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fourth-order partial differential equation ∗
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Abstract

We study the existence of solutions to the fourth order semi-linear
equation

∆2u = g(u) + h(x) .

We show that there is a positive constant C∗, such that if g(ξ)ξ ≥ 0 for
|ξ| ≥ ξ0 and lim sup|ξ|→∞ 2G(ξ)/ξ

2 < C∗, then for all h ∈ L
2(Q) with

∫
Q
hdx = 0, the above equation has a weak solution in H22π.

1 Introduction

This paper is motivated by the study of the differential equation

u′′ + g(u) = h(t) = h(t+ 2π) , (1.1)

where g and h are continuous functions. It is assumed that

∫ 2π
0

h(t) dt = 0 . (1.2)

Indeed, if ĥ = 1
2π

∫ 2π
0
h(t) dt, we may replace g(u) by g(u)− ĥ and h by h − ĥ

in (1.1). We write g ∈ Σ if there exists a constant ξ0 ≥ 0 such that

g(ξ)ξ ≥ 0 for |ξ| ≥ |ξ0 . (1.3)

Given g ∈ Σ, let G′(ξ) = g(ξ), G(0) = 0.
Recently Fernandes and Zanolin [2] proved the existence of 2π-periodic

solutions of (1.1). Their work shows that if g ∈ Σ, (1.2) holds and either
lim infξ→∞ 2G(ξ)/ξ

2 < 1/4 or lim infξ→−∞ 2G(ξ)/ξ
2 < 1/4, then there exists a

2π-periodic solution of (1.1). Earlier work of Mawhin and Ward showed that if
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326 Existence of doubly periodic solutions

either lim supξ→∞ g(ξ)/ξ < 1/4 or lim supξ→−∞ g(ξ)/ξ < 1/4, then (1.1) has a
solution.
These results led us to consider a more modest question for the partial

differential equation
∆u+ g(u) = h(x) , (1.4)

where x = (x1, x2) and h(x1 + 2π, x2) = h(x1, x2 + 2π) = h(x1, x2). Namely if
Q = [0, 2π]× [0, 2π], g ∈ Σ, h ∈ L2(Q), and∫

Q

hdx = 0 ; (1.5)

does there exist a constant C∗ such that the condition

lim sup
|ξ|→∞

2G(ξ)

ξ2
< C∗ (1.6)

implies the existence of a weak solution to (1.4) with the “boundary condition”
u(x1 + 2π, x2) = u(x1, x2 + 2π)?
Thus we define a solution to be a member of the function space H12π such

that ∫
Q

[ux1vx1 + ux2vx2 − g(u)v − h(x)v]dx = 0

for all v ∈ C∞2π , the space of C
∞ functions defined on R2 which are 2π-periodic

in each variable. The space H12π is the completion of this space with respect to
the norm

‖u‖ =
[ ∫
Q

(u2x1 + u
2
x2 + u

2)dx
]1/2
.

The difficulty with this problem is that if g is only assumed to be contin-
uous and u ∈ H12π , it is not generally true that the function g(u(x)) is locally
integrable. Also, unless g satisfies a suitable growth condition, the functional,
f : H12π → R,

f(u) =

∫
Q

|∇u|2

2
−G(u) + h(x)u dx

is not of class C1. Thus we abandon this problem and considered the analogous
fourth order semi-linear problem

∆2u = g(u) + h(x) (1.7)

with u ∈ H22π, where h is in L
2(Q) and H22π denotes the completion of C

∞
2π with

respect to the norm

{∫
Q

[ 2∑
i=1

2∑
j=1

u2xixj +

2∑
i=1

u2xi + u
2
]
dx
}1/2

.

By a weak solution of (1.7) we mean a u ∈ H22π such that
∫
Q
[∆u∆v−g(u)v−

h(x)v]dx = 0 for all v in C∞2π.



Chen Chang? 327

Since it can be shown that H22π ⊂ C2π (this is essentially the Sobolev em-
bedding theorem), u ∈ H22π implies that g(u(x)) is continuous. Moreover the
compactness of H22π in C2π ensures that the functional f : H

2
2π → R defined by

f(u) =

∫
Ω

[
(∆u)2

2
−G(u)− h(x)u

]
dx

is of class C1. We show that there exists C∗ > 0 such that if g ∈ Σ and (1.6)
holds, then for all h satisfying (1.5), h ∈ L2(Q), (1.7) has a weak solution.
We have shown that if

C∗ =
1

4π2a2∗ + 1
, where a2∗ =

1

π2

∞∑
i=1

∞∑
j=1

1

(i2 + j2)2

then this statement will be true. However, we feel that this is far from the
optimal value of C∗.
It is clear that the optimal value must be less than 1, since it can be shown

that if g(ξ) = ξ, h(x1, x2) = sinx1, then (1.7) does not have a weak solution,
because of resonance.

2 Definitions and preliminary lemmas

In this section we state some preliminary lemmas. These results follow more or
less from known results (see for example [1]). Full details will be given elsewhere.
Let Q = {(x1, x2)|0 ≤ x1 ≤ 2π, 0 ≤ x2 ≤ 2π}. Let L22π(R

2) denote the set of
real-valued measurable functions defined in R2 such that if u ∈ L22π(R

2), then
u(x1 + 2π, x2) = u(x1, x2 + 2π) = u(x1, x2) and such that u restricted to Q is
in L2(Q).
We denote C2π and C

∞
2π the real-valued functions defined on R

2 which are
2π-periodic in each variable, which are continuous and of class C∞ respectively.
We denote by H22π(R

2) the set of u ∈ L22π(R
2) such that for p = 1, 2 there

exists vp ∈ L22π(R
2) such that for all φ ∈ C∞2π ,

−

∫
Q

(Dpφ)udx =

∫
Q

vpφdx

and for 1 ≤ p, q ≤ 2 there exists vpq ∈ L22π(R
2) such that for all φ ∈ C∞2π,∫

Q

(DpDqφ)udx =

∫
Q

φvpqdx.

Here Dp = ∂/∂xp, p = 1, 2. It is clear that vp, p = 1, 2, and vpq, p, q = 1, 2,
are determined uniquely and we write vp = Dpu, p = 1, 2, and vpq = DpDqu,
p, q = 1, 2.
The space H22π(R

2) is a real Hilbert space with inner product given by

〈u, v〉 =

∫
Q

[
uv +

2∑
p=1

(Dpu)(Dpv) +

2∑
p,q=1

(DpDqu)(DpDqv)

]
dx
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In the following we denote the Hilbert space H22π by E and ‖ · ‖E will denote
the norm given by the inner product defined above.

Lemma 2.1 If u ∈ E then u is equal almost everywhere to a unique function
in C2π. If this function is again denoted by u, then there exists a constant a0
such that for all u ∈ E, ‖u‖C2π = maxx∈R2 |u(x)| ≤ a0‖u‖E. (see [1, p 167]).

We denote by Ê the set of u ∈ E such that
∫
Q
udx = 0.

The following result can be proved using multiple Fourier series.

Lemma 2.2 An inner product on Ê which is equivalent to the E-inner product
is given by

〈u, v〉
Ê
=

∫
Q

(∆u)(∆v)dx

where, as usual ∆u = D21u+D
2
2u.

Lemma 2.3 The best possible constant a∗ such that for all u ∈ Ê,

‖u‖c2π = max
x∈R2

|u(x)| ≤ a∗‖u‖Ê ,

where ‖u‖
Ê
= ‖∆u‖L2(Q), is

a∗ =
1

2π

( ∑
k∈Z2

k 6=(0,0)

1

|k|4

)1/2
(2.1)

it where Z2 = Z × Z, Z = {0,±1,±2,±3, . . .}, and if k = (k1, k2) ∈ Z2,
|k| =

√
k21 + k

2
2.

This lemma and the next are proved using multiple Fourier series.

Lemma 2.4 If u ∈ Ê, then
∫
Q
u2dx ≤

∫
Q
(∆u)2dx.

The following result is proved using the idea of the proof given in [5, p. 216]
except Fourier series are used instead of Fourier transform.

Lemma 2.5 Let 0 < α < 1. There exists M(α) such that if u ∈ E, then for
x ∈ R2 and y ∈ R2

|u(x)− u(y)| ≤M(α)‖u‖E|x− y|
α .

Here, for x = (x1, x2) and y = (y1, y2),

|x− y| =
√
(x1 − y1)2 + (x2 − y2)2 .

The final preliminary lemma follows from Lemma 2.1, Lemma 2.5 and As-
coli’s Lemma.

Lemma 2.6 The injection from E to C2π is compact, that is, if {un}∞n=1 is
a bounded sequence in E, then there exists a subsequence {uni}

∞
i=1 such that

{uni}
∞
i=1 converges uniformly on R

2.
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3 Periodic solutions of a semi-linear elliptic fourth-
order partial differential equation

In this section g will always denote a real-valued function defined and continuous
on R, and G will denote the function such that G′(ξ) = g(ξ) for ξ ∈ R with
G(0) = 0. L̂22π will denote the closed subspace of L

2
2π(R

2) such that for all
h ∈ L̂22π,

∫
Q
h(x)dx = 0 .

We consider the question of existence of weak solution of the problem

∆2u = g(u) + h(x) (3.1)

u ∈ H22π(R
2)

where h ∈ L̂22π. This is defined to be a function u ∈ H
2
2π(R

2) such that for all
v ∈ E (= H22π(R

2)), ∫
Q

[(∆u)(∆v) − g(u)v − h(x)v]dx = 0 . (3.2)

If u is a function of class C4 which is 2π-periodic in each variable, then (3.1)
holds if and only if (3.2) holds.
Let f : E→ R be the function

f(u) =

∫
Q

[
|∆u|2

2
−G(u)− h(x)u

]
dx .

Since E ⊂ C2π , standard arguments (see, for example, [4]) show that f ∈ C1.
For v ∈ E,

f ′(u)(v) =

∫
Q

[(∆u)(∆v) − g(u)v − h(x)v]dx .

Therefore, weak solutions of (3.1) coincide with critical points of f .

Let Σ denote the set of continuous g : R → R such that there exists some
ξ0, depending on g, such that

g(ξ)ξ ≥ 0 for |ξ| ≥ ξ0 . (3.3)

Theorem 3.1 Let a∗ be as in (2.1) and let

C∗ =
1

4π2a2∗ + 1
(3.4)

If g ∈ Σ and

lim sup
|ξ|→∞

2G(ξ)

ξ2
< C∗ (3.5)

then, for all h ∈ L̂22π, there exists a weak solution of (3.1).



330 Existence of doubly periodic solutions

Sketch of Proof: The proof is an application of Rabinowitz’s Saddle-Point
Theorem [4]. Assume first that g satisfies the stronger condition: There exist
δ > 0 and ξ0 ≥ 0 such that

|ξ| ≥ ξ0 implies sgn(ξ)g(ξ) ≥ δ. (3.6)

Assuming that (3.5) holds there exist constants C2 ≥ 0 and C1 with

C1 < C∗ (3.6)

such that for all ξ ∈ R,

G(ξ) ≤ C1

(
ξ2

2

)
+ C2. (3.7)

We claim that the functional f defined above satisfies the Palais-Smale condi-
tion. To see this let {un}∞n=1 be a sequence in E such that {f(un)}

∞
n=1 is a

bounded sequence in R and f ′(un)→ 0 in E∗, the topological dual space of E.
We first show that the sequence {un}∞n=1 is bounded in L

2(Q). Assuming
the contrary, we may assume, by considering a subsequence, that ‖un‖L2 6= 0
for all n and that ‖un‖L2 →∞ as n→∞.
By assumption, there exists a constant C3 such that f(un) ≤ C3 for all n ≥ 1

or ∫
Q

[
|∆un|2

2
−G(un)− h(x)un

]
dx ≤ C3

for all n. From (3.7) we have that for n ≥ 1∫
Q

|∆un|
2dx ≤ C1‖un‖

2
L2 + 8π

2C2 + 2‖h‖L2‖un‖L2 + 2C3

Setting wn = un/‖un‖L2 for n = 1, 2, .. we obtain∫
Q

(∆wn)
2dx ≤ C1 +

2‖h‖L2

‖un‖L2
+
8π2C2 + 2C3
‖un‖2L2

(3.8)

for all n ≥ 1.
If Ê is defined as in the previous section and if we identify the constant

functions with the real numbers R, then

E = Ê⊕ R (3.9)

For n ≥ 1, let
wn = zn + τn , (3.10)

where zn ∈ Ê and τn ∈ R. Since ‖∆zn‖L2 = ‖∆wn‖L2 , it follows from (3.8) and
Lemma 2.2 that the sequence {zn}∞n=1 is bounded in Ê. Therefore, since for all
n ≥ 1, 4π2τ2n ≤ ‖wn‖

2
L2 = 1, we infer the existence of a constant C4 such that

‖wn‖E < C4 for all n.
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It follows that there exists a subsequence of {wn}∞n=1 which converges weakly
to w in E. By considering a subsequence, we may assume, without loss of
generality, that the sequence {wn}∞n=1 itself converges weakly to w.
If w = z + τ where z ∈ Ê and τ ∈ R, then zn converges weakly to z and

τn converges to τ as n → ∞. From Lemma 2.6, it follows that the sequence
{wn}∞n=1 converges uniformly to w on R

2, and since limn→∞τn = τ , we see that
{zn(x)}∞n=1 converges uniformly to z(x) on R

2.
The uniform convergence implies that ‖w‖L2 = limn→∞‖wn‖L2 = 1. From

the lower semi-continuity of a norm with respect to weak convergence, it follows
from (3.8) that

‖∆z‖2L2 = ‖∆w‖
2
L2 ≤ lim infn→∞

‖∆wn‖
2
L2 ≤ C1 .

Therefore, ‖∆z‖2L2 ≤ C1‖w‖
2
L2 = C1(‖z‖

2
L2 + 4π

2τ2) and since, according to
Lemma 2.4, ‖z‖L2 ≤ ‖∆z‖L2, it follows that

‖∆z‖2L2 ≤
C14π

2τ2

1− C1
. (3.11)

(That C1 < 1 follows from (3.4) and (3.6)). Since 1 = ‖w‖2L2 = ‖z‖
2
L2 + 4π

2τ2,
we see that τ 6= 0.
According to lemma 2.3

max
x∈R2

|z(x)|2 ≤

(
a2∗C14π

2

1− C1

)
τ2,

and from (3.4) and (3.6)

a2∗C14π
2

1− C1
<
a2∗C∗4π

2

1− C∗
= 1.

Therefore,
max
x∈R2

|z(x)| < |τ |.

Since τ 6= 0 it follows that either w(x) = z(x)+ τ > 0 for all x ∈ R2 or w(x) < 0
for all x ∈ R2. Since un(x) = ‖un‖L2wn either un(x) → ∞ uniformly with
respect to x ∈ R2 or un(x) → −∞ uniformly with respect to x ∈ R2. From
(3.6) it follows that in the first case∫

Q

g(un(x))dx ≥ 4π
2δ

for n sufficiently large, and in the second case∫
Q

g(un(x))dx ≤ −4π
2δ

for n sufficiently large. But since h ∈ L̂22π, f
′(un)(1) =

∫
Q
− [g(un(x)) +

h(x)]dx = −
∫
Q
g(un(x))dx. Since f

′(un)(1) → 0 as n → ∞, therefore we have
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a contradiction. This contradiction proves the sequence {un}∞n=1 is bounded in
L2(Q).
From the condition f(un) ≤ C3 for all n and the condition (3.7), it follows

from Lemma 2.2, that {un}∞n=1 is bounded in E. Therefore, from the form of f
′

and Lemma 2.6, standard arguments (see for example [4]) shows that f ′ satisfies
the Palais-Smale condition.
The existence of a critical point of f follows from Rabinowitz’s Saddle Point

Theorem [4] corresponding to the direct sum decomposition E = Ê⊕ R. Since,
according to Lemma 2.4, for all z ∈ Ê, ‖z‖L2 ≤ ‖∆z‖L2, it follows that for all
z ∈ Ê, ∫

Q

[
(∆z)2

2
−G(z)− h(x)z

]
dx

≥

∫
Q

[
(∆z)2

2
−
C1

2
z2 − C2

]
dx − ‖h‖L2‖z‖L2

≥

(
1− C1
2

)∫
Q

(∆z)2

2
dx− C24π

2 − ‖h‖L2‖∆z‖L2 .

Since, as shown above, C1 < 1 it follows that

inf
z∈Ê
f(z) > −∞.

The condition g(ξ)sgn ξ ≥ δ for |ξ| ≥ ξ0 implies that G(ξ) → ∞ as |ξ| → ∞.
Therefore, since h ∈ L̂22π, it follows that for ξ ∈ R,

f(ξ) =

∫
Q

[−G(ξ)− ξh(x)]dx ≤ −4π2G(ξ)→ −∞

as |ξ| → ∞. Thus there exists b > 0 such that

max{f(b), f(−b)} < inf
z∈Ê
f(z).

Since f satisfies the Palais-Smale condition, it follows that if Γ denotes the set
of all continuous mappings γ : [−b, b]→ E with γ(± b) = ± b,

C0 = inf
γ∈Γ

max
ξ∈[−b,b]

f(γ(ξ)),

then there exits u0 ∈ E such that f(u0) = C0 and f ′(u0) = 0. This u0 is a
solution of problem (3.1).
To prove that (3.1) has a solution when it is only assumed that g(ξ) sgn ξ ≥ 0

for |ξ| ≥ ξ0. We can use a perturbation argument. We define

r(ξ) =



−1 if ξ ≤ −ξ0 ,

−1 + 2(ξ+ξ0)2ξ0
if |ξ| ≤ ξ0 ,

1 if ξ ≥ ξ0 ,
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For m = 1, 2, 3, . . ., set gm(ξ) = g(ξ) +
r(ξ)
m . Then gm(ξ)ξ ≥

1
m for |ξ| ≥ ξ0 and

we still have

lim sup
|ξ|→∞

2Gm(ξ)

ξ2
< C∗.

By what has been shown, (3.1) has a solution when g = gm. The conditions
of the theorem imply that there is a priori bound on this solution (the one
characterized by the Saddle Point Theorem) in E, which is independent of m.
Using a compactness argument this implies the existence of a solution of (3.1).
The computational details of this proof will be published somewhere else.
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