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Abstract. We give a necessary and sufficient condition for the existence of
a positive principal eigenvalue for a periodic-parabolic problem with indefi-
nite weight function. The condition was originally established by Beltramo
and Hess [Comm. Part. Diff. Eq., 9 (1984), 919–941] in the framework of
the Schauder theory of classical solutions. In the present paper, the problem
is considered in the framework of variational evolution equations on arbitrary
bounded domains, assuming that the coefficients of the operator and the weight
function are only bounded and measurable. We also establish a general pertur-
bation theorem for the principal eigenvalue, which in particular allows quite
singular perturbations of the domain. Motivation for the problem comes from
population dynamics taking into account seasonal effects.

1. Introduction

Population models with diffusion taking into account seasonal effects are often
described by a periodic-parabolic problem. The habitat of the population is rep-
resented by a bounded domain Ω ⊂ RN (N = 2 or 3 in a real model), and the
diffusion by an elliptic operator, A(t), having time periodic coefficients of period
T > 0 (the length of one cycle). The linearization of such a boundary value problem
at a periodic solution leads to a periodic-parabolic eigenvalue problem of the form

∂tu+A(t)u = λmu in Ω× [0, T ],

u(· , t) = 0 on ∂Ω× [0, T ],

u(·, 0) = u(·, T ) in Ω,

(1.1)

with weight function m. It is of particular importance to know the existence of a
positive principal eigenvalue of (1.1), which, by definition, is a number λ such that
(1.1) has a nontrivial nonnegative solution. The notion of a principal eigenvalue for
periodic-parabolic problems was introduced and motivated in Lazer [13] (see also
Castro & Lazer [4]). More applications can for instance be found in Hess [11].
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In this paper we prove two results. First, we establish a necessary and sufficient
condition on the weight function m which guarantees the existence of a positive
principal eigenvalue of (1.1). Second, we provide a general perturbation result
for the eigenvalues of (1.1) allowing quite singular perturbations of the domain Ω.
All results will be proved in the framework of weak solutions. This requires the
principal part of A(t) to be in divergence from, but allows us to deal with arbitrary
domains Ω, and only requires the coefficients of A(t) and the weight function m
to be bounded and measurable. Note that, as a special case, the results apply to
weighted elliptic eigenvalue problems (c.f. [11, Remark 16.5]).
Working in the framework of the Schauder theory of classical solutions Beltramo

& Hess [3] (see also [2, 11]) found necessary and sufficient conditions for the exis-
tence of a positive principal eigenvalue. It was somewhat a surprise that, unlike
in case of the corresponding elliptic problem, it is not sufficient that m be positive
somewhere in Ω. The relevant condition turned out to be

P(m) :=
1

T

∫ T
0

sup
x∈Ω

m(x, t) dt > 0.

We will show that a similar result holds under our assumptions. As the weight
function m is only assumed to be bounded and measurable, we will need to replace
the supremum by the essential supremum. The problem was also considered in
Daners [7], where, in addition to the hypotheses in the present paper, it was assumed
that m is lower semi-continuous. Godoy, Lami Dozo & Paczka [9] were able to
deal with bounded and measurable weight functions m. However they kept the
smoothness assumptions on the coefficients of A(t) and the domain made in the
original theorem by Beltramo and Hess. They moreover required the top order
coefficients of A(t) to be continuously differentiable. The reason was that in the
proof they needed to rewrite A(t) in divergence form. We find it more natural to
assume from the beginning that the operator be in divergence form, and then to
get rid of the smoothness assumptions all together.
We then prove two perturbation results. The first asserts that any finite set of

eigenvalues of (1.1) is upper semi-continuous with respect to the domain, the coeffi-
cients of A(t), and the weight function m. The second determines the behaviour of
the principal eigenvalue of a sequence of approximating problems. It turns out that
the limit exists, and is the smallest positive principal eigenvalue. The perturbation
theorems improve and complement similar results in Daners [7]. We relax the con-
ditions on the domain convergence, and not necessarily assume that the limiting
set Ω be connected.
An outline of the paper is as follows. In Section 2 we give the precise assumptions

and state our main results. In Section 3 we discuss the main steps of the proof of
the existence result. In Section 4 we prove our general perturbation results. The
techniques introduced there also give rise to an approximation procedure, which
allows to pass from results known in the smooth case to the non-smooth case.
This procedure is described and exploited in Section 5. In Section 6 we prove some
spectral estimates providing the key to establish the existence of a positive principal
eigenvalue. We close the paper by two appendices, the first outlining the changes
necessary in [6] to relax the notion of domain convergence, and the second to prove
a technical result about convex functions.
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2. Assumptions and Main Results

Throughout let Ω ⊂ RN be a bounded open set, and let T be a fixed positive
number. Moreover suppose that A(t) satisfies the following assumptions.

Assumption 2.1. Suppose that A(t) is defined by

A(t)u := −
N∑
i=1

∂

∂xi

( N∑
j=1

aij(·, t)
∂

∂xj
u
)
+
N∑
i=1

bi(·, t)
∂

∂xi
u+ c0(·, t)u, (2.1)

where aij = aji, bi, c0 ∈ L∞(Ω × (0, T )). Moreover we assume that there exists
α > 0, called the ellipticity constant, such that

N∑
i=1

N∑
j=1

aij(x, t)ξiξj ≥ α|ξ|
2 (2.2)

for all (x, t) ∈ Ω× (0, T ) and ξ ∈ RN .

By a solution of (1.1) we always mean a weak solution (for a definition see
e.g. [16]). It is well known that weak solutions are classical solutions if the domain,
the coefficients of A(t) and the weight function are smooth enough. The set of
λ ∈ C such that

∂tu+A(t)u− λmu = f

in Ω× [0, T ] subject to the boundary conditions in (1.1) has a bounded inverse on
L2(Ω× (0, T )) is called the resolvent set of (1.1). The complement of the resolvent
set is called the spectrum of (1.1). We call λ a [principal ] eigenvalue of (1.1) if
(1.1) has a nontrivial [nonnegative] solution. Such a nontrivial solution is said to
be a [principal ] eigenfunction of (1.1) to the [principal ] eigenvalue λ.

Existence of a positive principal eigenvalue. We next state our main result
on the existence of a positive principal eigenvalue of (1.1). We define

P(m) :=
1

T

∫ T
0

ess-sup
x∈Ω

m(x, t) dt > 0. (2.3)

If Ω is a bounded domain (an open and connected set) we have the following theo-
rem. The assertions are wrong in general if Ω is not connected (c.f. Remark 2.13).

Theorem 2.2. Suppose that Ω is a bounded domain, that A(t) is as above with
c0 ≥ 0, and that m ∈ L∞(Ω× (0, T )). Then the following assertions are equivalent:

1. P(m) > 0.
2. Problem (1.1) has a positive principal eigenvalue.
3. Problem (1.1) has an eigenvalue with positive real part.

In this case the positive principal eigenvalue, λ1, is the only principal eigenvalue
with positive real part, and

λ1 = inf{Reλ : λ is an eigenvalue of (1.1) with Reλ > 0}. (2.4)

Remark 2.3. Note that the above theorem can also be used to give necessary and
sufficient conditions for the existence of a negative principal eigenvalue of (1.1). We
only need to replace m by −m.



54 DANIEL DANERS

Perturbation of the spectrum. To state our perturbation results we need some
additional definitions and assumptions. We first look at domain convergence (c.f. [5,
Section 2]).

Definition 2.4. Suppose that Ω is a bounded open set (not necessarily connected),
and that Ωn are bounded domains (connected by definition). We say that Ωn
converges to Ω, in symbols Ωn → Ω, if

(i) lim
n→∞

meas(Ωn ∩ Ω̄
{) = 0.

(ii) There exists a compact set K ⊂ Ω of capacity zero such that for each compact
set Ω′ ⊂ Ω \K there exists n0 ∈ N such that Ω′ ⊂ Ωn for all n ≥ n0.

Remark 2.5. In the above definition we did not assume that Ωn stays in the same
bounded subset of RN . In fact the diameter of Ωn may tend to infinity as long as
the measure of Ωn ∩ Ω{ converges to zero.

As usual we denote by W 1
2 (Ω) the standard Sobolev space, and by W̊

1
2 (Ω) the

closure of the set of all smooth functions with compact support in W 1
2 (Ω).

Definition 2.6. An open set Ω ⊂ RN is said to be stable if for each u ∈ W 1
2 (R

N )

with support in Ω̄ we have that u ∈ W̊ 1
2 (Ω).

The stability of an open set is a very weak regularity condition. It can be char-
acterized by means of capacities (see e.g. Adams & Hedberg [1, Theorem 11.4.1]).
Next we state our assumptions on the perturbed operators An(t). As we assume
that the coefficients are only bounded and measurable we can always extend them
to RN in such a way that the ellipticity constant remains unchanged.

Assumption 2.7. For all n ∈ N let An(t) be an operator of the form (2.1) with

coefficients a
(n)
ij = a

(n)
ji , b

(n)
i , c

(n)
0 ∈ L∞(RN × (0, T )). Suppose that

sup
i,j=1,...,N
n∈N

{
‖a(n)ij ‖∞, ‖b

(n)
i ‖∞, ‖c

(n)
0 ‖∞

}
<∞,

and that a
(n)
ij , b

(n)
i and c

(n)
0 converge to the corresponding coefficients of A(t) in

L2,loc(R
N × (0, T )). Finally suppose that the sequence of ellipticity constants of

An(t) has a positive lower bound.

We finally consider the weight functions. Note that we can assume them to be
defined on RN by simply extending them by zero outside Ω.

Assumption 2.8. Letmn,m ∈ L∞(RN×(0, T )) for all n ∈ N, assume that ‖mn‖∞
is a bounded sequence, and that mn converges to m in L2,loc(R

N × (0, T )).

We are now in a position to state our main perturbation results. What we mean
by the multiplicity of an eigenvalue of (1.1) we explain in Definition 4.2.

Theorem 2.9. Suppose that c0 ≥ 0, and that Assumption 2.7 and 2.8 are satisfied.
Further assume that Ω ⊂ RN is a stable bounded open set, and that Ωn → Ω in
the sense of Definition 2.4. Finally let U ⊂ C be an open set containing exactly r
eigenvalues of (1.1). Then, counting multiplicity, the perturbed problem

∂tu+An(t)u = λmnu in Ωn × [0, T ]

u(· , t) = 0 on ∂Ωn × [0, T ]

u(·, 0) = u(·, T ) in Ωn

(2.5)

has exactly r eigenvalues in U for n ∈ N sufficiently large.
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The proof of the above theorem is given in Section 4 (it follows from Propo-
sition 4.3 and Theorem 4.4). The next theorem determines what happens to a
sequence of positive principal eigenvalues if we pass to the limit. The main prob-
lem is that Ω is not assumed to be connected, and thus the limiting problem might
have more than one positive principal eigenvalue.

Theorem 2.10. Suppose the assumptions of Theorem 2.9 hold, and that (1.1) ad-
mits a positive principal eigenvalue. Then for all n ∈ N large enough (2.5) has a
unique positive principal eigenvalue λn. The sequence (λn) converges to a positive
principal eigenvalue of (1.1), and this eigenvalue can be characterized by (2.4).

The above is a consequence of Theorem 2.9 and some spectral estimates. The
proof is given in Lemma 4.5 and 4.6.

Remark 2.11. If Ωn ⊂ Ω for all n ∈ N then the above results remains true without
assuming that Ω is stable (c.f. [6, Remark 3.2(a)]).

Remark 2.12. If Ω is not connected the spectrum of (1.1) is the union of the spectra
of the corresponding problems on the components of Ω. Hence, the limiting problem
may have several principal eigenvalues, or one with higher algebraic multiplicity.

Remark 2.13. If Ω is not connected it is possible for (1.1) not to have a positive
principal eigenvalue even though P(m) > 0. As an example look at a domain with
two connected components, Ω1 and Ω2. Then the spectrum of (1.1) is the union
of the spectra of the corresponding problems on Ω1 and Ω2. If we set mi := m|Ωi
(i = 1, 2), then one can easily arrange that P(mi) ≤ 0 for i = 1, 2, but P(m) > 0.
The reason is that the location where the essential supremum ofm occurs may shift
from Ω1 to Ω2 as t increases from 0 to T . Suppose that we are in this situation, and
that Ωn are domains approximating Ω in the sense of Definition 2.4 (for instance
connect Ω1 and Ω2 by a small strip shrinking to a line). If mn is the weight
function on Ωn then P(mn) > 0 for large n ∈ N, and, by Theorem 2.2, there exists
a positive principal eigenvalue, λn, for the perturbed domain. However, as the
limiting problem does not have a principal eigenvalue, and 0 is not an eigenvalue,
λn must converge to infinity as n goes to infinity. In fact, the upper bound of λn
established in Lemma 4.6 also goes to infinity. The reason is that the curve γ and
the function ϕ0 used there cannot be chosen the same for all n ∈ N.

Remark 2.14. In Theorem 2.10 it can be shown that, if normalized to one in the
space L2(Ω× (0, T )), at least a subsequence of the eigenfunctions converges to an
eigenfunction of the limiting problem in L2(Ω× (0, T )) (see proof of Lemma 4.5).
However, if λ0 is of higher multiplicity we cannot expect the whole sequence to
converge. For the convergence of eigenfunctions see also Daners [7, Theorem 3.2].

Remark 2.15. Note that, as a special case, our perturbation results can be applied
to weighted elliptic boundary value problems of the from

Au = λmu in Ω,
u = 0 on ∂Ω

(c.f. [11, Remark 16.5]). Domain perturbations of weighted elliptic eigenvalue prob-
lems were also considered in López-Gómez [15].
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3. Main Steps of the Existence Proof

In this section we outline the main steps of the proof of Theorem 2.2. The basic
idea, which was already exploited by Beltramo & Hess [3], is to look at the family
of auxiliary eigenvalue problems

∂tu+A(t)u − λmu = µu in Ω× [0, T ],

u(· , t) = 0 on ∂Ω× [0, T ],

u(·, 0) = u(·, T ) in Ω,

(3.1)

where the parameter λ ranges over R. We throughout assume that m is a bounded
and measurable function on Ω × [0, T ]. Concerning the existence of a principal
eigenvalue for (3.1) the following is known (see [7, Section 2]).

Lemma 3.1. For each λ ∈ R the eigenvalue problem (3.1) has a unique principal
eigenvalue. This eigenvalue is real, algebraically simple, and the corresponding
eigenfunction can be chosen to be continuous and positive in Ω× [0, T ].

The continuity of the eigenfunction follows from the regularity theory for weak
solutions of parabolic equations, the positivity follows from the periodicity and the
weak Harnack inequality for parabolic equations (e.g. [16]).
For every λ ∈ R denote the principal eigenvalue of (3.1) by µ(λ). Note that λ is

a principal eigenvalue of (1.1) if and only if µ(λ) = 0. Hence, to prove Theorem 2.2
we need criteria ensuring that µ(·) has a unique positive zero. The properties of
µ(·) leading to this conclusion are summarized in the following proposition.

Proposition 3.2. The function µ(·) has the following properties:

1. µ(·) : R→ R is concave.
2. If c0 ≥ 0 then µ(0) > 0.
3. limλ→∞ µ(λ) = −∞ if and only if P(m) > 0.
4. If λ ∈ C is an eigenvalue of (1.1) with Reλ > 0 then µ(Reλ) ≤ 0.

The above proposition can be used as follows to prove Theorem 2.2.

Proof of Theorem 2.2. Assuming that c0 ≥ 0 we have from (2) that µ(0) > 0. By
(1) the function µ(·) is concave and hence continuous. Thus, by (3), the first two
assertions of Theorem 2.2 are equivalent. Next, due to (4) and (3), the first assertion
of Theorem 2.2 is equivalent to the third one. Finally, the uniqueness of a positive
principal eigenvalue of (1.1) follows from the concavity of µ(·). The characterization
(2.4) is a consequence of (4). This completes the proof of Theorem 2.2.

It remains to prove Proposition 3.2. The first two properties, (1) and (2), are
established in [7], the first as part of the proof of Theorem 2.1 on p. 391, and the
second in Lemma 2.4. The proof of (4) will be given in Lemma 5.5 using the result
in the smooth case and an approximation procedure. It remains to prove (3). The
necessity of the condition P(m) > 0 clearly follows from the lower estimate

µ(λ) ≥ µ(0)− λP(m) (3.2)

valid for all λ ≥ 0. A proof is given in Lemma 5.4. The most difficult part is to
show that P(m) > 0 implies that

lim
λ→∞

µ(λ) = −∞ (3.3)
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The proof of the above assertion is quite technical and requires an upper estimate
for µ(λ). To state the estimate in a concise form we define

A := [aij ]1≤i,j≤N and b := [b1, . . . , bN ]
T. (3.4)

Note that due to the ellipticity condition (2.2) the matrix A(x, t) is invertible for
almost all (x, t) ∈ Ω × (0, T ). Let D(Ω) denote the set of smooth functions with
compact support in Ω. Finally, denote the support of a function u by suppu. The
following result is an obvious consequence of Proposition 6.3.

Proposition 3.3. Suppose that γ ∈ C1(R,RN ) is T -periodic. Further assume that
ϕ0 ∈ D(Ω) is a nonnegative function such that

T

∫
Ω

ϕ20 dx = 1, (3.5)

and suppose that ϕ(x, t) := ϕ0(x − γ(t)) ∈ Ω × R for all (x, t) ∈ supp(ϕ0) × R.
Furthermore, let w := ϕ(b− dγ/dt) + 2A(∇ϕ)T. Then, for all λ ∈ R

µ(λ) ≤
1

4

∫ T
0

∫
Ω

wTA−1w + ϕ2c0 dx dt− λ

∫ T
0

∫
Ω

ϕ2mdxdt. (3.6)

Our claim (3.3) follows from Proposition 3.3 if γ and ϕ0 can be chosen such that∫ T
0

∫
Ω

[ϕ0(x − γ(t))]
2m(x, t) dx dt > 0. (3.7)

The idea is that P(m) > 0 implies that the integral of m over a tubular neighbour-
hood about a periodic curve is positive. Godoy, et. al [9, Lemma 4.4] showed that
there exists a T -periodic curve γ ∈ C1(R,RN ) and an open set Ω0 ⊂ Ω with the
property that x− γ(t) ∈ Ω for all (x, t) ∈ Ω̄0 × [0, T ], and∫ T

0

∫
Ω0

m(x − γ(t), t) dx dt > 0.

Choosing an appropriate function ϕ0 ∈ D(Ω0) normalized by (3.5) we easily get
the following lemma.

Lemma 3.4. If P(m) > 0, then in Proposition 3.3 the curve γ and the function
ϕ0 can be chosen such that (3.7) holds.

The above lemma together with (3.6) shows that P(m) > 0 implies (3.3) and
thus completes the proof of Proposition 3.2.

4. Perturbation Results

The main purpose of this section is to prove Theorem 2.9 and 2.10. We start by
studying the periodic-parabolic problem

∂

∂t
u+A(t)u + µu = f in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(·, 0) = u(·, T ) in Ω.

(4.1)

It can be shown that, for each µ ∈ R large enough, the above problem has unique
weak solution

u ∈ L2((0, T ), W̊
1
2 (Ω)) ∩ C([0, T ], L2(Ω))
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for all f ∈ L2((0, T ),W
−1
2 (Ω)) (see [6, Theorem 2.2] or [14, Theorem 3.6.1]). Define

the resolvent operator Rµ by Rµf := u for all f ∈ L2((0, T ),W
−1
2 (Ω)). Then for

all p ≥ 2

Rµ ∈ L
(
Lp(Ω× (0, T )

)
∩ L
(
C([0, T ], L2(Ω))

)
is a compact operator (see [6, Section 5]). Suppose now that p > N/2, and that
f ∈ Lp((0, T )Ω)) is a nontrivial nonnegative function. If u is the corresponding
solution of (4.1) with f ∈ Lp((0, T ) × Ω)) then the weak Harnack inequality, the
regularity theory for parabolic equations (see e.g. [16]) and periodicity show that
u ∈ C(Ω × [0, T ]), and u(x, t) > 0 for all (x, t) ∈ Ω × [0, T ]. We next look at the
perturbed periodic-parabolic problem

∂

∂t
u+An(t)u + µu = fn in Ωn × (0, T ),

u = 0 on ∂Ωn × (0, T ),

u(·, 0) = u(·, T ) in Ωn.

(4.2)

We suppose that An(t) satisfies Assumption 2.7, and that Ωn → Ω in the sense of
Definition 2.4. Further denote by Rµ,n the resolvent operator of (4.2).

Theorem 4.1. Suppose that the above assumptions are satisfied, and that µ ∈ R
is large enough. Then for all p ≤ 2 < ∞ the resolvent Rµ,n converges to Rµ
in L

(
Lp(Ω× (0, T )

)
. Moreover, if fn ⇀ f weakly in Lp(R

N × (0, T )), then the
solutions of (4.2) converge to the solution of (4.1) strongly in Lp(R

N × (0, T )).

Proof. For a slightly weaker notion of domain convergence the above theorem was
proved in [6, Theorem 5.1]. Note that all results in that paper only depend on [6,
Theorem 3.1], so we only need to generalize this theorem for our definition of domain
convergence. The necessary modifications of the proof are given in Appendix A.

Suppose now thatM is the multiplication operator induced by m ∈ L∞(Ω× (0, T ))
on L2(Ω× (0, T )). If c0 ≥ 0 we know from Proposition 3.2(2) that R := R0 exists.
Hence, taking into account the compactness of R, the operator R◦M is compact on
L2(Ω × (0, T )). It easily follows that λ ∈ C is in the spectrum of (1.1) if and only
if λ−1 is in the spectrum of R ◦M . By the spectral theory for compact operators
(e.g. [12, Theorem III.6.26]) all eigenvalues are of finite algebraic multiplicity.

Definition 4.2. By the multiplicity of an eigenvalue of (1.1) we mean the multi-
plicity of λ−1 as an eigenvalue of R ◦M .

The above reasoning leads to the following proposition.

Proposition 4.3. The spectrum of (1.1) consists of eigenvalues of finite algebraic
multiplicity. Moreover, λ ∈ C is an eigenvalue of (1.1) if and only if λ−1 is an
eigenvalue of R ◦M .

We next look at perturbations of R ◦M . We we set Rn := R0,n, and denote
the multiplication operator induced by mn by Mn. The following theorem is a
reformulation and extension of Theorem 2.9.

Theorem 4.4. Suppose that c0 ≥ 0, that An(t) and mn satisfy Assumption 2.7
and 2.8, respectively, and that Ωn → Ω in the sense of Definition 2.4. Then for all
p ≤ 2 <∞ the operator Rn ◦Mn converges to R◦M in L

(
Lp(Ω× (0, T )

)
. If U ⊂ C

is an open set containing exactly r eigenvalues of R◦M then, counting multiplicity,
U contains exactly r eigenvalues of Rn ◦Mn for all n sufficiently large.
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Proof. The first assertion of the theorem is a simple consequence of Theorem 4.1 ap-
plying similar arguments as in [6, Theorem 5.1]. The second assertion follows from
the first by applying a general perturbation theorem (Kato [12, Section IV.3.5]).

The remainder of this section is devoted to the proof of Theorem 2.10. We first
show that the limit of a sequence of principal eigenvalues is a principal eigenvalue.
The main difficulty in the proof is that Ω is not assumed to be connected.

Lemma 4.5. For each n ∈ N let λn be a principal eigenvalue of (2.5), and assume
that the sequence (λn) converges to some λ1 ∈ R. Then λ1 is a principal eigenvalue
of (1.1). If λ1 > 0 then it can be characterized by (2.4).

Proof. Let un denote an eigenfunction to the principal eigenvalue λn of (2.5), and
assume that λn converges to λ1 as n goes to infinity. We can assume that un > 0
in Ω × (0, T ), and normalize it in L2(Ω× (0, T )) to norm one. Then, (un)n∈N
is a bounded sequence in a Hilbert space, and therefore has a weakly convergent
subsequence (unk)k∈N with limit u (e.g. [17, Section V.2]). By our hypotheses on
mn (see Assumption 2.8) it follows that λnkmnkunk converges to λ1mu weakly in
L2(Ω× (0, T )). But then [6, Theorem 5.1] and the results in Appendix A imply
that unk converges to u strongly in L2(R

N × (0, T )). Hence u is nontrivial and
nonnegative, proving that λ1 is a principal eigenvalue of (1.1).
It remains to show that, if λ1 > 0, then (1.1) has no eigenvalue with positive real

part smaller than λ1. Suppose, to the contrary, that (1.1) has an eigenvalue ν ∈ C
with 0 < Re ν < λ1. Then, by Theorem 4.4, it follows that (2.5) has an eigenvalue
µn ∈ C with 0 < Re νn < λn for all n ∈ N large enough. As Ωn is connected λn
can be characterized by (2.4), leading to a contradiction. Hence, λ1 is also given
by (2.4).

Theorem 2.10 follows from the above lemma if we can show the existence and
convergence of a positive principal eigenvalue of the perturbed problem (2.5).

Lemma 4.6. Suppose the assumptions of Theorem 2.10 hold. Then, for n suffi-
ciently large, the perturbed eigenvalue problem (2.5) has a unique positive principal
eigenvalue converging to a positive principal eigenvalue of (1.1).

Proof. We start by proving the existence of a positive principal eigenvalue of the
perturbed eigenvalue problem (2.5). To do so we consider the family of auxiliary
eigenvalue problems

∂tu+An(t)u− λmnu = µu in Ωn × [0, T ],

u(· , t) = 0 on ∂Ωn × [0, T ],

u(·, 0) = u(·, T ) in Ωn.

(4.3)

By Lemma 3.1 the above eigenvalue problem has a unique principal eigenvalue,
µn(λ), for all λ ∈ R. We show that µn(0) is a bounded sequence. To do so
fix a function ϕ ∈ D(Ω \ K), where K is the set from Definition 2.4 of domain
convergence. By Definition 2.4(ii) the support of ϕ is contained in Ωn if n is
sufficiently large. Applying Proposition 3.3 we therefore have that

µn(λ) ≤
1

4

∫ T
0

∫
Ωn

wTnA
−1
n wn + ϕ

2c
(n)
0 dx dt

for all n ∈ N sufficiently large. Here wn and An are the expressions corresponding
to w and A for the perturbed problem. By our assumptions it is easy to see that
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the right hand converges. Thus the sequence µn(λ) is bounded from above. It is
bounded from below as µn(0) > 0 for all n ∈ N by Proposition 3.2(2). Hence,
there exists a subsequence

(
µnk(0)

)
k∈N
converging to µ0 ≥ 0 as k goes to infinity.

By Lemma 4.5 the limit µ0 is a principal eigenvalue of (3.1) with λ = 0. Next
we note that zero cannot be an eigenvalue of (1.1) as otherwise it would be an
eigenvalue of (1.1) on a component of Ω. Since we assumed that c0 ≥ 0 this is
not possible by Proposition 3.2(2). Hence µ0 > 0. By Lemma 4.5 the eigenvalue
µ0 is characterized as the one with the smallest positive real part. Hence, every
convergent subsequence of

(
µn(0)

)
n∈N

tends to µ0 and thus the whole sequence

converges. As µ0 > 0 we also have that µn(0) > 0 for n ∈ N large enough.
Next we show that, for n sufficiently large, (2.5) has a positive principal eigen-

value. We assumed in Theorem 2.10 that (1.1) has a positive principal eigenvalue.
Note that Ω is not necessarily connected, so the spectrum of (1.1) is the union of
the spectra of the corresponding problems on the components. Hence we can select
a connected component Ω1 ⊂ Ω such that (1.1) has a positive principal eigenvalue
on Ω1. By Theorem 2.2 it follows that P(m|Ω1) > 0. Due to Lemma 3.4 there
exists a T -periodic curve γ ∈ C1(R,RN ), a function ϕ0 ∈ D(Ω1) satisfying (3.5)
such that (3.7) holds. Setting ϕ(x, t) := ϕ0(x− γ(t)) we see that

lim
n→∞

∫ T
0

∫
Ωn

ϕ2mn dx dt =

∫ T
0

∫
Ωn

ϕ2mn dx dt.

As the right hand side of the above equation is positive there exists δ > 0 and
n0 ∈ N such that ∫ T

0

∫
Ωn

ϕ2mn dx dt > δ (4.4)

for all n ≥ n0. Next observe that by Proposition 3.3

µn(λ) ≤
1

4

∫ T
0

∫
Ω1

wTnA
−1
n wn + ϕ

2c
(n)
0 dx dt− λ

∫ T
0

∫
Ωn

ϕ2mn dx dt (4.5)

for all n ∈ N and all λ ∈ R. For each n ≥ n0 we thus have µn(λ) < 0 if only λ
is large enough. We showed already that µn(0) > 0, so by Proposition 3.2(1) the
function µn(·) has a unique positive zero, λn, whenever n ∈ N is large enough. This
proves the existence of a unique positive principal eigenvalue for (2.5) if n is large.
It remains to show that λn converges to a principal eigenvalue of (1.1). To do

so we first establish a bound on λn. From (4.5) and (4.4) we conclude that

λn ≤
1

4δ

∫ T
0

∫
Ωn

wTnA
−1
n wn + ϕ

2c
(n)
0 dx dt

for all n ∈ N large enough. It is easy to see that the right hand side of the above
inequality converges. Hence, the sequence (λn)n∈N is bounded from above. On the
other hand we know already that λn > 0 for all n ∈ N. Thus the sequence (λn)n∈N
is bounded. We next show that it converges. Due to the boundedness we can
extract a subsequence converging to some λ1 ≥ 0. By Lemma 4.5 λ1 is a principal
eigenvalue of (1.1). We already showed that zero is no principal eigenvalue, so
λ1 > 0. Moreover, Lemma 4.5 asserts that λ1 is the eigenvalue of (1.1) with the
smallest positive real part. Hence all convergent subsequences of (λn) tend to λ1,
and thus the whole sequence converges. This completes the proof of the lemma.
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5. Approximation Procedures

We now want to introduce an approximation procedure which allows to pass
from results known for smooth data to the case of non-smooth data. The idea
is to regularize A(t), m and Ω. We start with A(t), and assume that it satisfies
Assumption 2.1. In a first step we extend the coefficients of A(t) from Ω × (0, T )
periodically to Ω × R, and then extend its first and zero order coefficients bi and
c0 by zero outside Ω × R. Next we extend aij by αδij to RN+1, where δij is the
Kronecker symbol and α > 0 the ellipticity constant of A(t). In abuse of notation
we denote this new operator again by A(t). It has the same ellipticity constant
as the original one. We then fix nonnegative functions ϕ ∈ D(RN ) and ψ ∈ D(R)
satisfying ∫

RN

ϕ(x) dx = 1 and

∫ ∞
−∞

ψ(t) dt = 1. (5.1)

For all n ∈ N define ϕn and ψn by ϕn(x) := nNϕ(nx) and ψn(t) := nϕ(nt),
respectively. Then (ϕn)n∈N and (ψn)n∈N are mollifiers on R

N and R, respectively.
Clearly Φn(x, t) := ϕn(x)ψn(t) defines a mollifier on R

N+1. For all n ∈ N and
i, j = 1, . . . , N we set

a
(n)
ij := Φn ∗ aij , b

(n)
i := Φn ∗ bi and c

(n)
0 := Φn ∗ c0,

and define An(t) to be the operator of the form (2.1) with these coefficients. Us-
ing the definition of the convolution and the properties of the mollifiers (e.g. [8,
Section 8.2]) it is straightforward to check that An(t) satisfies Assumption 2.7.
We next look at the weight function m ∈ L∞(Ω × (0, T )). We first extend it

periodically to Ω×R, and then by −‖m‖∞ outside Ω×R. Then the approximations
mn defined by mn := Φn ∗m clearly satisfy Assumption 2.8.
To approximate the bounded domain Ω let Ωn be a sequence of sub-domains of

class C∞ exhausting Ω. Then Ωn → Ω in the sense of Definition 2.4. Note that in
this case we do not need to assume that Ω is stable in order to apply the results
from Section 4 (c.f. Remark 2.11). Finally define

P(mn) :=
1

T

∫ T
0

ess-sup
x∈Ωn

m(x, t) dt.

We then have the following lemma.

Lemma 5.1. Under the above assumptions P(mn) converges, and

lim
n→∞

P(mn) ≤ P(m). (5.2)

Proof. By the definition of mn we have that

ess-sup
y∈Ωn

mn(y, t) ≤

∫
RN

ϕn(x− z)

∫ ∞
−∞

ψn(t− s) ess-sup
y∈Ω

m(y, s) ds dz.

As we extended m by −‖m‖∞ outside Ω× R the essential supremum on the right
hand side is the same as the essential supremum over RN . Taking into account
(5.1) the above inequality reduces to

ess-sup
y∈Ωn

mn(y, t) ≤ ψn ∗ ess-sup
y∈Ω

m(y , ·)(t)

for all t ∈ [0, T ]. As (ψn)n∈N is a mollifier the right hand side of the above inequal-
ity converges to ess-supy∈Ωm(y , ·) almost everywhere in (0, T ). As all functions
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involved are bounded uniformly with respect to n ∈ N, an application of the dom-
inated convergence theorem yields (5.2).

Remark 5.2. It can also be shown that P (m) ≤ lim infn→∞ P (mn). The proof is
based on the trivial inequality mn(x, t) ≤ ess-supx∈Ωn mn(x, t) and Fatou’s lemma.
The above inequality is true for every sequencemn approachingm pointwise almost
everywhere, whereas (5.2) requires more properties of mn.

For every λ ∈ R let µn(λ) and µ(λ) denote the unique principal eigenvalues of (4.3)
and (3.1), respectively.

Proposition 5.3. Under the above assumptions µn(λ) converges to µ(λ) uniformly
with respect to λ in bounded sets of R as n goes to infinity.

Proof. By Lemma 3.1 the eigenvalues µn(λ) and µ(λ) are algebraically simple.
Hence Theorem 4.4 with m = 1 implies that µn(λ) converges to µ(λ) for all λ ∈ R.
By Proposition 3.2(1) the functions µn : R→ R are concave, and thus by the results
in Appendix B local uniform convergence on R follows.

Using the approximation procedure just introduced we next establish the lower
estimate (3.2) for the principal eigenvalue of (1.1).

Lemma 5.4. For all λ ≥ 0 the inequality (3.2) holds.

Proof. As before let µn(λ) denote the principal eigenvalue of (4.3). As all data are
smooth we can apply [11, Lemma 15.6], which asserts that

µn(λ) ≥ µn(0)− λP(mn)

for all λ ≥ 0. (Note that we used a slightly different definition of P(mn).) Hence,
an application of Proposition 5.3 and Lemma 5.1 shows that

µ(λ) ≥ µ(0)− λ lim
n→∞

P(mn) ≥ µ(0)− λP(m),

proving the assertion of the lemma.

Finally, we apply the approximation procedure to get Proposition 3.2(4).

Lemma 5.5. If λ ∈ C is an eigenvalue of (1.1) with Reλ > 0, then µ(Reλ) ≤ 0.

Proof. Suppose that λ ∈ C is an eigenvalue of (1.1) with Reλ > 0. Then, by The-
orem 4.4, there exists a sequence (λn) of eigenvalues to the perturbed eigenvalue
problems (2.5) converging to λ as n tends to infinity. (The sequence (λn) is not
necessarily unique.) Hence, Reλn > 0 for large n ∈ N. As all data are smooth,
we can apply [3, Lemma 3.6] to conclude that µn(Reλn) ≤ 0 for all n ∈ N suf-
ficiently large. By Proposition 5.3 µn converges to µ locally uniformly, and thus
0 ≥ limn→∞ µn(Reλn) = µ(Re λ). This concludes the proof of the lemma.

6. Upper Estimates for the Principal Eigenvalue

In this section we provide an upper bound for the principal eigenvalue of

∂tu+A(t)u = µu in Ω× [0, T ]

u(· , t) = 0 on ∂Ω× [0, T ]

u(·, 0) = u(·, T ) in Ω

(6.1)
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which leads to Proposition 3.3. Throughout we suppose that Assumption 2.1 holds,
and that Ω is a bounded domain. Moreover, we define A and b as in (3.4). Then
we can rewrite A(t)u by

A(t)u = − div
(
(∇u)A

)
+ (∇u)b+ c0u.

For k ∈ N ∪ {∞} we define

CkT (Ω̄× R) :=
{
u ∈ Ck(Ω̄× R) : u(x, t+ T ) = u(x, t) for all (x, t) ∈ Ω̄× R

}
.

The following lemma is a variation of Hess [10, Proposition 3.1]. The main differ-
ence is that in our case A(t) is in divergence form. Our aim is to give a version for
arbitrary bounded domains and operators A(t) with bounded and measurable co-
efficients. To achieve this we first look at the corresponding problem in the smooth
case and then pass to the general case by the approximation procedure established
in Section 5 and the perturbation results in Section 4.

Lemma 6.1. Suppose that Ω is of class C∞, and that the coefficients of A(t) are
in C∞T (Ω× R). Moreover, let ϕ ∈ D(Ω) be nonnegative such that

T

∫
Ω

ϕ2 dx = 1. (6.2)

Finally define w ∈ C∞T (Ω̄ × R,R
N ) by w := ϕb + 2A(∇ϕ)T. Then the principal

eigenvalue, µ, of (6.1) satisfies the estimate

µ ≤
1

4

∫ T
0

∫
Ω

wTA−1w + ϕ2c0 dx dt. (6.3)

Proof. Let u ∈ C∞T (Ω̄×R) denote an eigenfunction of (6.1) to the principal eigen-
value µ. We can choose u such that u(x, t) > 0 for all (x, t) ∈ Ω × [0, T ]. By this
choice of u the function ψ ∈ C∞T (Ω × R), given by ψ(x, t) := − logu(x, t) for all
(x, t) ∈ Ω× [0, T ], is well defined. As u is an eigenfunction of (6.1) we get that

−
∂

∂t
ψ =

1

u

∂

∂t
u = µ−

1

u
A(t)u,

and thus by definition of ψ and A(t)

1

u
A(t)u = −

1

u
div
(
(∇u)A

)
+
1

u
(∇u)b+ c0

= − div
( 1
u
(∇u)A

)
−
1

u2
(∇u)A(∇u)T − (∇ψ)b+ c0

= div
(
(∇ψ)A

)
− (∇ψ)A(∇ψ)T − (∇ψ)b+ c0.

Combining the above two identities we see that

µ = −
∂

∂t
ψ + div

(
(∇ψ)A

)
− (∇ψ)A(∇ψ)T − (∇ψ)b+ c0.

Next we multiply the above equation by ϕ2 and integrate over Ω× (0, T ). We can
do this because ϕ has compact support in Ω, and u is bounded away from zero on
the support of ϕ. Taking into account our assumption (6.2) we get that

µ = −

∫ T
0

∫
Ω

ϕ2
∂

∂t
ψ dx dt +

∫ T
0

∫
Ω

ϕ2 div
(
(∇ψ)A

)
dx dt

−

∫ T
0

∫
Ω

ϕ2(∇ψ)A(∇ψ)T + ϕ2(∇ψ)b− ϕ2c0 dx dt.
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As ψ is T -periodic in t ∈ R and ϕ is independent of t the first integral on the right
hand side of the above identity is zero. The second integral can be rewritten as
∫ T
0

∫
Ω

ϕ2 div
(
(∇ψ)A

)
dx dt

=

∫ T
0

∫
Ω

div
(
ϕ2(∇ψ)A

)
dx dt−

∫ T
0

∫
Ω

2ϕ(∇ψ)A(∇ϕ)T dx dt.

As ϕ has compact support an application of the divergence theorem shows that the
first integral on the right hand side of the above equation is zero, and thus

µ = −

∫ T
0

∫
Ω

(∇ψ)A(∇ψ)T + 2ϕ(∇ψ)A(∇ϕ)T + (∇ψ)b dx dt +

∫ T
0

∫
Ω

c0 dx dt.

(6.4)

We next estimate the first of the above integrals by a quantity independent of ψ.
To do so first note that by the ellipticity condition (2.2) the matrix A is invertible,
and hence v := ϕ(∇ψ)T+ 12A

−1w is well defined. Recalling that w = ϕb+2A(∇ϕ)T

and that A is symmetric, an elementary calculation shows that

vTAv = ϕ2(∇ψ)A(∇ψ)T + 14w
TA−1w + ϕ2(∇ψ)b+ 2(∇ϕ)A(∇ψ)T. (6.5)

Clearly vTAv ≥ 0 by the ellipticity assumption (2.2). If we add
∫ T
0

∫
Ω v
TAv dxdt

to the right hand side of (6.4) and take into account (6.5) we immediately arrive
at (6.3), concluding the proof of the lemma.

In the calculations in the above proof it was quite essential that ϕ does not depend
on x ∈ Ω. This can be relaxed a little bit by looking at a transformed problem.

Lemma 6.2. Suppose that γ ∈ C1(R,RN ) is T -periodic. Further assume that
ϕ0 ∈ D(Ω) is a nonnegative function satisfying (3.7). Also assume that ϕ(x, t) :=
ϕ0(x− γ(t)) ∈ Ω× R for all (x, t) ∈ supp(ϕ0)× R, and set

w := ϕ(b− dγ/dt) + 2A(∇ϕ)T.

Then the principal eigenvalue, µ, of (6.1) satisfies the estimate (6.3).

Proof. Define the diffeomorphism θ ∈ C1(RN+1,RN+1) by θ(x, t) := (x − γ(t), t)
for all (x, t) ∈ RN × R. Then the inverse of θ is given by θ−1(y, t) = (y + γ(t), t).
Next set QT := θ(Ω× (0, T )), and define

Aγ(t)v := − div(∇v(A ◦ θ
−1) +∇v(b ◦ θ−1 − γ̇) + (c0 ◦ θ

−1)v.

Suppose now that u is a positive principal eigenfunction to the principal eigenvalue
µ of (6.1). Then, using that u is an eigenfunction of (6.1), a simple calculation
shows that the function v := u ◦ θ−1 satisfies the equation

∂

∂t
v +Aγv = µv

in QT . By our assumptions we have that supp(ϕ0) × (0, T ) ⊂ QT . Therefore we
can apply Lemma 6.1 to conclude that

µ ≤

∫ T
0

∫
supp(ϕ0)

(w ◦ θ−1)T(A−1 ◦ θ−1)(w ◦ θ−1) + c0 ◦ θ
−1ϕ0 dy dt.

(Note that in the proof of Lemma 6.1 we the did not use the boundary conditions,
but only the fact that u is positive in Ω× [0, T ].) As detDθ = 1 we can apply the
transformation formula for integrals and the definition of ϕ to get (6.3).
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Next we get rid of the smoothness assumptions on the domain and the coefficients
of A(t). The idea is to use the approximation procedure from Section 5, and then
the perturbation results in Section 4.

Proposition 6.3. Suppose that the assumptions of Lemma 6.2 are satisfied, but
that Ω ⊂ RN is an arbitrary bounded domain, and that the coefficients of A(t) are
only bounded and measurable (Assumption 2.1). Then the assertions of Lemma 6.2
remain true.

Proof. Suppose that An(t) and Ωn are as constructed in Section 5. If we define An
and wn accordingly we see from Lemma 6.2 that the principal eigenvalue, µn, of

∂tu+An(t)u = µu in Ωn × [0, T ]
u(· , t) = 0 on ∂Ωn × [0, T ]
u(·, 0) = u(·, T ) in Ωn

satisfies the estimate

µn ≤
1

4

∫ T
0

∫
Ω

wTnA
−1
n wn + ϕ

2c
(n)
0 dx dt. (6.6)

for all n ∈ N. As the inversion of a matrix is a smooth operation, and the ellipticity
constant of An is uniformly bounded from below we have that wTnA

−1
n wn converges

to wTA−1w in L1(Ω). Applying Proposition 5.3 the estimate (6.3) follows from
(6.6) by letting n go to infinity. This completes the proof of the proposition.

Appendix A. Perturbations of the Initial Value Problem

The purpose of this appendix is to show that the results in [6] hold under our
more general notion of domain convergence given in Definition 2.4. The only place
we need the explicit notion of domain convergence is in the proof of Theorem 3.1,
all subsequent results only use the assertions of that theorem. If these assertions
are true for our new notion of domain convergence then all other results from [6]
are valid. We consider perturbations of the initial boundary value problem

∂

∂t
u+A(t)u = f in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(·, 0) = u0 in Ω.

(A.1)

We next state [6, Theorem 3.1], and then provide the necessary changes in its proof
assuming the domains converge in the more general sense given in Definition 2.4.

Theorem A.1. Suppose that Ω is a bounded open and stable set, and that Ωn is a
sequence of domains with Ωn → Ω in the sense of Definition 2.4. Moreover, assume
that p > 2N(N + 2)−1, and that u0n ∈ L2(Ωn) and fn ∈ L2

(
(0, T ), Lp(Ωn)

)
are

such that u0n ⇀ u0 weakly in L2(R
N ) and fn ⇀ f weakly in L2

(
(0, T ), Lp(R

N )
)
.

Finally, suppose that un is the weak solution of

∂

∂t
u+An(t)u = fn in Ω× (0, T ),

u = 0 on ∂Ωn × (0, T ),

u(·, 0) = u0n in Ωn.

(A.2)

Then un converges to u strongly in L2
(
(0, T ), Lq(R

N )
)
for all q ∈ [1, 2N(N−2)−1),

and weakly in L2
(
(0, T ),W 1

2 (R
N )
)
. Moreover, u is a weak solution of (A.1).
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Proof. It follows in exactly the same way as in the proof of [6, Theorem 3.1] that
un is bounded in L2

(
(0, T ),W 1

2 (R
N )
)
, and that it converges to a function u weakly

in that space. Recall that we did not assume that Ωn stays in a common bounded
set for all n ∈ N (c.f. Remark 2.5). Hence we cannot directly apply [6, Lemma 2.1]
to conclude that the convergence of un takes place strongly in L2

(
(0, T ), Lq(R

N )
)

for all q ∈ [1, 2N(N − 2)−1). However, an obvious modification of the proof of
that lemma shows that for every bounded subset B ⊂ RN the sequence (un) con-
verges to u in L2

(
(0, T ), Lq(B)

)
for all q ∈ [1, 2N(N − 2)−1). As un is bounded

in L2
(
(0, T ),W 1

2 (R
N )
)
it follows from the Sobolev embedding theorem that un is

bounded in L2
(
(0, T ), Lr(R

N )
)
for all q ∈ [1, 2N(N − 2)−1). Fix now q, r such that

1 ≤ q < r < 2N(N − 2)−1. Then, by Hölder’s inequality we have that

‖un‖L2((0,T ),Lq(RN\Ω̄{)) =
(∫ T
0

(∫
Ωn∩Ω̄{

|un(x, t)|
q dx
) 2
q

dt
) 1
2

≤
(
meas(Ωn ∩ Ω̄

{)
) 1
q−

1
r ‖un‖L2((0,T ),Lq(RN\Ω̄{)).

We already saw that the sequence (un) is bounded in L2((0, T ), Lq(R
N )). By

assumption (see Definition 2.4) meas(Ωn ∩ Ω{) converges to zero. This shows that
un|RN\Ω{ converges to zero in L2

(
(0, T ), Lq(R

N \ Ω{)
)
for all q ∈ [1, 2N(N−2)−1).

In particular u = 0 almost everywhere in RN \Ω̄{. This implies that supp(u(t)) ⊂ Ω̄
for almost all t ∈ (0, T ). Hence by the stability of the domain (Definition 2.6) it
follows that u(t) ∈ W̊ 1

2 (Ω) for almost all t ∈ (0, T ). Finally note that we already
proved that un converges to u in L2

(
(0, T ), Lq(B)

)
for all q ∈ [1, 2N(N−2)−1) and

all bounded sets B. Hence, the assertion of the theorem follows.

Appendix B. Local Uniform Convergence of Convex Functions

Suppose that fn : R→ R are convex functions converging pointwise to a function
f . Then, clearly f is convex. We want to show that fn converges locally uniformly
to f . The idea is to show that the family (fn) is bounded and equi-continuous, and
then apply the Arzelá-Ascoli theorem.

Proposition B.1. Let fn : R→ R be convex functions converging pointwise to the
real valued function f . Then f is convex, and fn converges to f uniformly on every
compact subset of R.

Proof. It is easy to see that f is convex, so we only prove local uniform convergence.
We first show that the family (fn) is bounded on any compact interval [a, b] ⊂ R.
From the convexity it is clear that fn(x) ≤ max{fn(a), fn(b)} for all x ∈ [a, b]. As
fn converges pointwise there exists M0 > 0 such that max{fn(a), fn(b)} ≤ M0 for
all n ∈ N. This proves the existence of a uniform upper bound. We now establish
a uniform lower bound. Setting x0 := (b − a)/2, the convexity of fn implies that
2fn(x0) ≤ fn(x0 + z) + fn(x0 − z) for all z ∈ R. Using the upper bound already
established we therefore get

inf
x∈[a,b]

fn(x) ≥ 2fn(x0)− sup
x∈[a,b]

fn(x) ≥ 2fn(x0)−M0

for all n ∈ N. As fn(x0) is bounded this yields a uniform lower bound. Hence, the
family (fn) is bounded on [a, b].
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Next we prove the equi-continuity of the family (fn). Let I := [α, β] be a compact
interval. Fix δ > 0 and let x, y ∈ I with x < y. By the convexity of fn

fn(x)− fn(α− δ)

x− α+ δ
≤
fn(y)− fn(x)

y − x
≤
fn(b+ δ)− fn(y)

β + δ − y

for all n ∈ N. By what we proved already the family (fn) is bounded in the interval
[α− δ, β + δ] by some M > 0. Therefore

−2Mδ−1 ≤
fn(y)− fn(x)

y − x
≤ 2Mδ−1

for all n ∈ N and all x, y ∈ I with x < y. Setting L := 2Mδ−1 we conclude
that |fn(x) − fn(y)| ≤ L|x − y| for all n ∈ N and x, y ∈ I. Hence, the family
(fn) is bounded and equi-continuous, and by the Arzelà-Ascoli theorem (see [17,
Section III.3]) it is relatively compact in C(I). Since, by assumption, it converges
pointwise, it therefore converges in C(I), i.e. uniformly on I.
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