Ar(p)

neutron relative atomic mass Ar(n)

deuteron relative atomic mass Ar(d)

helion relative atomic mass Ar(h)

alpha particle relative atomic mass Ar(α)

electron-muon mass ratio me/mµ

fine-structure constant α

Planck constant h

Rydberg constant R∞
proton rms charge radius Rp

deuteron rms charge radius Rd

molar gas constant R

Newtonian constant of gravitation G

electron-proton magnetic moment ratio µe/µp

deuteron-electron magnetic moment ratio µd/µe

electron to shielded proton

magnetic moment ratio µe/µ
′
p

shielded helion to shielded proton

magnetic moment ratio µ′h/µ
′
p

neutron to shielded proton

magnetic moment ratio µn/µ
′
p

{220} lattice spacing of Si crystal X d220(X)

{220} lattice spacing of an ideal Si crystal d220

Cu x unit xu(CuKα1)

Mo x unit xu(MoKα1)

ångstrom star Å∗

corrections to hydrogen level theory δH(nLj)

corrections to deuterium level theory δD(nLj)

correction to ae(th) δe
correction to aµ(th) δµ

correction to ∆νMu(th) δMu
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i.e., the ratio mx/mu, where the atomic mass constant mu is 1/12 times the
mass of a 12C atom. The 3He nucleus (helion) is denoted by h. Also in that
table, d220(X) refers to the lattice spacing of any of 7 different Si crystals, with
names represented by X, used in various experiments that provide information
on the constants. The last five entries termed “corrections” are correction terms
that are added to the theoretical expressions for the corresponding quantities
(hydrogen and deuterium energy levels, anomalous magnetic moment of the
electron and muon, and muonium hyperfine splitting) to take into account the
uncertainty of the theory. There are a total of 25 correction terms for the
hydrogen and deuterium energy levels.
Other quantities can be derived from the adjusted constants. For example,

based on familiar formulas, we can express the elementary charge in terms of
constants contained in the adjusted subset:

α =
e2

4πε0h̄c
⇒ e =

√
2ε0hcα . (20)

Similarly, for the electron mass, we have

R∞ =
α2mec

2h
⇒ me =

2hR∞
α2c

. (21)

It should be noted that it is not necessary to select the most accurately known
constants for the adjusted subset. Since we calculate covariances and use them
to calculate values of the derived constants, it is possible to obtain values for the
derived constants with relative uncertainties that are smaller than the relative
uncertainties of the values of the constants from which they are derived. The
final result of the adjustment is a set of values for over 300 constants that are
either in the adjusted subset or calculated as above.

5 Observational Equations

Some of the observational equations, represented by Eq. (1), employed in the
1998 least-squares adjustment are given in Table 2. In each observational equa-
tion, the symbol on the left-hand side represents one of the 93 measured, or
in some cases calculated, input data of the adjustment. The right-hand side
expresses that quantity as a function of the constants that are taken as vari-
ables of the adjustment. (This distinction explains the appearance of equations
such as δe

.
= δe, which expresses the relation between an input datum and the

corresponding adjusted constant, even though in general their values will not
be equal.)
For example, in the first equation in Table 2, the quantity Ar(

1H) represents
the measured value of the relative atomic mass of the hydrogen atom. The
right-hand side is the sum of the relative atomic masses of the proton and
electron, both of which are variables of the adjustment, minus the binding energy
equivalent mass in the same units, which is relatively small and sufficiently well
known to be taken as exact.
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Table 2: Some observational equations used in the 1998 adjustment.

Ar(
1H)

.
= Ar(p) +Ar(e)− Eb(1H)/muc2

λmeas
d220(ILL)

.
=

α2Ar(e)
R∞d220(ILL)

Ar(n) +Ar(p)

[Ar(n) +Ar(p)]
2 −A2r (d)

me
m(12C6+)

.
=

6Ar(e)
12− 6Ar(e) + Eb(12C)/muc2

ae
.
= ae(α, δe)

δe
.
= δe

µe−(H)
µp(H)

.
=
ge−(H)
ge−

(
gp(H)
gp

)−1
µe−
µp

ν(fp)
.
= ν
(
fp;R∞, α,

me
mµ ,

µe−
µp , δe, δµ, δMu

)
µµ+
µp

.
= −

1 + aµ(α, δµ)
1 + ae(α, δe)

me
mµ

µe−
µp

∆νMu
.
= ∆νMu

(
R∞, α,

me
mµ
, δµ, δMu

)

δMu
.
= δMu

KJ
.
=
(
8α
µ0ch

)1/2

RK
.
=
µ0c
2α

K2JRK
.
= 4
h

h
mnd220(W04)

.
=

cAr(e)α
2

2R∞Ar(n)d220(W04)

d220(X)− d220(Y)
d220(Y)

.
=
d220(X)− d220(Y)
d220(Y)

d220(X)
.
= d220(X)

λ(WKα1)
d220(N)

.
= 0.209 010 0 Å∗

d220(N)

νH(n1L1j1 − n2L2j2)
.
=

[
EH

(
n2L2j2 ;R∞, α, Ar(e), Ar(p), Rp, δH(n2L2j2)

)

−EH
(
n1L1j1 ;R∞, α, Ar(e), Ar(p), Rp, δH(n1L1j1)

)]/
h

δH(nLj)
.
= δH(nLj)

Rp
.
= Rp
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6 Electron magnetic moment anomaly

It is well known that the magnetic moment of the electron is not equal to the
value predicted by the Dirac equation ge(Dirac) = −2, and the deviation from
that value is given in terms of the electron magnetic moment anomaly ae by

ge = −2(1 + ae) .

The anomaly has been measured for the electron and positron at the University
of Washington with the results [15]

ae−(exp) = 1 159 652 188.4(4.3) × 10−12

ae+(exp) = 1 159 652 187.9(4.3) × 10−12 . (22)

The average of these values (assuming as we do that the value of the anomaly is
CPT invariant) yields the input datum corresponding to ae on the left-hand side
of the fourth equation in Table 2. The theoretical expression on the right-hand
side of that equation is

ae(α, δe) = C(2)e

(α
π

)
+ C(4)e

(α
π

)2
+ C(6)e

(α
π

)3

+C(8)e

(α
π

)4
+ ae(had) + ae(weak)

+ δe , (23)

which gives the anomaly as a function of the variables α and δe. The coeffi-

cients C
(n)
e , the strong interaction correction ae(had), and the weak interaction

correction ae(weak) are calculated from theory. The largest uncertainty in the
theory arises from numerical integration uncertainty in the massive calculation

of C
(8)
e [16]. The total uncertainty of the theory is estimated to be 1.1× 10−12,

so the observational equation for δe is

0.0(1.1)× 10−12
.
= δe . (24)

The electron anomalous magnetic moment data provide the most influential
information on the value of the fine-structure constant α. When considered
alone they yield

α−1 = 137.035 999 58(52) . (25)

Of course, in the final adjustment, all sources of information on α contribute to
the 1998 recommended value:

α−1 = 137.035 999 76(50) . (26)

This value has an uncertainty that is about 1/12 times the uncertainty of the
1986 recommended value, and differs from the earlier value by about 1.7 times
the uncertainty of the earlier value. The adjusted value of δe is 0.1(1.1)×10−12,
very nearly its input value in Eq. (24).
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7 Planck constant from the watt balance

The Planck constant can be measured by comparing a watt of mechanical power
expressed in terms of the meter, kilogram, and second to a watt of electrical
power expressed in terms of the Josephson constantKJ = 2e/h and von Klitzing
constant RK = h/e

2 in the combination

K2J RK =
4

h
. (27)

The apparatus that makes the comparison is called a watt balance [17, 18]. A
remarkable aspect of the experiment is that it provides a value of the Planck
constant through measurements that involve classical mechanics and classical
electromagnetism in a two-story-high apparatus. The Planck constant enters
through the current and voltage calibration.
The basic principle of the watt balance is illustrated by one of its imple-

mentations [18]. A vertical solenoid is wound in such a way as to produce a
radial magnetic flux density in a region outside the solenoid. A horizontal coil
of wire enclosing the solenoid is suspended in this region from bands that extend
over a balance wheel to a counterweight on the other side. In one phase of the
experiment, a precisely known mass is added to the side of the balance with the
horizontal coil, and a measurement is made of the current in the coil needed
to produce an upward force that balances the weight of the mass. The force is
given by the equation

Fz =

∫
d3x ( ~J × ~B) · ẑ = I

∫
(d~̀× ~B) · ẑ , (28)

where ~J is the current density in the coil, I is the current in the coil, and d~̀ is an
element of length of the wire in the coil. In the other phase of the experiment,
the coil is slowly moved through the flux density and the voltage induced in the
coil is measured. This induced voltage is given by

Uv =

∫
d~̀ · (~v × ~B) = − v

∫
(d~̀× ~B) · ẑ , (29)

where ~v is the (vertical) velocity of the coil measured by laser interferometry
and, as a first approximation, it is assumed that the vertical force on the coil
in the first phase is in exactly the same direction as the vertical motion in the
second phase. Equations (28) and (29) can be combined to obtain

Fz = −mg = −
I

v
Uv , (30)

where m is the precise mass used in the experiment, and g is the local accel-
eration of free fall, which is accurately measured with a gravimeter. The key
to all versions of the experiment is the fact that the flux density and geometry
of the coil drop out of this relation. Since the voltage Uv and the voltage and



240 QED and the fundamental constants

resistance that determine I are calibrated in terms of the Josephson and von
Klitzing constants, we have

mgv = I Uv =
Af1f2

K2JRK
= Af1f2

h

4
, (31)

where A is an exactly known constant and f1 and f2 are the precisely known
frequencies applied to the Josephson junctions in the two phases of the exper-
iment. Equation (31) gives h in terms of simple quantities measured in the
experiment.

8 Kilogram definition

This experiment suggests a possible new definition of the kilogram [19]:

The kilogram is the mass of a body at rest whose equivalent energy equals
the energy of a collection of photons whose frequencies sum to 135 639 274×
1042 hertz.

This definition has the consequence that the Planck constant is exactly defined,
because the relations E = mc2 and E = hν1 + hν2 + . . . imply that

h =
mc2

ν1 + ν2 + . . .
=
(1 kg)(299 792 458 m s−1)2

135 639 274× 1042 Hz
(32)

(33)

= 6.626 068 9 . . .× 10−34 J s , (34)

exactly.
Since the value of the Planck constant would be exactly defined by this

definition, the watt balance apparatus could be viewed as a precise scale. In the
present-day mode where h is measured, a precise mass is employed to determine
the mechanical energy expenditure. However, if h were exact, than it would
be the mass that is being measured instead. Of course, the utility of such a
definition depends on the accuracy to which the watt balance apparatus can be
developed. If it approaches the current long-term stability of the international
prototype of the kilogram, then it becomes an attractive means of defining the
kilogram and measuring mass.

9 Rydberg Constant

The Rydberg constant is determined primarily by comparison of theory and
experiment for energy levels in hydrogen and deuterium. For example, the
observational equation corresponding to the the 1S− 2S transition frequency of
hydrogen is given approximately by the expression

νH(1S1/2 − 2S1/2) (35)

.
=
3

4
R∞c

[
1−
me

mp
+
11

48
α2 −

28

9

α3

π
lnα−2 −

14

9

(
αRp

λC

)2
+ · · ·

]
,
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where the input datum for this transition is [20]

νH(1S1/2 − 2S1/2) = 2 466 061 413 187.34(84) kHz , (36)

which has a relative uncertainty of 3.4×10−13. The expression on the right-hand
side of Eq. (35) is approximate and only indicates the leading term of each of
several contributions. In particular, the four terms beyond the “1” correspond
to contributions from reduced mass, relativistic, radiative, and finite nuclear size
effects, respectively. However, it is evident that this expression gives information
on the value of the Rydberg constant R∞.
In the 1998 adjustment, 23 transition frequencies or frequency differences in

hydrogen or deuterium were included. The theory was carefully reviewed and
the expressions for the energy levels employed in the adjustment were based
on many more terms and precise numerical evaluations than are indicated in
Eq. (35). The result for the 1998 recommended value for the Rydberg constant
is

R∞ = 10 973 731.568 549(83) m
−1 , (37)

where the relative uncertainty is 7.6 × 10−12. This uncertainty is about 1/160
times the uncertainty of the 1986 recommended value. In addition, the 1998
recommended value for R∞ differs from the 1986 recommended value by about
2.7 times the uncertainty of the latter value, due to an incorrect experimental
result that strongly influenced the 1986 value.

10 Future Adjustments

The availability of the World Wide Web as a resource for making results im-
mediately available to the public raises the possibility of issuing recommended
values of the constants more frequently than the 13 year periods that preceded
each of the last two adjustments. The present thinking is to recommend new
values of the constants every four years, and possibly after two years if develop-
ments in theory or experiment warrant it. With this in mind, the computation
of the 1998 constants has been automated, so that new information can be
incorporated and new values produced with virtually no delay.
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