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The spin-statistics connection:

Some pedagogical remarks in response to

Neuenschwander’s question ∗

A. S. Wightman

In 1994, D.E. Neuenschwander posed a question (American Journal of Physics
62 (1994) 972): “Has anyone made any progress toward an ‘elementary’ argu-
ment for the spin-statistics theorem?” The theorem in question was proved in
1940 by W. Pauli and says that particles of integer spin cannot be described by
fields that anti-commute at space-like separated points, i.e., cannot be fermions,
while half-odd-integer spin particles cannot be described by fields that commute
at space-like separated points, i.e., cannot be bosons.
It seems to be characteristic of many of the attempts at an elementary proof

that the authors want to use only quantum mechanics and the transformation
law of the wave function under the Euclidean group or, equivalently, under
translations and rotations of space. My first point is that under these hypotheses
there is no Spin-Statistics Connection. To prove this statement, pick a positive
real number, s, that is either an integer or half an odd integer and construct
operators Ψ(~x,M),M = −s,−s+ 1, . . . (s− 1), s, satisfying

V (~a,A)Ψ(x,M)V (~a,A)−1 =
∑
L

D(s)(A−1)MLΨ(R(A)~x+ ~a, L) (1)

where {~a,A} → V (~a,A) is the unitary representation of the Euclidean group
giving the transformation law of the wave function. R(A) is the rotation de-
termined by A and A → D(s)(A) is the spin s representation of SU(2). Using
the formalism of second quantization, one can make a theory of fermions by
requiring

[Ψ(~x,M),Ψ(~y,N)]+ = 0

[Ψ(~x,M),Ψ∗(~y,N)]+ = δMN δ(~x− ~y) (2)

or, alternatively, a theory of bosons by requiring

[Ψ(~x,M),Ψ(~y,N)] = 0

[Ψ(~x,M),Ψ∗(~y,N)] = δMNδ(~x − ~y). (3)
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208 The spin-statistics connection

The Fock space construction required to realize (1) and (2) or (1) and (3) are
easy generalizations of what one finds for spin 12 in the text books of condensed
matter physics. (See, for example, Fetter and Walecka, Quantum Theory of
Many Particle Systems, McGraw-Hill, New York 1971.) It is clear here that spin
does not determine statistics and that any positive response to Neuenschwan-
der’s question must make assumptions that go beyond Euclidean invariance.
For example, in 1940 Pauli assumed Lorentz invariance and also that he was
dealing with a quantum field theory of non-interacting particles. Under these
hypotheses, he proved the Spin-Statistics Theorem.
It took more than twenty years before the extension of Pauli’s result to in-

teracting fields saw the light of day in the work of Lüders and Zumino and
of Burgoyne. The extension exploited then recent developments in the gen-
eral theory of quantized fields. This brings me to my second point which is a
response to the question: How does invariance under Lorentz transformations
bind statistics to spin, and, in particular, what properties of the Lorentz group
are essential?
It is here that I advocate ignoring Henry David Thoreau’s advice (Walden

Chapter II) “Simplify, simplify!” Instead:

complexify, complexify!

I illustrate the application of this slogan with Lorentz transformations. They
are defined as 4× 4 matrices satisfying

ΛTGΛ = G

where

G =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1



.

For the direct application to physics, Λ is real, but one can also consider
complex Λ satisfying the definition. For both cases (det Λ)2 = 1, so detλ = ±1.
If detΛ = +1, we call Λ a proper Lorentz transformation; if detΛ = −1, im-
proper. For real Lorentz transformations, there is another distinction according
to the sign of Λoo, sgn Λ

o
o. If sgn Λ

o
o = +1, we say that Λ is orthochronous; if

sgn Λo o = −1, that Λ inverts time.
The real Lorentz group is composed of four components, L↑+, L

↓
+, L

↑, and
L↓, disconnected from each other:
The arrow superscript points up for orthochronous transformations and down
for those inverting time. The subscript is + for proper transformations and -
for improper. The particular Lorentz transformations Is, It, and Ist are defined
as follows:

Space inversion Is : {xo, ~x} → {xo,−~x}
Time inversion It : {xo, ~x} → {−xo, ~x}

Space-time inversion Ist : {xo, ~x} → {−xo,−~x}
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On the other hand, the Complex Lorentz group, which is denoted L(C), has two
connected components, the proper complex Lorentz transformations L+(C) and

the improper L (C). One can pass from L↑+ to L
↓
+ through L+(C). In particular

the curve of complex Lorentz transformations

Λt =




cosh it 0 0 sinh it
0 cost − sin t 0
0 sin t cos t 0

sinh it 0 0 cosh it



, 0 ≤ t ≤ π

connects 1= Λo to -1= Ist = Λπ. Similarly one can pass from L
↑ to L↓ via

L (C). The existence of these connections is indicated by the diagonal arrows
in the diagram. How can this phenomenon possibly have anything to do with
physics?
The answer is that in the general theory of quantized fields, there is a se-

quence of functions (or better, generalized functions) associated with the fields,
the vacuum expectation values of monomials in the fields. For example, to a
scalar field φ, there are associated the vacuum expectation values

Fn(x1, . . . xn) = (Ψo, φ(x1) . . . φ(xn)Ψo).

If we take the transformation law of the states under the restricted Poincaré
group as the unitary representation: {a,Λ} → U(a,Λ) (a is a translation of
space-time, Λ a Lorentz transformation in L↑+), then the scalar field has a trans-
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formation law
U(a,Λ)φ(x)U(a,Λ)−1 = φ(Λx+ a),

and in view of the invariance

U(a,Λ)Ψo = Ψo

of the vacuum state Ψo, we have

Fn(Λx1 + a,Λx2 + a, . . .Λxn + a) = Fn(x1, . . . xn) .

This relation implies that Fn depends only on the difference variables

ξ1 = x2 − x1, ξ2 = x3 − x2, . . . , ξn−1 = xn − xn−1

and so, in a change of notation, we write

Fn(Λξ1, . . .Λξn−1) = Fn(ξ1, . . . ξn−1).

The next step in this line of argument is to recognize that the spectral
condition, i.e., the physical requirement that the energy momentum vector of
the state of the system lies in or on the cone V +, implies that Fn is the Fourier
transform of a distribution Gn which vanishes unless each of its n−1 arguments
lies in V +. In formulae,

Fn(ξ1, . . . ξn−1) =

∫
d4p, . . . d4pn−1 exp i

n−1∑
j=1

pj · ξj Gn(p1, . . . pn−1).

Here Gn(p1, . . . pn−1) = 0 unless p1, . . . pn−1 all lie in V +, where

V + = {p; p · p = (p
o)2 − ~p 2 ≥ 0, po ≥ 0}.

Because of the support properties of Gn, this formula can be extended from a
Fourier transform to a Laplace transform,

Fn(ξ1 + iη1, . . . ξn−1 + iηn−1)

=

∫
d4p1 . . . d

4pn−1 exp i

n−1∑
j=1

pj · (ξj + iηj)Gn(p1, . . . pn−1),

and so extended defines an analytic function for all ξ1 + iη1, . . . ξn−1 + iηn−1
lying in the tube

ξj ∈ R
4, j = 1, . . . n− 1 and ηj ∈ V+, j = 1, . . . n− 1

(V+ is the interior of V +). So extended, Fn remains Lorentz invariant:

Fn(Λζ1,Λζ2, . . .Λζn−1) = Fn(ζ1, . . . ζn−1) for all Λ ∈ L
↑
+ (4)

where ζ1 = ξ1 + iη1, . . . ζn−1 = ξn−1 + iηn−1 is any point of the tube.
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For a fixed point ζ1 . . . ζn−1 of the tube, the left-hand side of this equation
(4) is an analytic function of Λ. This suggests that Fn can be extended by ana-
lytic continuation to points of the form Λζ1, . . .Λζn−1, where Λ is an arbitrary
proper complex Lorentz transformation; the set of all such points form the ex-
tended tube. The BHW Theorem (1957) says that, so extended, Fn is analytic
and single-valued in its argument ζ1 . . . ζn−1 and is invariant under L+(C), i.e.,
equation (4) is valid for all Λ ∈ L+(C).
It is an important and perhaps somewhat surprising property of the extended

tube that it contains real points; they are called Jost points because R. Jost first
characterized them as follows.

Theorem ξ1, . . . ξn−1 is a real point of the extended tube if and only if for
every sequence λ1, . . . λn−1 of non-negative real numbers satisfying

∑n−1
j=1 λj >

0,
∑n−1
j=1 λjξj is space-like.

An immediate corollary of this theorem of Jost is the existence of an open
set in the real vector variables x1, . . . xn wherein the vacuum expectation value
(Ψo, φ(x1) . . . φ(xn)Ψo) is analytic in the x1 . . . xn. Furthermore, at such Jost
points, application of (4) and its analogues for vacuum expectation values of
monomials in the components of tensor or spinor fields or their adjoints yield
identities at the core of the “modern” proofs of CPT Symmetry (Jost 1957) and
the Spin-Statistics Theorem (Luders and Zumino 1958, Burgoyne 1958). I want
to emphasize that no assumption of invariance under Ist = − 1 has been made
in these arguments.
My third remark involves a little more detail from Burgoyne’s proof, sub-

stantiating the remarks I have just made. I treat first the case of a scalar field,
φ, for which Burgoyne wants to show that

[φ(x), φ∗(y)]+ = 0 for (x− y)
2 < 0

leads to the conclusion that φ is zero. Take the vacuum expectation value of
this relation to obtain

(Ψo, φ(x)φ
∗(y)Ψo) + (Ψo, φ

∗(y)φ(x)Ψo) = 0 for (x− y)2 < 0. (5)

Each of the two terms is the boundary value of a function analytic in the tube:

(Ψo, φ(x)φ
∗(y)Ψo) = lim

η→0
η∈V+

Fφφ∗ (y − x+ iη)

(Ψo, φ
∗(y)φ(x)Ψo) = lim

η→0
η∈V+

Fφ∗φ (x− y + iη)

Both Fφφ∗ and Fφ∗φ are invariant under L
↑
+ and therefore by the previous

argument analytic in the extended tube and invariant under L+(C). The real
points of the extended tube are here all pairs x, y for which x− y is space-like,
so the relation (5) implies that

Fφφ∗(ζ) + Fφ∗φ(−ζ) = 0 (6)
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throughout the extended tube, or, using the invariance of Fφ∗φ under Λ = − 1
= Ist,

Fφφ∗(ζ) + Fφ∗φ(ζ) = 0. (7)

If we pass to the limit η → 0 with η ∈ V+ in this relation, we have for all x
and y the relation

(Ψo, φ(x)φ
∗(y)Ψo) + (Ψo, φ

∗(−y)φ(−x)Ψo) = 0

between distributions. Smearing in x with the test function f(x) and in y with

f(y), we get for the first term ||φ(f)∗Ψo||2 and for the second ||φ(f̂ )Ψo||2 = 0 for
all test functions f . Here f̂(x) = f(−x). So φ(f)∗ and φ(f) both annihilate the
vacuum. To conclude from these results that φ and φ∗ are actually zero requires
some knowledge of the relations of φ and φ∗ with the rest of the fields of the field
theory; I will not say more about that. However, I will add that the extension
of the above discussion to treat the case of arbitrary spinor and tensor fields
basically only involves the replacement of (4), which expresses invariance under
L+(C), by a transformation law involving the representation which expresses
the nature of the tensors or spinors under the action of L+(C). Explicitly, for
φ a component of a tensor field, the argument goes just as in the scalar case,
because the tensor transformation law reduces to (6) and (7). On the other
hand, for φ a component of a spinor field, Burgoyne undertakes to show that
the vanishing of the commutator of φ(x) and φ∗(y) for space-like (x−y) implies

‖φ(f)∗Ψo‖
2 = ‖φ(f̂)Ψo‖

2 = 0.

He has to overcome the apparent difficulty that here (6) is replaced by

Fφφ∗(ζ)− Fφ∗φ(−ζ) = 0

throughout the extended tube. But now the spinor character of φ implies that

Fφ∗ψ(−ζ) = −Fφ∗φ(ζ).

The minus signs compensate and the rest of the proof goes the same way as for
a scalar or tensor field.
Finally, I should mention that every result that I have talked about presup-

poses a space of states that is a Hilbert space with positive metric; Faddeev-
Popov ghosts are thereby excluded; they violate the spin-statistics connection.

Discussion
E. Wichmann: How is your assertion about the non-existence of a spin-

statistics connection in Euclidean invariant theory related to the paper of Michael
Berry (Proc. Roy. Soc. Lond. A 453 (1997) 1771-1790) in which under some
assumptions he outlined a proof. What are those assumptions?
A. Wightman: I have not seen the paper of Michael Berry.

(with some delay) I want to thank Dave Jackson for providing me with a pho-
tocopy of Berry’s paper and the organizers for accepting a delayed response to
Eyvind’s question.
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Berry bases his proof on the assumption of the existence of what he calls a
transportable spin-basis. He constructs such a basis for the special case of two
particles, N = 2, but leaves open the case of general N .
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