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Localization of dependence for solutions of

hyperbolic differential equations ∗

Henry A. Warchall

Dedicated to Eyvind H. Wichmann

Abstract

We survey several results that localize the dependence of solutions to
hyperbolic equations. These observations address questions that are cen-
tral to numerical simulation of solutions on unbounded spatial domains.
One result shows that in principle it is possible to numerically compute
(the restriction of) a solution to a wave equation on an unbounded domain
using only a bounded computational domain. Other results provide imple-
mentations of this fact in particular situations. In addition, we introduce
a new diagrammatic way to generate explicit solutions to multiple-time
initial-value problems for the wave equation in one space dimension.

1 Introduction

One of the many things I learned from Eyvind Wichmann is that it can be
profitable to re-examine topics you know well; it is possible to see aspects of
a subject that you missed the first time. In that spirit, I would like to revisit
an equation we all know and love: the wave equation. This discussion reviews
results on wave propagation in two articles of mine, and it introduces two new
observations which I would like to present to Eyvind on this happy occasion.
In this first section, we will pose a question about the domain of depen-

dence of solutions to the wave equation that is central to numerical simulation
of solutions on unbounded domains. In the second section we will answer the
question with a summary of the general results in [1] of wave propagation at
computational domain boundaries, applied for simplicity to partial differential
equations whose principal part is the d’Alembertian. In the third section we
will discuss two schemes that implement the intent of the abstract result of the
second section but not its precision. The first scheme has not been previously
published, and the second scheme is found in [2]. The fourth section presents
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246 Localization of dependence

a new toy (also not previously published), a diagrammatic method to gener-
ate formulas for solutions of the (1 + 1)-dimensional wave equation with given
multiple-time initial data.
We begin with a gedanken experiment. Consider an infinite lake, with no

shore or islands. We observe a fixed finite region of the surface. Suppose that
the entire lake is initially quiet, except for a disturbance in the region under
observation. We look away, then observe the same region at some later time.
Does the data at the later time in the region alone suffice to predict the water’s
future behavior in the region?
Intuitively speaking, we expect to be able to determine the future behavior

of the surface in the region, given only data in the region at the intermediate
time, because “all waves are outgoing.” On the other hand, we know that
the domain of dependence for the solution at points near the edge of the region
under observation extends outside the region, so it seems we may need data from
outside the region to determine the solution inside the region in the future.
To make this question more precise, consider the computation of solutions to

a (possibly nonlinear) wave equation on an unbounded spatial domain (say Rn).
Assume that the equation is autonomous, that the speed of propagation is finite,
and that the initial data is supported inside a bounded domain on which values
of the solution are to be computed. We desire to compute (only) the restric-
tion to the bounded computational domain of the solution to the initial value
problem on the unbounded domain. (In particular, the computational domain
boundaries are not boundaries for the initial value problem, and do not affect
the solution in any way.) Suppose we have an evolution scheme (for instance,
numerical) to advance the solution stepwise in time on the spatial domain Rn,
starting from the given compactly-supported initial data. We apply the scheme
to advance the solution in time until its spatial support reaches the boundary of
the computational domain. It is not clear that we can continue computing the
solution after that time using only data inside the computational domain, since
the solution’s a priori domain of dependence for points near the computational
domain boundary at later times extends outside the computational domain, as
illustrated in Figure 1.
Usual (Dirichlet, Neumann, periodic) boundary conditions applied at the

computational domain boundary generate spurious reflections that are not part
of the solution on the unbounded domain. One can do better: approximately-
reflectionless boundary conditions have been developed (see [4] and references
therein) but have varying degrees of accuracy. The application of such conditions
at computational domain boundaries, yielding only approximations to solutions
on the unbounded domain, is philosophically dissatisfying. In the situation
outlined, data inside the computational domain at an intermediate time should
suffice to determine the solution inside the domain at later times, because the
solution is “outgoing” and its behavior outside the domain should not influence
its later behavior inside. The remainder of our discussion is motivated by the
two main questions:
To what extent can this intuition be made precise?
To what extent can it be made into a calculational tool?
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Figure 1: Domain of dependence extends outside computational domain

Here we advocate an alternative to differential boundary conditions: propaga-
tion of waves through artificial domain boundaries.

An explicit example is in order. Consider the wave equation

utt − uxx = 0

in one spatial dimension. The solution to the initial-value problem with data at
time t = t0 is given explicitly by d’Alembert’s formula

2u(x, t) = u(x−∆t, t0) + u(x+∆t, t0) +

∫ x+∆t
x−∆t

ut(y, t0) dy

where ∆t ≡ t− t0.
Suppose it is known that the support of the (t = t0) initial data is to the

left of x = b: supp {u(·, t0), ut(·, t0)} ⊂ (−∞, b). Suppose u and ut are known
to the left of x = b at time t1 > t0. Given x ≤ b, is the solution at x and time
t2 > t1 determined by u and ut to the left of b at time t1 ?

The answer is yes:

Theorem 1.1 Suppose u(x, t) is a classical solution of utt − uxx = 0 with
support of initial (t = t0) data to the left of x = b. Let t2 > t1 > t0 and set
∆t ≡ t2 − t1. If x ∈ (b−∆t, b +∆t) then

2u(x, t2) = u(x−∆t, t1) + u(b, t1) +

∫ b
x−∆t

ut(y, t1) dy.
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Proof There are two parts to the proof.
First part: We claim that ut(x, t1) = −ux(x, t1) for x ≥ b. Since both u and ut
vanish at t0 for x ≥ b, using the d’Alembert formula to advance from t0 to t1
gives

2u(x, t1) = u(x− t1 + t0, t0) +

∫ b
x−t1+t0

ut(y, t0) dy.

Note that the right-hand side depends only on (x − t1), not (x + t1). Thus
ut(x, t1) = −ux(x, t1) for x ≥ b, as claimed.
Second part: We use d’Alembert’s formula again to advance the solution from
t1 to t2, obtaining

2u(x, t2) = u(x−∆t, t1)+u(x+∆t, t1)+

∫ b
x−∆t

ut(y, t1) dy+

∫ x+∆t
b

ut(y, t1) dy.

But, by virtue of the first part, the last integrand is just −ux(y, t1), so the last
integral yields u(b, t1)− u(x+∆t, t1), and the assertion of the theorem follows
immediately. QED
In particular, if we think of points x to the left of b as being inside a compu-

tational domain, and points to the right as being outside, the resultant formula

2u(b, t2) = u(b−∆t, t1) + u(b, t1) +

∫ b
b−∆t

ut(y, t1) dy

gives an explicit method for advancing the solution at the boundary, using
only data inside the computational domain. Numerical implementation of this
integral formula (which is equivalent to the boundary condition ut = −ux) works
superbly to propagate waves through the computational domain boundary as if
it were not there.
It is natural to ask how far this approach can be taken in treating higher

numbers of spatial dimensions and other equations. In the next section we will
see that in principle the same situation holds in a wide variety of cases. Note
that for many computational purposes, it suffices to develop such “one-sided”
propagation formulas for linear constant-coefficient equations. The reason is
that in studies of nonlinear wave equations, an effective numerical simulation
will have the large-amplitude part of the solution well inside the computational
domain for times of interest, and the solution near the boundary will have small
amplitude. Then propagation near the boundary is well-approximated by the
linearized equation, and results for linear wave equations can be employed to
approximate the solution near the boundary.

2 Abstract Uniqueness Results

Quite general results on wave propagation at computational domain boundaries
are given in [1] for linear hyperbolic equations with analytic coefficients. Here
we will specialize these results to equations that are close to the wave equation.
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Let B(x, r) ⊂ Rn be the closed ball with center x and radius r. Define the
closed forward cone V ≡

{
(x, t) ∈ Rn+1 | t ≥ |x|

}
. We denote by Ωc the

complement of the set Ω.

Theorem 2.1 (Warchall) Let P (x,D) be a linear differential operator on Rn+1

with analytic coefficients and principal part ∂2t − ∆x. Let Ω ⊂ R
n be an open

convex set. Let t0 < t1 < t2, and let z ∈ Ω̄.
Let f be a continuous function of t ≡ xn+1 with values in D′(Rn) that is

analytic in Ωc × (−∞,∞). Suppose f vanishes on an open set that contains
{(x, t) ∈ {(z, t2)} − V | x ∈ Ω, t ≥ t1 }.
Suppose u ∈ D′(Rn+1) is a solution to P (x,D)u = f such that:

(i) the data u(t0) and ut(t0) have support in Ω, and
(ii) the data u(t1) and ut(t1) vanish on an open set that contains Ω∩B(z, t2−t1).
Then u vanishes in an open neighborhood of (z, t2).

This result establishes that the solution (of the linear equation Pu = f) in
the domain at time t2 is uniquely determined by the restriction of the solution
at earlier time t1 to the intersection of the computational domain with the a
priori domain of dependence, as illustrated in Figure 2.

t

t 0

t 1

t 2

z, t2( )

B z, t2− t1( ) × t1{ }

B z, t2− t0( ) × t0{ }
Ω × t0{ }

Ω × t1{ }

x ∈Rn

Figure 2: Solution at (z, t2) is determined by data at time t1 in shaded region

Thus, if it is known that at some past time the data for the solution was
supported in Ω, then the data in Ω at time t1 completely determines the solution
in Ω at all later times. The drawback to this result is that the dependence is
not made explicit, and in fact is known only for the wave equation in one space
dimension.

About the proof of Theorem 2.1

The proof involves an argument about propagation of regularity. Let WFA(u)
be the analytic wave front set of the distribution u ∈ D′(RN ). We make use of
the following result. (Thanks to James Ralston for pointing it out.)
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Theorem 2.2 (Hörmander [3]) Let P (x,D) be a differential operator of order
m with analytic coefficients and real principal part Pm. Let L be a segment of
a bicharacteristic strip of P , with ∂Pm

∂ξ
(x, ξ) 6= 0 on L.

Let f ∈ D′(RN ) be such that Λ ∩WFA(f) is empty. Suppose that u ∈ D′(RN )
solves P (x,D)u = f .
Then either Λ ⊂WFA(u) or Λ ∩WFA(u) is empty.

This propagation of singularities along bicharacteristic strips also results in
propagation of regularity:

Corollary 2.3 Let P (x,D) be a differential operator with analytic coefficients
and real principal part Pm. Let u ∈ D′(RN ), and set f = P (x,D)u.
Suppose x ∈ RN is such that:
(1) f is real analytic at x;
(2) dPm(x, ξ) 6= 0 if (x, ξ) ∈ Char(P ); and
(3) each bicharacteristic strip of Pm that contains (x, ξ) for some ξ 6= 0 also
contains some point q not in WFA(u), with all points (y, η) of the strip between
and including (x, ξ) and q satisfying (y, η) /∈WFA(f) and

∂Pm
∂η
(y, η) 6= 0.

Then u is real analytic at x.

To establish this corollary, we note that by hypothesis (1), WFA(u) ⊂
Char(P ). Hypotheses (2) and (3) allow us to connect each point (x, ξ) ∈
Char(P ) with a bicharacteristic strip to a point not in WFA(u). Now apply
Hörmander’s theorem to the strip to conclude (x, ξ) /∈ WFA(u). Since this is
true for all (x, ξ) ∈ Char(P ), we have that u is real analytic at x, as claimed.
We may apply this Corollary to prove Theorem 2.1 as follows. Given z ∈ Ω̄,

consider the timelike segment C ⊂ Rn+1 given by C ≡ {z}× [t1, t2]. Fix a point
(z, t) ∈ C. Because Ω is convex, each backward characteristic (lightlike line)
through (z, t) passes either through Ωc × {t0} or through (Ω ∩B(z, t2 − t1)) ×
{t1}. Because of the hypotheses on the data and on f , the solution u vanishes on
an open neighborhood of each of these sets, and u is thus analytic at the (lower)
endpoint of the segment between (z, t) and the corresponding set. Because
the hypotheses insure that f is analytic along each such segment, and because
the principal part Pm of the differential operator is the d’Alembertian, the
hypotheses of the Corollary are satisfied, and we conclude that u is real analytic
at (z, t).
The same argument holds at each point (z, t) ∈ C, and thus u is analytic

on C. The hypotheses on the support of the data imply that u vanishes in
an open neighborhood of the lower endpoint (z, t1) of C, and thus by analytic
continuation u vanishes on C. In particular, u vanishes in an open neighborhood
of (z, t2), as asserted. QED

3 Explicit but Nonlocal Schemes

The abstract result of Theorem 2.1 answers our first main question, but it does
not provide an explicit algorithm by which to determine the future solution in
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the entire computational domain from data in the domain alone. In this section
we discuss two explicit schemes for advancing the solution in the computational
domain. Unfortunately, neither scheme implements the precise local dependence
established by Theorem 2.1. The implementation of that dependence is an open
question for all cases other than the wave equation in one spatial dimension.

Piecewise-in-time method

There is an explicit algorithm for using bounded computational domains to
simulate certain problems on unbounded domains that is in principle exact
and valid in arbitrary spatial dimension. (It does not, however, implement the
local dependence established in Section 2.) This algorithm is inspired by an
observation [5] by Cathleen Morawetz.

Algorithm based on explicit solutions

We consider a partial differential equation

P (x, t;D)u+G(x, t;u) = F (x, t)

where the linear hyperbolic differential operator P has uniformly bounded prop-
agation speed, F is independent of u, and G is a function that can be nonlinear
in u. To simplify notation, we will write initial conditions for the equation in
the schematic first-order form u|t=t0 = u0.
Two hypotheses are crucial for the algorithm. First, we assume that G has

spatial support in a fixed ball B ⊂ Rn, that is, G(x, t;u) vanishes identically in
the variables t and u when x is outside B. This condition is a strict realization of
the idea that the equation under study is linear sufficiently far from the origin.
The second hypothesis is that the initial-value problem

P (x, t;D)v = F (x, t)

v|t=t0 = v0

for the linear system without the G term is explicitly solvable in the sense that
the solution v is assumed to be readily computable everywhere from the initial
data v0, not requiring local numerical integration to advance v in time. For
example, P might be a constant-coefficient operator such as the d’Alembertian
or the Klein-Gordon operator, for which the solution v can be expressed in terms
of F and the initial data v0 by an integral formula. The crux of this hypothesis
is that v can be determined without advancing it in time with a local algorithm
whose domain of dependence includes points outside the computational domain
where the data is nonvanishing.
Let Ω ⊂ Rn be an open, bounded (computational) domain containing B,

with dist(B, ∂Ω) > 0. To compute the restriction to Ω̄ of the solution to the
initial-value problem

P (x, t;D)u+G(x, t;u) = F (x, t)
u|t=t0 = u0

(3.1)
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we write the solution u as the sum of the solutions v(0), v(1), and w(1) to the
three initial-value problems

P (x, t;D)v(0) = F (x, t)

v(0)
∣∣
t=t0
= v

(0)
0

and
P (x, t;D)v(1) = 0

v(1)
∣∣
t=t0
= v

(1)
0

and
P (x, t;D)w(1) +G(x, t; v(0) + v(1) + w(1)) = 0

w(1)
∣∣
t=t0
= w

(1)
0

where suppw
(1)
0 ⊂ B, supp v(1)0 ⊂ Ω̄, and v(0)0 + v

(1)
0 + w

(1)
0 = u0. (It would

be sufficient to take v
(1)
0 = w

(1)
0 = 0, but it may be convenient to make other

choices.)
The solutions v(0) and v(1) are by assumption explicitly known functions of

F and the initial data, for all time t ≥ t0. The solution w(1) is to be advanced
in time with a numerical algorithm.
Let t1 = t0 + τ be the earliest time greater than t0 at which the spatial

support of w(1) can intersect ∂Ω. Because G(x, t;u) vanishes for x outside B,

and because suppw
(1)
0 ⊂ B, the finite propagation speed of P implies that t1

is strictly larger than t0. During the time interval [t0, t1] the spatial support of
w(1) is contained in the computational domain Ω̄.
The numerical integration of the initial-value problem for w(1) is to be halted

at time t = t1. The solution u to the original initial-value problem (3.1) is then
given by u = v(0) + v(1) + w(1) in Ω̄× [t0, t1].
We next continue the time evolution of w(1) by considering the two initial-

value problems
P (x, t;D)v(2) = 0
v(2)
∣∣
t=t1
= w(1)

∣∣
t=t1

.

and
P (x, t;D)w(2) +G(x, t; v(0) + v(1) + v(2) + w(2)) = 0

w(2)
∣∣
t=t1
= 0

in terms of which w(1) = v(2)+w(2). The solution v(2) is by hypothesis an explic-
itly known function of the data w(1)

∣∣
t=t1
. Note that the evolution equation for

w(2) is driven by the known function v(0)+v(1)+v(2). As noted, the hypotheses
on P and G insure finite propagation speed for w(2) outside B. Again w(2) is
advanced in time with the numerical algorithm until time t2 = t1 + τ , when
its spatial support can reach ∂Ω. The solution u to the original initial-value
problem (3.1) is then given by u = v(0) + v(1) + v(2) + w(2) in Ω̄× [t1, t2].
This latter procedure can be continued arbitrarily many times to advance

the solution by time τ at each step. In general, at the beginning of the kth

step, the solution u is known in Ω̄× [t0, tk−1], being given in Ω̄× [tk−2, tk−1] by
u = v(0) + · · ·+ v(k−1) +w(k−1). Here each function v(j), j = 1, 2, . . ., is known
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explicitly for all t ≥ tj−1, and the function w(k−1) has spatial support in Ω̄ at
time tk−1 = t0 + (k − 1)τ .
The kth step of the computation proceeds with the explicit determination of

v(k) for t ≥ tk−1 by the initial-value problem

P (x, t;D)v(k) = 0
v(k)
∣∣
t=tk−1

= w(k−1)
∣∣
t=tk−1

followed by numerical solution of

P (x, t;D)w(k) +G(x, t; v(0) + v(1) + · · ·+ v(k) + w(k)) = 0
w(k)
∣∣
t=tk−1

= 0

to determine w(k) in Ω̄ × [tk−1, tk]. The solution u to the original initial-value
problem (3.1) is given in Ω̄× [tk−1, tk] by u = v(0) + v(1) + · · ·+ v(k) +w(k). In
this way we can integrate this nonlinear equation using numerical computation
only in Ω̄.

Algorithm based on the wave equation

Morawetz’ original result [5] concerns the case where P is the d’Alembertian
� ≡ ∂2t−∆ in three spatial dimensions. In that case it is possible to do away with
the second hypothesis concerning explicit representation of solutions to initial-
value problems for the linear equation, by making use of (the strong) Huygens
principle. (Thanks to Cathleen Morawetz for notifying me of this unpublished
result.) In particular, let B be the open ball in R3 of radius b, centered (without
loss of generality) at the origin. We can compute the restriction to B of solutions
to the initial-value problem

�u+G(x, t;u) = 0
u|t=0 = u0

(3.2)

on R3+1 by computing only inside the concentric open ball Ω with radius 3b.
(Here we continue the notational abuse of writing initial conditions in schematic
first-order form.) We proceed as follows.
We assume that the classical initial data u0 is supported in B, and, as before,

that the continuous function G(x, t;u) has spatial support in B for all t and u.
The first step consists of computing the solution to the initial-value problem

�w(1) +G(x, t;w(1)) = 0
w(1)
∣∣
t=0
= u0

in Ω× [0, t1], where t1 = 2b. This can be done with a straightforward numerical
algorithm since the spatial support of the solution is contained in Ω for all
t ∈ [0, t1], by virtue of the unit speed propagation outside B. Thus we have
u = w(1) in Ω× [t0, t1]. (In terms of the earlier notation, F ≡ 0, t0 = 0, τ = 2b,

v
(0)
0 = v

(1)
0 = 0, w

(1)
0 = u0, and v

(0) = v(1) ≡ 0.)
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We continue the time evolution of w(1) beyond time t1 by solving the two
initial-value problems

�v(2) = 0
v(2)
∣∣
t=t1
= w(1)

∣∣
t=t1

(3.3)

and
�w(2) +G(x, t; v(2) + w(2)) = 0

w(2)
∣∣
t=t1
= 0

(3.4)

in terms of which w(1) = v(2) + w(2) for t ≥ t1, as before.
Consider first the initial-value problem (3.3) for v(2). Because the sup-

port of the initial data is contained in Ω, and because the wave equation in
odd spatial dimensions three or greater enjoys the strong form of Huygens’
principle, the solution vanishes in the forward cone V5 ≡ {(0, 5b)} + V ={
(x, t) ∈ R3+1 | t ≥ |x|+ 5b

}
. In particular, v(2) vanishes in B for t ≥ 6b.

See Figure 3.

t

t1 = 2b

t2 = 4b

t3 = 6b

B

Ω

V3

V5

A5

t = 0 x ∈R3

Figure 3: Spacetime regions in the piecewise-in-time algorithm based on the
wave equation

But we can say more. We claim that v(2) vanishes in the cone V3 ≡
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{(0, 3b)}+ V . To see this, let G̃ be G cut off at time t1:

G̃(x, t;u) =

{
G(x, t;u) if t ≤ t1
0 if t > t1

Thus G̃ has spacetime support in B× (−∞, t1]. Then the solution to the initial-
value problem (3.2) and the solution to the initial-value problem

�ũ+ G̃(x, t; ũ) = 0
ũ|t=0 = u0

(3.5)

are identical in Ω× [0, t1], and w(1)
∣∣
t=t1
is the data at time t1 for both problems.

Further, the problem (3.3) gives the solution of (3.5) for t > t1, that is, ũ = v
(2)

for t > t1.
Let (ξ, τ) be a point in V3. We can make use of Beltrami’s formula [6]

or Duhamel’s principle [7] to express the solution ũ(ξ, τ) in terms of the initial
data u0 on the sphere |x− ξ| = τ and an integral of G̃(x, t; ũ) over the truncated
backward cone A ≡ {(ξ, τ)} −

{
(x, t) ∈ R3+1 | |x| ≤ t ≤ τ

}
. Because u0 is

supported in B and thus vanishes on the sphere |x− ξ| = τ , and because supp G̃
does not intersect A, it follows that v(2)(ξ, τ) = ũ(ξ, τ) = 0 for all (ξ, τ) ∈ V3,
as claimed.
Thus in particular v(2) vanishes in B for t ≥ t2 ≡ 4b. Since we are in-

terested only in the values of v(2) in B, we thus need only compute v(2) in
B × [t1, t2]. For this purpose, it more than suffices to apply a numerical
algorithm to solve (3.3) in the truncated backward cone A5 ≡ {(0, 5b)} −{
(x, t) ∈ R3+1 | |x| ≤ t ≤ 3b

}
, which can be done in a straightforward fash-

ion since for time evolution in that region the domain of dependence does not
extend outside Ω. We have no need for, and do not compute, values of v(2) in
the complement of A5.
We can thus determine the solution v(2) in B × [t1,∞) using a numerical

algorithm and computing only inside Ω. To complete the second step, we employ
a numerical algorithm to advance w(2) in time from t1 to t2. As in the first
step, this can be done in a straightforward manner since the spatial support
of the solution is contained in Ω for all t ∈ [t1, t2], by virtue of the unit speed
propagation outside B. Then u = v(2) + w(2) in B × [t1, t2].
Succeeding steps of the algorithm proceed in the same way. At the beginning

of the kth step, the solutions v(1), v(2), . . ., v(k−1) have been computed in B,
and all vanish in B × [tk−1,∞], where tk = 2kb. The solution to (3.2) is given
in B× [tj−1, tj ] by u = v(j) +w(j) for j = 1, . . . , (k− 1). The solution w(k−1) is
supported in Ω at time tk−1, and we advance w

(k−1) from time tk−1 to time tk
by solving the two initial-value problems

�v(k) = 0
v(k)
∣∣
t=tk−1

= w(k−1)
∣∣
t=tk−1

(3.6)

and
�w(k) +G(x, t; v(k) + w(k)) = 0

w(k)
∣∣
t=tk−1

= 0 (3.7)
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in terms of which w(k−1) = v(k)+w(k) for t ≥ tk−1, in exactly the same fashion
as in the second step. Then u = v(k) + w(k) in B × [tk−1, tk].
Thus for this class of problems the procedure furnishes a numerical scheme

that computes the restriction of the solution to B, using only computation in
Ω.

Spherical harmonic expansion

The second scheme to determine the future solution in the entire computational
domain from data in the domain alone is based on a (truncated) expansion in
spherical harmonics. This scheme implements the evolution with a computation
that is local in radius.
We consider the wave equation ∂

2u
∂t2
−∆u = f with source f in 3+1 spacetime

dimensions. We assume that at all times t the source f has spatial support in
the ball B of radius b centered, say, at the origin. The initial data for u at time
t0 is supported in B.
Let t1 and t2 be two later times with t2 > t1 > t0, and set ∆t ≡ t2 − t1. Let

z ∈ R3 be a point outside B, at distance ∆t or greater from B, and set a ≡ |z|.
Thus a > b+∆t. The uniqueness result of Theorem 2.1 implies that u(z, t2) and
∂u
∂t (z, t2) are completely determined by the data at time t1 in the intersection
of the ball of radius a centered at the origin, and the ball of radius ∆t centered
at z. This intersection is represented by the shaded region in Figure 4.

t

t 0

t 1

t 2

z, t2( )

B× t0{ }

B× t 2{ }

b

a

a − ∆ t ∆ t

x ∈R3

Figure 4: Spacetime regions in the spherical harmonic expansion algorithm

The spherical-harmonic expansion scheme does not quite make this depen-
dence explicit, but instead furnishes an `-dependent one-sided propagation for-
mula for the `th partial wave in the spherical harmonic decomposition of u
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outside of B. This gives a formula for u(z, t2) in terms of (radial derivatives of)
the data on a sphere centered at the origin of radius a − ∆t at time t1. This
sphere is represented by the heavy circle in Figure 4.
In [2] we build on the idea of Joseph Keller and Marcus Grote [8] to expand

u using spherical harmonics to get partial waves, and then to determine an
operator that converts the partial waves into solutions of the (1+1)-dimensional
wave equation. (Thanks to Joseph Keller for notifying me of this work prior
to its publication.) Our contribution is to use a differential operator instead of
an integral operator, and combine the resultant “outgoing wave condition” with
the explicit propagation formula for the wave equation in 3 + 1 dimensions to
obtain a single-point propagation formula.

Outgoing wave condition

Let (r, θ, φ) be the usual polar coordinates for R3. For x ∈ R3\B, we expand
the solution u of the wave equation in terms of spherical harmonics:

u(x, t) =

∞∑
`=0

∑̀
m=−`

u`m(x, t)

where u`m(x, t) ≡ v`m(r, t)Y`m(θ, φ), where Y`m is the usual spherical harmonic
function. The coefficient function v`m of the partial wave solution u`m is given
by

v`m(r, t) ≡

∫ 2π
0

∫ π
0

Y`m(θ, φ) u(r, θ, φ, t) sin θ dθ dφ

and satisfies the reduced partial differential equation

∂2v`m

∂t2
= v′′`m +

2

r
v′`m −

`(`+ 1)

r2
v`m

where the prime denotes differentiation with respect to r.
For notational convenience we define the differential operator

L` ≡ r
`

(
−
∂

∂r

1

r

)`

and its formal adjoint

L∗l ≡

(
1

r

∂

∂r

)` [
r`·
]
.

Set

w`m(r, t) ≡ L
∗
` [r v`m] (r, t);

then it is not difficult to show ([2]) that w`m satisfies the (1 + 1)-dimensional
wave equation

∂2w`m

∂t2
=
∂2w`m

∂r2
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for r > b. As in Section 1, the hypotheses on the supports of the data and f
imply (via Duhamel’s principle) that w`m satisfies the outgoing wave condition

∂w`m

∂ t
(r, t) +

∂w`m

∂ r
(r, t) = 0

for r > b and t > t0.
The initial-value problem for this simple equation can of course be solved

explicitly for w`m. Knowledge of w`m alone, however, does not furnish an effec-
tive numerical algorithm, because recovery of u from the w`m involves multiple
integrations in the radial variable. In [2] we instead determine a single-point
one-sided propagation algorithm that yields the coefficients v`m explicitly, by
incorporating the outgoing wave condition in the propagation formula for the
wave equation.

One-sided propagation formula

To derive the single-point formula, we begin by noting that in terms of v`m the
outgoing wave condition can be written as

∂

∂ r
L∗` [r v`m] + L

∗
`

[
r
∂v`m

∂t

]
= 0

for for r > b and t > t0.
Now, because u`m(x, t) ≡ v`m(r, t)Y`m(θ, φ) satisfies the (3+1)-dimensional

wave equation for |x| > b, we may apply the standard integral propagation
formula to propagate values of u`m(z, t) from time t1 to time t2:

4πu`m(z, t2) =

∮ {
u`m(z + (∆t)ω, t1) + (∆t)

[
u̇`m(z + (∆t)ω, t1)

+(ω · ∇u`m)(z + (∆t)ω, t1)
]}
d2ω .

(Here the integration is over the unit sphere.) Without loss of generality ([2])
we assume that the direction of z is along the north pole of the coordinate
system. Then u`m(z, t) = 0 for m 6= 0 because Y`m(θ = 0, φ) = 0 for m 6= 0.

Thus u(z, t) =
∞∑
`=0

u`0(z, t), and so we may consider only the time development

of u`0(x, t) = v`0(r, t)P`(cos θ), where P` is the `
th-order Legendre polynomial.

Substituting this expression into the propagation formula and integrating by
parts, we obtain

2u`0(z, t2) =
s(s− µ)

τ
P`(µ) v(s)

∣∣s=1+τ
s=1−τ

+

∫ 1+τ
1−τ

{sP`(µ)v̇(s)− τ P
′
`(µ)v(s)} ds

where v(s) ≡ v`0(as, t1); v̇(s) ≡ a
∂v`0
∂ t
(as, t1); µ ≡ µ(s) ≡

s2+1−τ2

2s ; s ≡ r
a
;

τ ≡ ∆t
a
.
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It remains to apply the outgoing wave condition to this expression and sim-
plify the result. To do so, we perform the following steps:
(1) Manufacture the expression L∗` [s v̇] from the term s P`(µ)v̇ in the integrand
above by determining a function Ql(s) such that P`(µ) = L` [Q`], and integrat-
ing by parts to convert the integrand term sP`(µ)v̇ = L` [Q`] sv̇ to Q` L

∗
` [sv̇].

(2) Apply the outgoing wave condition: Q` L
∗
` [sv̇] = −Q`

∂
∂s
L∗` [sv].

(3) Integrate by parts again to convert this expression to s v L`
[
∂
∂sQ`

]
.

(4) Note that s v L`
[
∂
∂s
Q`
]
is equal to the opposite of the only other integrand

term, − τ P ′`(µ)v.
Remarkably, this procedure reduces the propagation formula to surface terms

alone. We can furthermore choose the function Ql(s) such that all surface
terms vanish at s = 1 + τ . The result is a single-point one-sided propagation
formula that expresses u`0(z, t2) in terms of derivatives of v`0 at the single point
(r, t) = (a−∆t, t1). Specifically, the radial derivatives of v`0(r, t1) to order `,
and of v̇`0(r, t1) to order (`− 1), are required only at r = a−∆t.
Similar considerations hold ([2]) for general z = (a, θ, φ), and we have finally

that

u(z, t2) =
∞∑
`=0

∑̀
m=−`

v`m(a, t2)Y`m(θ, φ),

where

2v`m(a, t2) = (1− τ) v(1 − τ)+
+
(
Q`(s)L

∗
` [s v] + Γ`

[
∂
∂s
Q`, sv

]
− Γ` [Q`, sv̇]

)∣∣
s=1−τ

(3.8)

where Q`(s) ≡
(−1)`

2``!

(
(s− τ)2 − 1

)`
and where the boundary-terms operator Γ

is given by

Γ` [f, g] (s) ≡ −
∑̀
j=1

{(
−
∂

∂s

1

s

)`−j
f(s)

}
1

s

(
1

s

∂

∂s

)j−1 [
s`g(s)

]
.

In this formula, v(s) ≡ v`m(as, t1) and v̇(s) ≡ a
∂v`m
∂ t (as, t1).

To better appreciate formula (3.8), we list below the explicit expressions for
the coefficients v`m for small values of `:

v00(a, t2) = (1 − τ) v00(a−∆t, t1)

v1m(a, t2) = (1− τ) {(1 + τ)v1m(a−∆t, t1)+

+(1− τ)(∆t) [v̇1m(a−∆t, t1) + v
′
1m(a−∆t, t1)]}

v2m(a, t2) = (1− τ)2 {(1 + 2τ)v2m(a−∆t, t1)+

+(∆t) [(1 + 2τ)v̇2m(a−∆t, t1) + (1 + 3τ)v
′
2m(a−∆t, t1)] +

+(1− τ)(∆t)2 [v̇′2m(a−∆t, t1) + v
′′
2m(a−∆t, t1)]

}
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v3m(x2, t2) = (1− τ)
{
(1 + τ)(1 − 5τ2)v3m

+(1− τ)(∆t)
[
(1 + τ)2v̇3m + (1 + 3τ − τ

2)v′3m
]

+(1− τ)2(∆t)2
[
1
3 (3 + 10τ)v̇

′
3m + (1 + 4τ)v

′′
3m

]
+ 23 (1− τ)

3(∆t)3 [v̇′′3m + v
′′′
3m]
}

v4m(a, t2)

= (1 − τ)
{
(1 + τ − 9τ2 − 9τ3 + 6τ4)v4m

+(1− τ)(∆t)
[
1
3 (1 − τ)(3 + 9τ + 8τ

2)v̇4m + (1 + 3τ − 5τ
2 − 13τ3)v′4m

]
+ 13 (1− τ)

2(∆t)2
[
(3 + 10τ + 11τ2)v̇′4m + (3 + 12τ + 7τ

2)v′′4m
]

+ 13 (1− τ)
3(∆t)3 [(2 + 9τ)v̇′′4m + 2(1 + 5τ)v

′′′
4m]

+ 13 (1− τ)
4(∆t)4

[
v̇′′′4m + v

(4)
4m

]}
In the last two formulas, we have omitted the arguments for the functions vlm
and v̇lm; they are, as always, (a−∆t, t1).
We note that, because ∂u

∂t
(x, t) also satisfies the wave equation, we may

obtain analogous propagation formulas for ∂vlm
∂t
(a, t2). Thus an approximate

numerical algorithm for propagation near a computational domain boundary
could be based on this propagation formula with a truncated ` summation.
Since the determination of vlm(a, t2) is based on (spatial) derivatives of vlm(r, t1)
and v̇lm(r, t1) on the sphere r = a − ∆t, which is inside the computational
domain boundary, it is conceivable that a numerical routine for the interior time
development could be devised to maintain sufficient accuracy to allow accurate
approximation of these radial derivatives.

4 The Wave Equation in One Dimension, Revis-
ited

The uniqueness result in Theorem 2.1 can be reinterpreted as a statement about
uniqueness of solutions to a multiple-time “initial” value problem in which data
is presented in Ωc at time t0 and in Ω at time t1. For the wave equation

utt − uxx = 0

in one spatial dimension, we can obtain explicit solutions to certain multiple-
time initial value problems. To do so, it is convenient to introduce a pictorial
representation of d’Alembert’s formula, which we rewrite as

0 = −2u(x, t) + u(x−∆t, t0) + u(x+∆t, t0) +

∫ x+∆t
x−∆t

ut(y, t0) dy

where now ∆t ≡ t−t0. In the pictorial representation, a closed dot at the space-
time point (x, t) represents the value u(x, t), an open dot at the spacetime point
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(x, t) represents the value −u(x, t), and a solid horizontal line between space-
time points (x1, t) and (x2, t) represents the value of the integral

∫ x2
x1
ut(y, t) dy

along the segment between the points. Additionally, a constant c adjacent to
a closed (open) dot at (x, t) represents cu(x, t) (−cu(x, t)). In the pictures, a
dashed line between spacetime points (x, t) and (x ± k, t + k) serves only to
indicate lightlike separation between the points and does not represent a value.
With these conventions, we can regard d’Alembert’s formula as saying that

the number 0 has the representation shown in Figure 5. By adding and sub-

2

Figure 5: Representation of zero via d’Alembert’s formula

tracting various (differently-sized and -located) such representations of 0, we
can get many formulas involving a solution of the wave equation. Here we will
establish one formula that furnishes the solution to a multiple-time initial value
problem.
We start with Figure 5 and subtract a smaller version of zero in the lower left

corner to obtain Figure 6, which relates values of u at the four points shown and

2

2

Figure 6: Representation of zero via d’Alembert’s formula employed twice

the indicated integral of ut. We note that if the data vanishes along the bottom
solid line segment then the solution at the apex depends only on the value of
the solution at the single location at the intermediate time. This single-point
influence is at the heart of the propagation formula in Section 3.2.
We can obtain the one-sided propagation formula of Section 1 by adding

another small representation of zero to the “notch” in Figure 6, to obtain Figure
7, from which we can read off the formula



262 Localization of dependence

2

Figure 7: Multiple-time initial-value formula

2u(b, t2) = u(b− (t2 − t1), t1) + u(b, t1) +
∫ b
b−(t2−t1)

ut(y, t1) dy

−u(b+ (t1 − t0), t0) + u(b+ (t2 − t0), t0)

+
∫ b+(t2−t0)
b+(t1−t0)

ut(y, t0) dy

for the solution at time t2 in terms of data at times t0 and t1. This is an explicit
formula for the solution, in terms of data presented at two different times. It
shows the precise dependence of the solution of a multiple-time initial-value
problem. We invite the reader to play with this new toy to generate many
fascinating formulas!
The wave equation in higher space dimensions does not behave this nicely.

(Nor does even the one-space-dimension Klein-Gordon equation utt − uxx +
m2u = 0 with m 6= 0.)
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