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Abstract

The mathematical framework of superbundles as pioneered by D. Quillen
suggests that one considers the Higgs field as a natural constituent of a
superconnection. I propose to take as superbundle the exterior algebra
obtained from a Hermitian vector bundle of rank n, when n = 2 for the
electroweak theory and when n = 5 for the full Standard Model. The
present setup is similar to but avoids the use of non-commutative geome-
try.

1 Introduction

The key to our present-day understanding of the electroweak interactions is the
spontaneous breakdown of local gauge symmetries. However, the mass gen-
erating mechanism requires the introduction of the so-called Higgs field. A
long-standing problem is to give meaning to scalar fields as natural ingredients
of a gauge theory. The subject has received special attention, since, up to now,
the Higgs particle has not been observed in experiments. It would be impos-
sible to provide a coherent account of all attempts to interpret the Higgs field
within the context of supersymmetry or non-commutative geometry, nor shall
I try to review the history of the Standard Model, or discuss its details. In the
present approach, which I believe is new, I continue the work begun in [4, 5]
and concentrate on one aspect only: the possible use of Quillen’s concept of a
superconnection [3, 5] in physics, since it became increasingly clear to me that
Euclidean field theory is the study of G superbundles. The goals that motivate
such a study are:

• To reduce the number of free parameters of the Standard Model

• To think of the Higgs field as some extension of the conventional gauge
potential
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166 Superconnections: an interpretation

• To naturally explain the form of the Higgs potential

• To unite the gauge coupling and the Yukawa coupling to fermions in one
Lagrangian, ψ̄iDψ, where D is a generalized Dirac operator

• To predict the mass of the Higgs boson

• To predict the number of fermion generations and the structure of the
Cabibbo-Kobayashi-Maskawa (CKM) matrix.

Let us start with a few definitions. By a superspace we mean a Z2-graded vector
space V = V + ⊕ V −. Elements of V ± are said to be

– even/odd,
– right-handed/left-handed,
– positive/negative,
– matter-/antimatter-like, or
– bosonic/fermionic

depending on their use in physics. Examples of spaces with such a structure are
abundant in the theory of elementary particles. In most instances, dimV + =
dimV −. For brevity we shall refer to the even(odd)ness indicated by the ± sign
as the parity of elements in V . Notice also that the Z2-grading carries over to
direct sums and tensor products of graded vector spaces in an obvious manner.

A superalgebra is a superspace whose product respects the grading, i.e. the
even(odd)ness of its elements. Examples are:

– the exterior algebra of an ungraded vector space,
– the Clifford algebra of an ungraded vector space,
– the endomorphism algebra of a superspace.

Exterior algebras will be seen to play a particular role in what follows. We
therefore remind the reader that the exterior algebra

∧
E of a vector space E

is Z-graded by the degree p of the exterior power and Z2-graded by the parity
(−1)p. Notice that dim

∧+
E = dim

∧−
E = 2n−1 where n = dimE.

Within a superalgebra A the supercommutator is defined as follows:

[a, b] =
{
ab+ ba if a, b are odd
ab− ba otherwise

(a, b ∈ A).

Hence, the supercommutator of a pair of odd elements is in fact their anticom-
mutator. From now on brackets [·, ·] will always denote the supercommutator,
provided the parity of its arguments are unambiguously defined. By construc-
tion, any exterior algebra is supercommutative, i.e., all brackets vanish. One
calls a supertrace any linear functional that vanishes on supercommutators.
With exterior algebras any linear functional is a supertrace.

When it comes to studying differential operators on manifolds, the concept
of derivations in a superalgebra will be essential. Such derivations may be
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even/odd depending on whether they preserve parity or not. Even derivations
are defined as usual. By contrast, an odd derivation D of a superalgebra satisfies

D(ab) =

{
(Da)b+ a(Db) if a is even
(Da)b− a(Db) if a is odd.

Inner derivations are given by supercommutators D = [c, ·] where c is fixed.
Moreover, the linear space of all derivations is a Lie superalgebra since any
bracket [D,D′] is a derivation, too.
We shall frequently use tensor products. It is important to realize that

tensor products of superalgebras are special. Generally speaking, if X and Y
are Z2-graded algebras, the multiplication in X ⊗ Y is given by

(x⊗ y)(x′ ⊗ y′) =

{
−xx′ ⊗ yy′ if x′ and y are odd
xx′ ⊗ yy′ otherwise.

In physics, such tensor products are familiar constructions when dealing with
Fock spaces of different fermions. For, if E and F are two vector spaces, there
is a natural isomorphism

∧
(E ⊕ F ) ∼=

∧
E ⊗

∧
F .

2 Superconnections and the Higgs Field

Let M now be a (connected, oriented) differentiable manifold. It is helpful to
think of M as a model of Euclidean spacetime. Later, we shall assume that
its dimension is even. By a superbundle we mean a vector bundle on M whose
fibers are superspaces. Examples are:

– the bundle
∧
T ∗M of exterior differentials,

– the Clifford bundle C(M) of a Riemannian manifold,
– the endomorphism bundle of a superbundle.

Sections of a superbundle B obviously form a superspace Γ(B).
The most common object for integration on manifolds is the exterior algebra

of differential forms (a supercommutative algebra),

Ω = Γ(
∧
T ∗M).

Elements of Ω of degree p are said to be p-forms on M . They are even (odd) if
p is even (odd). The even elements constitute a commutative subalgebra Ω+ of
Ω. There is a canonical odd derivation d on Ω, commonly known as the exterior
derivative, mapping p-forms into (p+ 1)-forms such that d2 = 0, which reduces
to the ordinary derivative df on functions f :M → R.
In gauge theory one chooses a compact Lie group G, called the gauge group,

and some principal G bundle P overM . A vector bundle, which is an associated
G bundle, may be obtained from any representation ρ of the groupG. The choice
of ρ is dictated by the multiplet of particles (or fields) one wishes to describe.
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Here we shall be interested in representations spaces (real or complex) carrying a
Z2-grading respected by ρ. This in particular implies that ρ has subrepresentions
ρ± of same dimension.

Let B some G superbundle obtained in the above manner. We will then
consider the superspace of B-valued differential forms,

S(B) = Γ(
∧
T ∗M ⊗B),

and also the superalgebra of local operators on S(B),

A(B) = Γ(
∧
T ∗M ⊗ EndB).

As opposed to a differential operator, a local operator preserves fibers, that is
to say, it commutes with the multiplication by functions f ∈ C∞(M). Since the
algebra Ω acts fiberwise on the vector space S(B) in an obvious manner, there
is a natural embedding Ω → A(B). The following notion, due to D. Quillen,
generalizes the concept of a covariant derivative. See also [1] for details.

Definition. A superconnection on B is a (first-order) differential operator ID
on S(B) of odd type satisfying the Leibniz rule

[ID, ω)] = dω, ω ∈ Ω ⊂ A(B).

A few observations are immediate.

1. If ID and ID′ are two different superconnections, their difference super-
commutes with ω and so is a local operator of odd type: superconnections
form an affine space modeled on the vector space A−(B).

2. ID2 = 1
2 [ID, ID] is even. From the generalized Jacobi identity and the

relation [ID[ID, ω] = d2ω = 0 we see that ID2 commutes with ω and hence
is a local operator. We call IF = ID2 ∈ A+(B) the curvature of the
superbundle B.

3. Bianchi’s identity [ID, IF ] = 0 holds.

4. Any superconnection gives rise to an odd derivation of the superalgebra
A(B), again denoted ID, in a way consistent with the Leibniz rule: IDa =
[ID, a] (a ∈ A(B)). Thus, IDIF = 0 is another way to write Bianchi’s
identity.

It is not difficult to prove the following structure theorem. Any superconnection
decomposes as ID = D + L where D is a covariant derivative on B while L ∈
A−(B) (with no further restriction on L). Thus, D maps p-forms into (p+ 1)-
forms and, in local coordinates,

D = dxµ
(
∂µ +Aµ(x)

)
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where Aµ(x) is the gauge potential, taking values in some representation of the
Lie algebra of G, and

L = L(x) +
∑
p≥2

dxµ1 ∧ . . . ∧ dxµpLµ1···µp(x) (1)

with scalar field L(x) (the p = 0 contribution) and tensor fields Lµ1···µp(x) of
degree p ≥ 2. Fields in L are thought of as sections of the endomorphism bundle
End−B if p is even or End+B if p is odd. The idea of superconnections has
thus provided new fields other than the gauge potential with a definite behavior
under gauge transformations. We shall refer to the scalar field L(x) as the
Higgs field of the superconnection ID. At present, we need not introduce tensor
fields of degree p ≥ 2 in a superconnection if we merely wish to accommodate
the particles of the Standard Model, and we will assume from now on that the
series (1) truncates after the zeroth order term:

L = L(x) ∈ Γ(End−B).

With respect to the grading B = B+ ⊕B−, we may conveniently represent any
superconnection as a matrix of operators:

ID =

(
D+ iΦ∗

iΦ D−

)
L =

(
0 iΦ∗

iΦ 0

)
.

Clearly, D± are covariant derivatives on B±. We also assume that B is a
Hermitian vector bundle and ID is skew-selfadjoint in the sense that

(IDv,w) + (v, IDw) = d(v, w), v, w ∈ S(B)

where (v, w) ∈ C∞(M) denotes the induced scalar product of sections. At each
point x ∈M , the field Φ∗(x) is the adjoint of the field Φ(x) and may be looked
upon as an n× n matrix if the bundle B has rank 2n and some frame has been
chosen. With no further restrictions on L, the Higgs field has n2 independent
components.
The curvature decomposes as

IF = D2 + [D,L] + L2

where the 2-form F = D2 is referred to as the field strength, the 1-form [D,L]
is the covariant derivative of the Higgs field, and the 0-form L2 determines the
Higgs potential, once a scalar product (IF, IF ) has been defined (details in [4]).

3 Constructing the Standard Model

Assume now that P is a principal G bundle where the gauge group G is either
the unitary group U(n) or a subgroup thereof. SinceG acts on P but also on Cn

(equipped with the standard scalar product), we may construct the associated
G bundle

V = P ×G C
n
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having fibers isomorphic to Cn. Though there is no natural graded structure
on V , the exterior algebra B =

∧
V is in fact a G superbundle of rank 2n. The

representation
∧
of G acting on its fibers respects parity and has subrepresenta-

tions
∧±
of equal dimension. By construction, V is a Hermitian vector bundle

and so is
∧
V . We will be mainly concerned with the following two cases:

n = 2 G = U(2) electro-weak theory
n = 5 G ⊂ U(5) Standard Model.

To introduce fermions into the theory we need a few more assumptions. Let M
now be a Riemannian manifold of dimension 2m and C(M) be its Clifford bun-
dle (canonically associated with the cotangent bundle T ∗M). Its construction
formalizes Dirac’s notion of an “algebra of γ matrices connected with space-
time.” Let c : T ∗M → EndS be a spinc-structure on M , i.e., S is a complex
vector bundle of rank 2m on M , called the spinor bundle, and the bundle map
c satisfies c(v)2 + (v, v) = 0 with respect to the scalar product (·, ·) on T ∗M
induced by the Riemannian structure. It may be shown that c extends to an al-
gebraic isomorphism C(M)→ EndS and thus gives S the structure of a Clifford
module. The γ matrices are locally recovered by setting γµ = c(dxµ). Clifford
modules formalize Dirac’s concept of a “space on which the γ’s act.” The eigen-
values ±1 of the chirality operator γ5 = imγ1γ2 · · · γ2m give S the structure of
a superbundle.
In order to incorporate gauge symmetries we consider the twisted spinor

bundle,

E =
∧
V ⊗ S.

Since both S and
∧
V are superbundles, so is E. In particular,

E+ = (
∧+

V ⊗ S+) ⊕ (
∧−

V ⊗ S−).

Dirac fields describing leptons and quarks are thought of as components of one
master field ψ ∈ Γ(E+). The restriction to E+ couples the helicity of S to
the parity of the exterior algebra. Note that the master field ψ is capable of
describing 2n elementary fermion fields. Left- and right-handed fields count as
different components. The fact that fermion fields are Grassmann variables in
Euclidean field theory will not be discussed. Nevertheless, the reader should
be aware that ψ̄(x) and ψ(x) anticommute and, contrary to the situation in
Minkowski field theory, are unrelated.
The fermionic part of the Lagrangian is taken to be ψ̄iDψ where D is a

generalized Dirac operator. We shall not go into the details here except to
say that D is constructed from the superconnection ID in very much the same
way as the conventional Dirac operator D/ is constructed from the covariant
derivative D. Formally, D is a (first-order) differential operator on Γ(E) of odd
type satisfying [D, f ] = c(df) for all f ∈ C∞(M). Being odd in particular means
that a generalized Dirac operator cannot contain a “mass term.” Leptons and
quarks must acquire their masses by the Higgs mechanism. Our ansatz for the
Lagrangian takes care of both the Yukawa and the gauge coupling of fermions.
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Let us first turn to the U(2) model describing weak isospin (quantum number
I) along with hypercharge (quantum number Y ). It goes without saying that
U(1)Y is considered the center of the group U(2). But, as a matter of convention,
the generator of U(1)Y is taken here as the negative hypercharge. Irreducible
representations are characterized by I and Y subject to the restriction 2I +
Y =even. After symmetry breaking the residual gauge group will be

U(1)Q =

{(
1 0
0 eiα

)
, 0 ≤ α < 2π

}

giving rise to the notion of the electric charge Q as a conserved quantity. Like-
wise, the generator of U(1)Q in any representation is taken as −Q. By construc-
tion, the charge then satisfies the relation Q = I3+

1
2Y of Gell-Mann-Nishijima.

The master field ψ in the U(2) model has four components,

ψ = (νeR, eR, νeL, eeL) ∈ Γ(E
+),

associated to three invariant subspaces of
∧
C2. As indicated, the components

describe the electron (and the accompanying neutrino). There is another master
field for the muon and one for the τ lepton. Left- and right-handed fields have
different properties under gauge transformations:

νeR →
∧0
C2 singlet, Y = 0 I = 0 Q = 0

eR →
∧2
C2 singlet, Y = −2 I = 0 Q = −1

νeL, eeL →
∧1
C2 doublet, Y = −1 I = 1

2 Q = 0,−1.

The appearance of a right-handed neutrino field, foreign to most weak interac-
tion theories, signalizes that the neutrino is assumed to acquire a small mass
after symmetry breaking.
The bosonic sector has a spin-one gauge field of four components, corre-

sponding to the photon, the Z, and the W±. In addition, there are two Higgs
doublets of opposite hypercharge. If the Lagrangian is at most quadratic in the
curvature IF and gauge invariant, there are only very few free parameters left
that enter the action functional.
We now turn to another Lie group G with Lie algebra

LieG ∼= su(3)⊕ su(2)⊕ u(1) (2)

large enough to enable us to incorporate quark fields and strong interactions.
In addition, we require that G be a subgroup of SU(5), i.e., we define

G = {(u, v) ∈ U(3)×U(2) | detu · det v = 1} (3)

and let the embedding G→ SU(5) be given by

(u, v) 7→

(
u 0
0 v

)
.
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There are in fact three basic symmetry groups involved in our model. Note that
they are related by the following exact sequence

1−→SU(3)
j
−→G

s
−→U(2)−→1 (4)

where j(u) = (u, 1) and s(u, v) = v. Though there is the isomorphism (2)
between Lie algebras, the group G cannot be identified with the direct product
SU(3) × U(2). It is correct to say that the color group SU(3) of quantum
chromodynamics is embedded in G as a subgroup. But the gauge group U(2)
of leptons is recovered only as the quotient G/SU(3). This fact influences our
idea of what the hypercharge Y should be. To see the point more clearly we
consider the exact sequence

1−→Z3
j
−→Ũ(1)Y

s
−→U(1)Y−→1 (5)

obtained from (4) by restricting to the centers. In this way we learn that the
group Ũ(1)Y , a threefold cover of U(1)Y , may also be looked upon as a one-
dimensional closed subgroup of the two-torus:

Ũ(1)Y = {(e
iβ, eiα) | 3β + 2α = 0 mod 2π}.

As before, U(1)Y defines the hypercharge. So does Ũ(1)Y by the local isomor-
phism s whose inverse is

s−1(eiα) = (e−i2α/3, eiα). (6)

Locally, the group Ũ(1)Y is represented by a phase factor e
−iαY in any unitary

irreducible representation of G. Notice, however, that Y ∈ Q in general.
The vector bundle V is now modeled on the fiber space

C5 = C3 ⊕ C2

with subspaces C3 and C2 carrying the fundamental representations of the color
group SU(3) and the weak-isospin group SU(2) respectively. As explained
above, passage to the exterior algebra

∧
C5 is very essential, the fiber space

of the superbundle
∧
V carrying the reducible representation

∧
of G. From the

natural isomorphism
∧
(C3 ⊕ C2) ∼=

∧
C3 ⊗

∧
C2 we obtain

∧
(u, v) =

∧
u⊗
∧
v

for (u, v) ∈ G and hence

∧r
(u, v) =

∑
p+q=r

∧p
u⊗
∧q
v, r = 0, . . . , 5.

Consequently, any fundamental fermion (quark or lepton) must belong to one
of the irreducible representations of G,

∧p,q = ∧p ⊗∧q p = 0, 1, 2, 3, q = 0, 1, 2

whose dimension is
(
p
3

)(
q
2

)
. To find its hypercharge we use Eq.(6):

e−iαY =
∧p,q(

s−1(eiα)
)
= exp(−i2pα/3 + iqα)
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and thus obtain the fundamental relation

Y =
2

3
p− q . (7)

Clearly, Y is integer valued if p = 0 mod 3 (for leptons) and fractional otherwise
(for quarks). A similar statement holds for the electric charge Q.
The master field ψ has 25 = 32 components. Dirac fields that enter ψ are

characterized by three different “parities” owing to the Z2-gradings of
∧
C5,∧

C3, and
∧
C2. Their interpretation is as follows:

p+ q =even : right-handed p+ q =odd : left-handed
p =even : matter p =odd : antimatter
q =even : singlets q =odd : doublets.

Hence, there are left-handed and right-handed fields of equal number. Likewise,
there are matter fields and antimatter fields of equal number. Each doublet is
accompanied by two singlets. The following table shows the details.

q = 0 q = 2 q = 1

p = 0 νeR eR νeL eL

u1R d1R u1L d1L

p = 2 −u2R −d2R −u2L −d2L

u3R d3R u3L d3L

dc1L uc1L dc1R −uc1R

p = 1 dc2L uc2L dc2R −uc2R

dc3L uc3L dc3R −uc3R

p = 3 ecL νceL ecR −νceR

Quarks fields such as u(up) and d(down) come in three colors : i = 1, 2, 3. The
upper index c is used to indicate antimatter. For instance, dc is the charge
conjugate field obtained from the Dirac field d. Charge conjugation passes from∧p,q

to
∧3−p,2−q

and therefore reverses the electric charge, the hypercharge,
and the helicity:

dcL := (d
c)L = (dR)

c, dcR := (d
c)R = (dL)

c.

Obviously, the operations C, P (charge conjugation and parity) are well defined
on ψ, though they need not be symmetries. The introduction of fields together
with their charge conjugates in one multiplet is welcome, because it eliminates
ψ̄ as an independent variable in the Lagrangian. Contrary to a wide-spread
assumption, the fields for the antiquarks, in the present scheme, are assigned
the defining representation 3 of SU(3), while the fields for the quarks are as-
signed the complex conjugate representation 3̄. Interchanging the role of the
two fundamental representations, however, has no physical implication.
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We emphasize once more that there is a natural place for the right-handed
neutrino field, νeR, as well as for and its charge conjugate field, ν

c
eL. Both will

be needed if the neutrino acquires a nonzero mass. The SU(5) gauge model of
Georgi and Glashow, however, discards this possibility leaving the representa-
tions

∧0,0
and
∧3,2

(trivial representations of SU(3)× SU(2)) unoccupied. It
seems that nature provides several generations of fundamental fermions. We
offer no explanation for this fact, but mention that each generation has to be
introduced by a separate master field.
We have presented a systematic and well-motivated analysis of some struc-

tural aspects of the Standard Model, leaving out all quantitative results: some
of them have already been published [4]. Others are deferred to future investi-
gations.
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