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Contributions of Alan C. Lazer to

mathematical population dynamics ∗

Chris Cosner

Abstract

This paper is a survey of the contributions that Professor Alan C. Lazer
has made to the mathematical theory of population dynamics. Specific ar-
eas where Professor Lazer has made important contributions include time
periodic population models with diffusion and nonautonomous models for
many competing species.

1 Introduction

This article will describe some of the contributions that Alan Lazer has made
to mathematical population dynamics. Those contributions include:

• General and abstract results on competitive systems and on periodic-
parabolic problems

• Results and methods for nonautonomous systems of ordinary differential
equations, specifically in the context of competition models

• Various specific results on stability, the existence of traveling wavefronts,
and other problems in the theory of reaction-diffusion models. Professor
Lazer’s papers contributing to the development of population dynamics
include [3-10,14,15,20,23-26].

In addition to his direct mathematical contributions, Professor Lazer has person-
ally influenced, inspired, and/or collaborated with many other mathematicians
working in the area. Those include, among others, S. Ahmad, C. Alvarez, R.S.
Cantrell, A. Castro, E.N. Dancer, P. Hess, A. Leung, P.J. McKenna, F. Montes
de Oca, D. Murio, D. Sanchez, and the author of this survey. The remainder
of the survey is divided into three sections: a section covering the period from
the early 1980’s to the early 1990’s, with a focus on models for two competing
species with diffusion and/or periodic time dependence; a section covering the
period from the early 1990’s to the present, with a focus on models for many
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336 Contributions of A. C. Lazer to mathematical population dynamics

competitors with arbitrary time dependence; and a brief concluding section.
Some references are made to papers that use or build upon Professor Lazer’s
ideas, but those are simply examples; there has been no attempt to make a
comprehensive listing of such work.

2 Eigenvalues, Periodicity, and Pairs of Com-

peting Species

One of the most basic models in population dynamics is the logistic equation

du

dt
= (a− bu)u (2.1)

where u represents a population density (so that only solutions with u ≥ 0 are
physically meaningful), a represents the population growth rate at low densities,
and b > 0 represents the self-regulatory effects of crowding on the population.
The logistic equation always has the nonnegative equilibrium u = 0, and if a > 0
it also has the positive-equilibrium a/b. If a > 0 and u(0) > 0 then u→ a/b as
t → ∞. If a ≤ 0 and u(0) ≥ 0 then u → 0 as t → ∞. Linearizing (2.1) around
u = 0 gives dy/dt = ay, so u = 0 is locally stable if a ≤ 0, asymptotically in the
case a < 0, and unstable if a > 0; similarly linearizing around a/b when a > 0
yields dz/dt = −az, so in that case u = a/b is locally stable. It is clear from
the above discussion that the sign of a is crucial in determining the behavior of
(2.1). The general ideas of stability, instability, and bifurcation apply to models
much more general than (2.1) but in cases with time dependent coefficients,
or diffusion, or both, we need a criterion that can replace checking the sign of
a. The extension of the logistic equation (2.1) and other models to cases with
periodicity and diffusion is important from the applied viewpoint because many
ecological systems are affected by seasonal changes and most populations are
dispersed in space.

Periodic Systems of Ordinary Differential Equations: Flo-
quet Theory

If A(t) is an n×n matrix with continuous T -periodic coefficients, it follows from
the results of Floquet theory that the system

d~y

dt
= A(t)~y (2.2)

has a fundamental matrix Φ(t) of the form Φ(t) = P (t) exp(tR) where P (t) is
T -periodic. (If A is a constant then we may take P = I and R = A.) The
characteristic exponents of the system are the eigenvalues {ρi} of R. (The

Floquet multipliers are {eTρi}.) If Re ρi < 0 for i = 1, . . . , n then the solution
~y(t) ≡ 0 is stable, so the characteristic exponent with the largest real part plays
a role analogous to a in (2.1).
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Elliptic Eigenvalues and Diffusion

The parabolic equation

ut = d∆u + ru in Ω

α
∂u

∂~n
+ βu = 0 on ∂Ω ,

(2.3)

where Ω ⊆ R is a bounded domain and where α, β ≥ 0, α+β > 0, can be solved

via separation of variables to obtain u =

∞∑
n=1

cne
ρntφn(x) where ρn and φn(x)

are the nth eigenvalue and eigenfunction respectively for the problem

d∆φ + rφ = ρφ in Ω

α
∂φ

∂~n
+ βφ = 0 on ∂Ω .

(2.4)

The classical variational theory of (2.4) implies that the eigenvalues {ρi} are
real, with ρ1 > ρ2 ≥ ρ3 . . .. If ρ1 < 0 then all solutions to (2.3) will approach
zero as t→∞; if ρ1 > 0 at least some will grow. Furthermore, the eigenfunction
φ1(x) corresponding to ρ1 is positive in Ω and ρ1 is a simple eigenvalue. For
these reasons ρ1 is called the principal eigenvalue for (2.4). More general elliptic
operators may fail to be self-adjoint and thus may admit complex eigenvalues.
However, since second order elliptic operators satisfy the maximum principle,
and typically have compact resolvents on appropriate function spaces, the Krein-
Rutman theorem may be used to show that the eigenvalue problem

m∑
i,j=1

aij(x)φxixj +

n∑
i=1

bi(x)φxi + c(x)φ = ρφ in Ω

α(x)
∂φ

∂~n
+ β(x)φ = 0 on ∂Ω

(2.5)

has a principal eigenvalue ρ1 with positive eigenfunction φ1. (This assumes the
coefficients of (2.5) and the boundary of Ω are reasonably smooth.) It turns out
that ρ1 > Re ρn for n > 1, but that requires additional arguments beyond the
Krein-Rutman theorem. See [11,32] for details.

Principal Eigenvalues of Periodic-Parabolic Operators

We now can describe one of Alan Lazer’s contributions to population dynamics.
Suppose that Ω ⊆ Rn is bounded with smooth boundary. Let

Lu = ut −
n∑

i,j=1

aij(x, t)uxixj −
n∑
i=1

bi(x, t)uxi − c(x, t)u, (2.6)

and assume that the coefficients are Hölder continuous and T -periodic, and that
((aij)) is symmetric and uniformly positive definite. Suppose that α(x) and β(x)
are nonnegative Hölder continuous functions on ∂Ω with α+ β > 0.
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Theorem 2.1 (Lazer, Castro and Lazer [14,23]) There exist a real num-
ber σ1 and a T -periodic function φ1(x, t) ∈ C2+α,1+α/2(Ω×R) which is positive
on Ω× R such that

Lφ = σ1φ in Ω× R

α(x)
∂φ

∂~n
+ β(x)φ = 0 on ∂Ω .

(2.7)

Remarks: Note that if L and φ1 were independent of t then we would have
σ1 = −ρ1 where ρ1 is the principal eigenvalue in (2.5). The proof of this theorem
is based on the Krein-Rutman Theorem, as in the nonselfadjoint elliptic case. A
key step involves showing that (L+K)−1 exists if K is a large positive constant;
this is accomplished via a result of Kolesov on the existence of periodic solutions
between sub- and super-solutions [22].
Once σ1 is available it is possible to use φ1 to construct sub- and/or super-

solutions to nonlinear problems, apply bifurcation theory, degree theory, etc.,
and generally extend much of the theory of nonlinear elliptic eigenvalue prob-
lems. Periodic-parabolic logistic equations and Lokta-Volterra models are dis-
cussed in detail by Hess in [19]. A typical result is:

Theorem 2.2 ([19]) The T -periodic parabolic logistic equation

ut −
n∑
i,j=1

aij(x, t)uxi,xj −
n∑
i=1

bi(x, t)uxi = (c(x, t)−m(x, t)u)u in Ω× (0,∞)

α(x)
∂u

∂~n
+ β(x)u = 0 on ∂Ω× (0,∞)

(2.8)
has a unique postive T -periodic solution u∗(x, t) if and only if σ1 < 0 in (2.7),
where L is the operator in (2.6). (The coefficients in (2.8) are the same as
in (2.6).) If σ1 < 0 then u

∗ is globally attracting among positive solutions. If
σ1 ≥ 0 then all nonnegative solutions of (2.8) approach zero as t→∞.

Remarks: It is clear from Theorem 2.2 that −σ1 plays the same role in (2.8)
that a plays in (2.1). By combining the use of the principal eigenvalue of (2.7)
with other ideas introduced by Professor Lazer it is possible to give a compre-
hensive treatment of Lotka-Volterra models with diffusion and time periodicity;
see for example [19]. We now turn to some of those other ideas.

Periodic and Diffusive Lotka-Volterra Models

Just as the logistic equation is the simplest model for a single population which
accounts for the effects of crowding, Lotka-Volterra models are the simplest
models of density-dependent interactions between species. If ui denotes the pop-
ulation density of the ith species, the basic Lotka-Volterra competition model
is

dui

dt
= (ai − biiui − bijuj)ui, i = 1, 2, j 6= i. (2.9)
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It is easy to see via phase plane analysis that if

ai > ajbij/bjj for i = 1, 2, j 6= i, (2.10)

then there is a unique equilibrium (u∗1, u
∗
2) with both components positive which

is globally attracting among solutions that have both components positive ini-
tially. If (2.10) fails then generally the model either predicts that one of the
competitors always becomes extinct while the other persists, or that the out-
come of the competition depends on the initial data. Another feature of the
system (2.9) is that if (u1, u2) is a solution which is nonnegative in both com-
ponents then the change of variables (v1, v2) = (u1,−u2) converts (2.9) to a
cooperative system. Cooperative systems are well known to be order preserving
so if (u1, u2) and (ũ1, ũ2) are nonnegative solutions to (2.9) with u1(0) ≥ ũ1(0)
and u2(0) ≤ ũ2(0) then u1(t) ≥ ũ1(t) and u2(t) ≤ ũ2(t) for all t > 0. (See for
example [15,19,27,37] for more details.) This order preserving property extends
via the maximum principle to the Lotka-Volterra model with diffusion

uit = di∆ui + [ai − biiui − bijuj ]ui in Ω× (0,∞),

αi
∂ui

∂~n
+ βiui = 0 on ∂Ω, for i = 1, 2, j 6= i .

(2.11)

In the case of Neumann conditions in (2.11), solutions to (2.9) will also be
solutions to (2.12). If (2.10) holds, then positive solutions to (2.9) approach
(u∗1, u

∗
2) as t → ∞. If (u1(x, t), u2(x, t)) is a positive solution of (2.11) under

Neumann boundary conditions, then by choosing solutions (u1(t), u2(t)) and
(u1(t), u2(t)) of (2.9) such that ui(0) ≤ ui(x, 0) ≤ ui(0) for i = 1, 2 we can see
that (u1, u2)→ (u∗1, u

∗
2) as t→∞ since ui(t) ≥ ui(x, t) ≥ ui(t) and ui, ui → u∗i

as t → ∞. This is essentially the method of contracting rectangles (see [37].)
However, in cases where (2.11) has boundary conditions other than Neumann, or
where the coefficients of (2.9) or (2.11) are allowed to depend on t, this approach
fails. By using methods based on sub- and super-solutions, Leung [28,29] and
Pao [31] showed that the model (2.11) with Dirichlet boundary conditions the
system (2.11) has a positive equilibrium if

ai > diλ1 + ajbij/bjj, i = 1, 2, j 6= i. (2.12)

At around the same time, Gopalsamy [17,18] showed that the system (2.9) with
ai = ai(t) T -periodic has a positive stable T -periodic steady-state provided

min(ai) > bij max(aj)/bjj , i = 1, 2, j 6= i . (2.13)

In [14], Professor Lazer and I obtained some stability criteria for equilibria of
(2.11) and showed that if a1 = a2 = a in (2.11) then the condition (2.12) can be
replaced by the conditions a > diλ1, i = 1, 2, and bjj > bij , i = 1, 2, j 6= i. The
most important idea in that paper, however, was an extension of Gopalsamy’s
result to the case of (2.11) with Neumann boundary conditions. Specifically,
we showed that for (2.11) with Neumann boundary conditions and ai = ai(t)
periodic in time that under condition (2.13) the solution to (2.9) obtained by
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Gopalsamy is also stable for (2.11). A key observation was that although the pe-
riodicity of the system made a simple argument based on contracting rectangles
impossible, it was still possible to construct solutions (u1, u2), (u1, u2) depend-
ing only on t and having the property ui(t+T ) ≤ ui(t), ui(t+T ) ≥ ui(t), even
though ui(t), ui(t) were not in general monotone in t. Another way to express
the idea would be that although the original system does not admit contracting
rectangles, the period map (i.e. Poincaré map) of the system does. I thought
that we had just found an interesting variant on results that were already known
in the autonomous case, but Professor Lazer had the deeper insight that the
methods used in [15] were a special case of something much more general and
abstract.
In the work with C. Alvarez [10], Professor Lazer showed that in the case

of (2.9) where all of the coefficients are T -periodic, the system has an attract-
ing periodic steady state which is globally attracting among positive solutions
provided

min(ai) > max(aj)max(bij)/min(bii) i = 1, 2, j 6= i . (2.14)

Again, the key idea was to look at the Poincaré map. In this context Alvarez and
Lazer used Floquet theory (and various estimates) to show that any periodic
solution is locally stable. That observation made it possible to compute the
topological degree at any fixed point of the period map, so that existence and
uniqueness results could be obtained via degree theory.

Continuing the development

Continuing to develop the ideas introduced in [10,15], Professor Lazer and S.
Ahmad showed in [3] that for the diffusive system (2.11) with Neumann bound-
ary conditions and with ai, bij , and bjj periodic in time (and possibly varying
in space) the condition (2.14) implies the existence of a coexistence state, while
if (2.14) holds for (say) i = 1 and is reversed for i = 2 then u2 → 0 as t → ∞.
Again, the key idea was to use something analogous to contracting rectangles,
but for the Poincaré map.

Abstract Competition Systems and their Implications

A key idea in the papers [10,14,23] was to look at a periodic system from the
viewpoint of the Poincaré map. Using the order preserving properties of mod-
els for two competing species then permits the construction, in some cases, of
something analogous to contracting rectangles for the Poincaré map. In [20],
Professor Lazer and Peter Hess gave an abstract formulation of this idea in the
context of a discrete dynamical system acting on an ordered Banach space with
an ordering of the sort which is typically preserved by models for two competi-
tors. (An ordered Banach space is simply a Banach space E with an ordering
defined by a positive cone P , which is just a subset of E with the properties
that if x, y ∈ P and c ∈ R, c > 0 then x+ y ∈ P and cx ∈ P . In that setting we
write x ≥ y if x− y ∈ P . For a detailed discussion see [11].)
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We shall first describe the set-up of [20], make a few key definitions, and then
state the main result of [20] and describe its implications. Let E1 and E2 be
ordered Banach spaces whose orderings are defined by the positive cones P1 and
P2 respectively. Assume that the interiors of P1 and P2 are nonempty. Define
an ordering on E1 × E2 by (x1, x2) ≤ (y1, y2) ⇔ x1 ≤ y1, x2 ≥ y2. (This is
the type of ordering which is typically preserved by models of two competitors.)
Suppose that F : E1×E2 → E1×E2 is smooth and order preserving. Iterating
F then leads to a semidynamical system which is a suitable abstraction of the
Poincaré map. Recall that if E is an ordered Banach space and a, b ∈ E with
a ≤ b then the order interval [a, b] is the set {x ∈ E : a ≤ x ≤ b}. Also, recall
that x > y means x ≥ y, x 6= y and that x >> y means x− y is in the interior
of the positive cone. Suppose that F (x1, x2) = (f1(x1, x2), f2(x1, x2)). Assume
that F satisfies the following hypotheses:

(A1) F maps bounded positive order intervals into compact sets, i.e. F is order
compact.

(A2) f1(0, x2) = 0 and f2(x1, 0) = 0 for all x1 ∈ E1, x2 ∈ E2

(A3) 0 << f1(x1, x2) << f1(x
′
1, x

′
2), 0 << f2(x

′
1, x

′
2) << f2(x1, x2) if

0 < x1 ≤ x′1, 0 < x′2 ≤ x2, (x1, x2) 6= (x
′
1, x

′
2).

(A4) there exist unique fixed points x̂1 = f1(x̂1, 0), x̂2 = f2(0, x̂2), such that
τx̂1 << f1(τx̂1, 0) << x̂1 for 0 < τ < 1, x̂1 << f1(τx̂1, 0) << τx̂1 for
τ > 1, and similarly for x̂2, f2

(A5) the derivatives D1f1 and D2f2 satisfy

D1f1(0, x̂2) : P1 − {0} → Int P1

D2f2(x̂1, 0) : P2 − {0} → Int P2

Remarks: Hypotheses (A1) and (A5) are needed for various technical reasons;
hypotheses (A2)-(A4) capture essential features of competition models. If x1, x2
are viewed as population densities, (A2) says that if one of the populations is
initially zero it will remain zero; (A3) says that increasing the density of either
population reduces the growth rate of both, and (A4) says that each species has
a stable positive equilibrium density when the other is absent.
Assumptions (A1) and (A5) together with the Krein-Rutman theorem imply

that the maps D1f1(0, x̂2) and D2f2(x̂1, 0) have positive principal eigenvalues
λ1 and λ2.

Definition: (Lazer and Hess [20]). The mapping F is compressive if it has
an order interval in IntP1 × IntP2 which is globally attracting in (P1 − {0})×
(P2 − {0}).

Remarks: If F has a globally attracting fixed point which is positive in both
components then F is compressive. More generally, if F is compressive then
eventually the densities of both competitors will be bounded away from zero
so the competitors will coexist. A related notion is permanence or uniform
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persistence, but that notion does not involve any order preserving properties.
For a discussion of these and other notions of persistence see [16].
We can now state the main abstract result of [20].

Theorem 2.3 (Lazer and Hess [20]) The mapping F is compressive if the
principal eigenvalues λ1 and λ2 of

D1f1(0, x̂2)v1 = λ1v1

D2f2(x̂1, 0)v2 = λ2v2
(2.15)

are both larger than 1, i.e. λ1, λ2 > 1.

Discussion: The mapping F could be taken to be the Poincaré map of a
periodic competition model with diffusion. The order preserving properties
would then follow from those for parabolic competition systems, whose order
preserving properties follow from arguments based on the maximum principle.
Parabolic regularity results imply the compactness of F on various function
spaces. In the context where F is the Poincaré map for periodic-parabolic
competition system, the linearized operators D1f1(0, x̂2) and D2f2(x̂1, 0) will
be the Poincaré maps for two single linear periodic-parabolic operators. If L is a
periodic-parabolic operator of the form (2.6) and σ1 is the principal eigenvalue
in (2.7) then the Poincaré map defined by Mu(x) = v(x, T ) where v satisfies
Lv = 0 in Ω× (0, T ), α∂v/∂~n+ βv = 0 on ∂Ω× (0, T ), v(x, 0) = u(x) has the
principal eigenvalue λ = e−σ1T . Thus, λ is in a sense analogous to a Floquet
multiplier while −σ1 is analogous to a characteristic exponent.
The key hypothesis of Theorem 2.3 is that the principal eigenvalues λ1, λ2

of (2.15) are both larger than 1. The eigenvalue problem D1f1(0, x̂2)v1 = λ1v1
corresponds to the linearization of f1 around the equilibrium (0, x̂2). The con-
dition λ1 > 1 implies that a population satisfying x1(t + 1) = Df1(0, x̂2)x1(t)
would grow exponentially. The condition λ2 > 1 has an analogous interpre-
tation. Together, they essentially mean that the density of either species will
increase if that species is introduced at a low density when the other species is
already established. Thus, Theorem 2.3 is a rigorous version of the notion that
mutual invasibility implies coexistence.
As a concrete application of Theorem 2.3, consider the system

Liui = [ai(x, t)− bij(x, t)ui − bij(x, t)uj ]ui in Ω× (0,∞)

αi(x)
∂ui

∂~n
+ βi(x)ui = 0 on ∂Ω× (0,∞), i = 1, 2, j 6= i .

(2.16)

where Li is as in (2.6) and the coefficients ai, bii, bij are Hölder continuous in
both variables and T -periodic in t. Suppose that the principal eigenvalues of
the problems

(Li − ai)ψ = σψ in Ω× (0,∞),

αi
∂ψ

∂~n
+ βiψ = 0 on ∂Ω× (0,∞),

ψ T − periodic
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for i = 1, 2 are both negative so that the logistic equations obtained by setting
uj = 0 in (2.16) both have single species steady-state solutions by Theorem
2.2. Denote those solutions by u∗i , i = 1, 2; then (u

∗
1, 0) and (0, u

∗
2) are steady-

state solutions for (2.16). To apply Theorem 2.3 we would use, for example,
x̂1 = (u

∗
1(x, 0), 0), x̂2 = (0, û

∗
2(x, 0)) and take F to be the Poincaré map for

(2.16). It is reasonably straightforward to verify that Theorem 2.3 applies in
this situation; see the discussion in [19] or [20]. By theorem 2.3, the system
(2.16) is compressive if the principal eigenvalues of

(Li − ai + biju∗j )ψ = σψ in Ω× (0,∞)

αi
∂ψ

∂~n
+ βiψ = 0 on ∂Ω× (0,∞)

ψ T − periodic

(2.17)

are both negative for i = 1, 2, j 6= i. (This result can be set in [C2+α(Ω)]2

or [W 2,p(Ω)]2, among other possible function spaces.) The condition that the
principal eigenvalues be negative in (2.17) for i = 1, 2 generalizes most of the
previous conditions for the existence of a steady-state of (2.16) which is positive
in both components. For example, systems with constant coefficients are peri-
odic with every period T , and for such systems the condition (2.12) implies the
negativity of the eigenvalues in (2.17) via simple estimates of the eigenvalues.
However, condition (2.12) is less sharp than the requirement of negativity of the
eigenvalues in (2.17). Various other previous results, including those of [3], can
be recovered, improved, or unified by applications of Theorem 2.3; see [19,20]
for detailed discussions.

Related Ideas and Applications of Periodic-Parabolic Eigen-
values

Theorem 2.3 gives a good criterion for coexistence in competition models, but
there are other problems in population dynamics and other analytic approaches
where the existence of principal eigenvalues for periodic-parabolic operators
plays a crucial role. Many techniques of nonlinear analysis, such as degree
theory and bifurcation theory, depend on a knowledge of the eigenvalues of
linearized operators. Constructions of sub- and supersolutions often involve
eigenfunctions. Some of these ideas are discussed in [13,19]. For systems such
as predator-prey models which do not have simple order-preserving properties,
the notion of compressivity must often be replaced with that of permanence, i.e.
uniform persistence plus dissipativity. A semidynamical system on an ordered
Banach space is permanent if there is a bounded subset of the interior of the
positive cone which is also uniformly bounded away from the boundary of the
positive cone and which is globally attracting positive trajectories of the system.
(See [21] for a discussion.) A key point in establishing permanence is to show
that steady-states with one or more species absent are unstable in the sense that
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if they are perturbed by adding one of the missing species at low densities then
the population of density of that introduced species will increase. To apply the
idea of permanence to a periodic-parabolic model, the first step is to convert
the time-dependent problem into a semidynamical system by writing it as a
skew-product flow (see [35]) and establish that it is dissipative; the second step
is to analyze the stability of steady-states; and the final step is to apply an
appropriate abstract result to conclude that the system is indeed permanent.
Eigenvalues and eigenfunctions are used in the stability analysis; see for example
[12]. (A comparison of the ideas of compressivity, permanence, and practical
persistence is given in [16].)

3 Systems with Many Competitors

Persistence and Convergence in Nonautonomous Systems:
Uniform Conditions

If the competition model (2.9) is extended to include N competing species, the
resulting system is

dui

dt
=
[
ai(t)−

N∑
j=1

bij(t)uj

]
ui, i = 1, . . . , N. (3.1)

(The coefficients are always assumed to be bounded, continous, and nonnega-
tive.) If the coefficients ai and bii are bounded below by positive constants then
the natural extension of condition (2.14) to the N -species case is

inf ai >

N∑
j=1

j 6=i

(sup bij)(sup aj)/ inf(bjj), i = 1 . . .N. (3.2)

A somewhat weaker condition is

inf ai ≥
N∑
j=1

j 6=i

(sup bij) sup(aj/bjj), i = 1, . . .N. (3.3)

In [5], Professor Lazer and S. Ahmad proved

Theorem 3.1 If the coefficients ai, bii are bounded below by positive constants
and (3.3) holds, then (3.1) has a unique solution ~u∗(t) such that

0 < inf
t∈R

u∗i(t) ≤ sup
t∈R

u∗i(t) <∞, (3.4)

and if ~u is any solution to (3.1) with ui(t0) > 0, i = 1, . . . , N , for some t0, then

|~u∗(t)− ~u(t)| → 0 as t→∞. (3.5)
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Remarks: The corresponding result for the periodic case under condition (3.2)
was treated by Alvarez and Tineo [38]; the almost-periodic case with N = 2 by
Ahmad [1]. This line of research was initiated by Gopalsamy [17,18], but his
results required additional conditions. Theorem 3.1 is significant in part because
it allows general time dependence. Many abstract results on persistence are set
in the context of autonomous systems whose forward orbits are precompact; (see
[21]). Even if a time dependent system is rewritten as an autonomous system
by casting it as a skew product flow (see [35]), the forward orbits will not be
precompact unless the time dependence is almost periodic. Thus Theorem 3.1
applies to systems where the abstract results discussed in [21] fail.
Condition (3.2) is an inequality between uniform bounds on coefficients of

(3.1). Condition (3.3) is weaker than (3.2) because in (3.3) the quotient of uni-
form bounds, sup aj/ inf bjj , is replaced by the uniform bound on the quotient
sup(aj/bjj). It is natural to ask whether the condition can be weakened further,
perhaps to a condition imposing only a single uniform bound on some combi-
nation of coefficients of (3.1), or perhaps to some type of pointwise or average
condition. It turns out that some such extensions are possible, but the issue is
quite delicate. Suppose that in (3.1) we have ai, bii > 0 and sup

R

(ai/bii) < ∞

for i = 1, . . . , N but do not assume that inf ai > 0 or that inf bii > 0. Suppose
further that

inf
R

(ai −∑Nj=1
j 6=i

bij sup(aj/bjj)

bii

)
> 0 (3.6)

and ∫ ∞
0

bii(t)dt =∞ (3.7)

for i = 1, . . . , N .

Theorem 3.2 (Lazer and Ahmad [5]) If (3.6) and (3.7) hold then any so-
lution ~u(t) with ui(t0) > 0 for i = 1, . . . , N satisfies

0 < inf
t>t0

ui(t) < sup
t>t0

ui(t) <∞. (3.8)

Furthermore, (3.1) has a solution ~u∗(t) satisfying (3.4).

Remarks: The solution ~u∗(t) may not be unique and thus the convergence
property (3.5) may fail. A counterexample for the case N = 6 has been given
by Redheffer [33,34]. Whether (3.6) and (3.7) imply uniqueness of ~u∗(t) and the
convergence in (3.5) for N ≤ 5 appears to be an open question. Other results
related to those of [5] are also discussed in [33,34].
If solutions to (3.1) need not converge to a unique steady state ~u∗(t), what

can be said about their asymptotic behavior? In general, competition systems
can have arbitrarily complicated dynamics; see [36]. The conclusion (3.8) implies
a version of strong persistence, so that species which are present initially will
not become extinct, but that does not imply convergence. The answer is given
in the following result:
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Theorem 3.3 (Lazer and Ahmad [8]) Suppose that ai, bii > 0 and
sup(ai/bii) < ∞ for i = 1, . . . , N , and that (3.6) and (3.7) are satisfied. For
A ⊆ ([0,∞))N ⊆ RN define U(t, t0, A) = {~u(t) : ~u(t0) ∈ A, ~u satisfies (3.1)}.
If A ⊆ ((0,∞))N is a bounded measurable set then µ(U(t, t0, A))→ 0 as t→∞,
where µ denotes N -dimensional Lebesgue measure.

Remarks: Theorem 3.3 implies that although conditions (3.6) and (3.7) do not
necessarily imply that solutions to (3.1) converge to a unique globally bounded
solution, trajectories must converge in some generalized sense, because the sys-
tem (3.1) takes sets of arbitrarily large finite measure and “squeezes” the mea-
sure toward zero as t→∞.

Persistence and Extinction in Nonautonomous Systems: Av-
erage Conditions

The conditions (3.6) and (3.7) are weaker than (3.2), essentially because they do
not require uniform lower bounds on the coefficients ai and bii in (3.1). However,
(3.6) imposes a uniform lower bound on a combination of coefficients of (3.1).
A different sort of generalization would replace uniform conditions with some
type of average conditions. Suppose that g(t) is a bounded continuous function
on R. The average of g(t) on the interval t1, t2 is

A[g, t1, t2] =
1

t2 − t1

∫ t2
t1

g(s)ds.

The upper and lower averages of g on R are defined (respectively) as

M [g] = lim sup
s→∞

{A[g, t1, t2] : t2 − t1 > s}

and
m[g] = lim inf

s→∞
{A[g, t1, t2] : t2 − t1 > s}. (3.10)

(If g(t) is periodic or even almost periodic then m[g] = M [g] and g has an
average on R.) Suppose that the coefficients ai and bii in (3.1) are uniformly
bounded below by positive constants. The condition analogous to (3.2) is then

m[ai] ≥
N∑
j=1

j 6=i

(
sup
R

bij

)
M [aj]/

(
inf
R

bjj

)
, i = 1, . . . , N. (3.11)

Theorem 3.4: (Lazer and Ahmad [9]): If (3.11) holds then for any solution
of (3.1) with ui(t0) > 0 for i = 1, . . . , N , (3.8) holds. If ~u and ~v are two
componentwise positive solutions of (3.1), lim

t→∞
|~u(t)− ~v(t)| = 0.

Remarks: Recall that (3.8) is a version of strong persistence. In this case the
convergence result is stronger than in Theorem 3.3. The upper and lower aver-
ages satisfy inf

R

(g) ≤ m[g] ≤ M [g] ≤ sup
R

(g), so (3.2) implies (3.11). Theorem
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3.4 is important because it gives a criterion for persistence even if populations
experience occasional significant declines in their growth rates. Many popula-
tions are subject to serious but temporary declines in population growth rates
because of sporadic events such as epidemics, periods of unfavorable weather,
etc., so persistence results which can accomodate such phenomena are highly
desirable for the study of natural systems.
It is of interest to know when populations can be expected to persist, but it

is also important to be able to decide when a species faces extinction. In the
case of two competitors and constant coefficients in (3.1), the second competitor
will be forced to extinction by the first competitor (i.e. competitive exclusion
will occur) if a1 > b12a2/b22 and a2 < b21a1/b11. This result was extended to
the nonautonomous case under the condition inf a1 > (sup b12)(sup a2)/ inf(b22),
supa2 < (inf b21)(inf a1)/ sup(b11) by S. Ahmad [2]. In collaboration with Ah-
mad, Professor Lazer extended these results to criteria for the extinction of the
Nth species (and the persistence of all other species) in models for N species.
They treated the autonomous case in [6] and the specific nonautonomous case
where the growth rates ai depend on t but the other coefficients of (3.1) do
not in [7]. Since the results of [7] imply those of [6],only they will be presented
here. The first condition which is required is that the upper and lower averages
(as defined in (3.9) and (3.10)) are equal for each of the coefficients ai, so that
each coefficient ai has an average which is equal to M [ai]. The second condi-
tion is that the first N − 1 inequalities in (3.2) are satisfied, i.e. (3.2) holds for
i = 1, . . . , N − 1. That condition implies the system of N − 1 linear equations

M [ai] =

N−1∑
j=1

bijxj , i = 1, . . . , N − 1 (3.12)

has a unique componentwise positive solution xi = ξi, i = 1 . . .N −1. (See [7].)

Theorem 3.4 (Lazer and Ahmad [7]) Suppose that the coefficients ai all
have averages M [ai] and that the first N − 1 inequalities of (3.2) are satisfied.
Let (ξ1, . . . , ξN−1) be the unique componentwise positive solution to (3.12).

i) If

M [aN ] <

N−1∑
j=1

bNjξj (3.13)

then for any solution of (3.1) with componentwise positive initial data,
uN (t)→ 0 as t→∞.

ii) If

M [aN ] >

N−1∑
j=1

bNjξj (3.14)

and ~u is a solution to (3.1) which is componentwise positive at t = t0,
then inf

t>t0
ui(t) > 0 for i = 1, . . . , N .
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iii) If

M [aN ] =

N−1∑
j=1

bNjξj

then for any componentwise positive solution to (3.1), lim inf
t→∞

uN(t) = 0.

Remarks: Theorem 3.5 implies that if the first N − 1 inequalities of (3.2) hold
then (3.15) is necessary and sufficient for the conclusion that for solutions that
are componentwise positive at t = t0, inf

t>t0
ui(t) > 0 for i = 1, . . . , N . It is

also shown in [7] that if the only coefficients of (3.1) which vary in time are
ai, i = 1, . . . , N , and the first N −1 inequalities in (3.2) are satisfied, and (3.13)
holds, the (3.1) has a unique solution ~u∗(t) = (u1∗(t), . . . , uN−1∗(t), 0) satisfying
0 < inf

R

ui∗(t) ≤ sup
R

ui∗(t) < ∞, and ~u∗(t) is globally asymptotically stable in

the sense that lim
t→∞
|~u∗(t) − ~u(t)| = 0 for any componentwise positive solution

~u(t). Some related results on extinction have been obtained by Montes de Oca
and Zeeman [30], and conclusions about extinction in diffusive Lotka-Volterra
models can be obtained via the methods of [13]. However, there has been much
less research on conditions for extinction than on conditions for persistence, so
the work contained in and inspired by [6,7] constitutes one important contribu-
tion to the literature.

Traveling Wavefronts in Diffusion Models

One of the more interesting and important properties of reaction-diffusion equa-
tions and systems is that they may support traveling wave solutions; see for
example [37]. A traveling wave solution is simply a solution ~u(x, t) = ~u(x+ ct)
which propagates a fixed profile at a fixed speed. To find traveling wave solu-
tions one typically substitues ~u = ~θ(x + ct) into the reaction-difussion system

and obtains a system of ordinary differential equations for ~θ with c appearing
as a parameter. If that system of ordinary differential equations has the right
sort of solutions, those solutions yield traveling waves when x + ct is used as
the independent variable. For a single reaction-diffusion equation, the system
of ordinary differential equations which determined the traveling waves consists
of only two equations, so solutions leading to traveling waves can often be con-
structed by keeping track of how the phase plane for the system changes as the
wavespeed parameter c is varied. For reaction-diffusion systems with two or
more equations matters typically become much more delicate. Construction of
traveling waves for systems may require a careful analysis of a higher dimen-
sional phase space or may require the use of sophisticated methods such as the
Conley index. It is remarkable that Professor Lazer and S. Ahmad [4] were
able to give an elementary construction for travelling wavefronts in a class of
systems which include some diffusive Lotka-Volterra models with many com-
petitors. The specific systems that were treated in [4] are of the form

∂ui

∂t
= di

∂2ui

∂x2
+ uifi(~u), i = 1, . . . , N. (3.15)
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Theorem 3.6 (Lazer and Ahmad [4]) Suppose that the functions fi in (3.15)
are locally Lipschitz. Suppose that the system (3.15) admits a spatially constant
equilibrium ~a = (a1, . . . , aN ) (so that fi(~a) = 0, i = 1 . . .N) such that

fi(~0) ≥ fi(~u) > 0 if 0 ≤ ui ≤ ai for i = 1 . . .N, ~u 6≡ ~a. (3.16)

Let ri = fi(0). If
c2 > 4ridi (3.17)

then (3.15) has a wavefront solution ~u = ~θ(x + ct) of speed c with ~θ(s) → ~0 as

s→∞, ~θ(s)→ ~a as s→ −∞.
Sketch of Proof: A traveling wave solution satisfies the system

diθ
′′
i = −cθ

′
i − θifi(~θ), i = 1 . . .N. (3.18)

The hypothesis (3.17) implies that there exist numbers µi so that µ
2
i−(c/di)µi+

(ri/di) < 0. The proof proceeds as follows:

1) Show that the set 0 < θi < ai, −µiθi < θ′i < 0 is positively invariant in the
phase space of (3.18) via differential inequalities.

2) Show that the bounds in 1) imply that θi(s), θ
′
i(s)→ 0 as s→∞ (multiply

(3.18) by θ′i and integrate).

3) Choose a sequence ~θ∗m = (θ
∗
im, . . . , θ

∗
Nm) of functions satisfying (3.18) such

that θ∗im(0) = ai, θ
∗′
im(0) = −εm, where εm → 0 as m → ∞. Choose τm

such that θ∗im(τm) ≥ ai/2 for each i and θ
∗
jm(τm) = aj/2 for some j. Show

that τm →∞ as m→∞ by using the continuous dependence of solutions
on initial data.

4) Let θim(s) = θ
∗
im(s+ τm) and show that

~θm(s)→ ~θ(s) for a subsequence of
{θm} by arguments based on continuous dependence on initial data and
compactness.

Remarks: All of the steps in the analysis are elementary.

4 Conclusions

The results and ideas described in the earlier sections of this article show the
scope and depth of Professor Lazer’s contributions to mathematical propula-
tion dynamics. His work has introduced fundamental new results, methods,
and ideas into the study of time dependent population models, among other
areas. For applied purposes it is important to be able to treat time depen-
dent population models, because natural populations are very often influenced
by factors which vary in time. Those factors include daily and seasonal varia-
tions, in things such as temperature and light which are at least approximately
periodic, but they also include factors such as rainfall which are less regular
and predictable. Thus, both periodic and nonperiodic variations are important
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to consider. Another important feature of much of Professor Lazer’s work is
that he has often been able to obtain deep results via relatively elementary
methods. This feature makes his work accessible to a wide range of scientists.
Finally, Professor Lazer has inspired many collaborators, students, colleagues,
and other mathematical acquaintances. A few of those have been mentioned
here by name, but many others have not. Through his own work and his in-
fluence on others, Professor Lazer’s contributions to mathematical population
dynamics have permanently changed that subject.
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