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Center manifold and exponentially-bounded

solutions of a forced Newtonian system with

dissipation ∗

Luis Garcia & Hugo Leiva

Abstract

We study the existence of exponentially-bounded solutions to the fol-
lowing system of second-order ordinary differential equations with dissi-
pation:

u′′ + cu′ + Au+ kH(u) = P (t), u ∈ Rn, t ∈ R,

where c and k are positive constants, H is a globally Lipschitz function,
and P is a bounded and continuous function. A is a n × n symmetric
matrix whose first eigenvalue is equal to zero and the others are positive.
Under these conditions, we prove that for some values of c, and k there
exist a continuous manifold such that solutions starting in this manifold
are exponentially bounded. Our results are applied to the spatial dis-
cretization of well-known second-order partial differential equations with
Neumann boundary conditions.

1 Introduction

In this note, we study the existence of exponentially bounded solutions of the
following system of second-order ordinary differential equations with a damping
force and dissipation in Rn:

u′′ + cu′ +Au+ kH(u) = P (t), u ∈ Rn, t ∈ R, (1.1)

where c and k are positive constants, P ∈ Cb(R;Rn) (the space of continuous
and bounded functions) and H : Rn → Rn is a globally Lipschitz function. i.e.,
there exists a constant L > 0 such that

‖H(U1)−H(U2)‖ ≤ L‖U1 − U2‖, U1, U2 ∈ R
n. (1.2)
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70 Center manifold and exponentially bounded solutions

A is a n×n symmetric matrix whose first eigenvalue λ1 is equal to zero and the
other eigenvalues are positive

0 = λ1 < λ2 < · · ·λl

each one with multiplicity γj equal to the dimension of the corresponding
eigenspace.
The equation (1.1) has been studied in [5] for the case that the first eigenvalue

λ1 of the matrix A is positive (λ1 > 0); under these conditions they prove
that for some values of c the equation (1.1) has a bounded solution which is
exponentially stable and, if P (t) is almost periodic, this bounded solution is
also almost periodic.
The fact that the first eigenvalue λ1 of the matrix A is equal to zero, in

general, does not allow us to prove the existence of bounded solutions of (1.1).
However, we prove that for some values of c and k there exist a positive number
η depending on c and a continuous manifoldM =M(c, k, P (·)) such that any
solution of the system (1.1) starting inM is exponentially bounded. i.e.,

sup
t∈R

e−η|t|
{
‖u′(t)‖2 + ‖u(t)‖2

}1/2
<∞.

Our method is similar to the one used in [5], we just rewrite the equation (1.1) as
a first order system of ordinary differential equations and prove that the linear
part of this system has an exponential trichotomy with trivial unstable space.
Next, we use the variation constants formula and some ideas from [7] [8] to find
a formula for the exponentially bounded solutions of (1.1). From this formula
we can prove the existence of such manifoldM =M(c, k, P (·)). These results
are applied to the spatial discretization of very well known second order partial
differential equations with Neumann boundary conditions:

Example 1.1 The Sine-Gordon equation with Neumann boundary conditions
is given by

Utt + cUt − dUxx + k sinU = p(t, x), 0 < x < L, t ∈ R, (1.3)

Ux(t, 0) = Ux(t, L) = 0, t ∈ R,

where c, d and k are positive constants, p : R × [0, L] → R is continuous and
bounded.
The following paragraph was taken from Temam’s book([6], pg. 184). With

Neumann boundary the Sine-Gordon Equation is physically interesting, the av-
erage value of the function U is not expected to remain bounded and actually
leads to nontrivial dynamics. From mathematical point of view this case is also
interesting.
For each N ∈ N the spatial discretization of this equation is given by

u′′i + cu
′
i + dδ

−2(2ui − ui+1 − ui−1) + k sinui = pi(t), 1 ≤ i ≤ N, t ∈ R,

u0 = u1, uN = uN+1 = 0 . (1.4)
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This equation can be written in the form of (1.1) with

A = dδ−2




1 −1 0 · · · 0
−1 2 −1 · · · 0
...
. . .

. . .
. . .

...
0 · · · −1 2 −1
0 · · · 0 −1 1




(1.5)

where δ = L/(N + 1). The eigenvalues of this matrix are simple, the first one
being zero and the others positive.

Example 1.2 A telegraph equation with Neumman boundary conditions

Utt + cUt − dUxx + arctanU = p(t, x), 0 < x < L, t ∈ R, (1.6)

Ux(t, 0) = Ux(t, L) = 0, t ∈ R,

where c, d are positive constants, p : R× [0, L]→ R is continuous and bounded.
For each N ∈ N the spatial discretization of this equation is given by

u′′i + cu
′
i + dδ

−2(2ui − ui+1 − ui−1) + arctanui = pi(t) (1.7)

u0 = u1, uN = uN+1 = 0 .

This equation can be written in the form of (1.1) with the the same matrix A
as in (1.5).

2 Preliminaries

Most of the ideas presented in this section can be found in [5]. So, we shall prove
only the new results. Equation (1.1) can be written as a first order system of
ordinary differential equations in the space W = Rn × Rn as follows:

w′ +Aw + kH(w) = P(t), w ∈W, t ∈ R, (2.1)

where v = u′ and

w =

(
u
v

)
, H(w) =

(
0

H(u)

)
, P(t) =

(
0

P (t)

)
, A =

(
0 −I
A cI

)
.

(2.2)
Now, we are ready to study the linear part of (2.1):

w′ +Aw = 0, w ∈W, t ∈ R. (2.3)

For the rest of this article, we shall assume that each eigenvalue of the matrix
A has multiplicity γj equal to the dimension of the corresponding eigenspace
and the first one is equal to zero and the others are positive. Therefore, if
0 = λ1 < λ2 < · · ·λl are the eigenvalues of A, we have the following:

a) There exists a complete orthonormal set {φj,k} of eigenvector of A in Rn



72 Center manifold and exponentially bounded solutions

b) For all x ∈ Rn we have

Ax =
l∑
j=1

λj

γj∑
k=1

〈x, φj,k〉φj,k =
l∑
j=1

λjEjx, (2.4)

where 〈·, ·〉 is the inner product in Rn and

Ejx =

γj∑
k=1

< x, φj,k > φj,k. (2.5)

So, {Ej} is a family of complete orthogonal projections in Rn and x =∑l
j=1 Ejx, x ∈ R

n

c) The exponential matrix e−At is given by

e−At =

l∑
j=1

e−λjtEj (2.6)

Theorem 2.1 Suppose that c 6= 2
√
λj, j = 1, 2, . . . , l. Then the exponential

matrix e−At of the matrix −A given by (2.2) can be written as follow

e−Atw =

l∑
j=1

{
eρ1(j)tQ1(j)w + e

ρ2(j)tQ2(j)w
}
, w ∈W, t ∈ R, (2.7)

where

ρ(j) =
−c+
√
c2 − 4λj
2

, j = 1, 2, . . . , l (2.8)

and {Qi(j) : i = 1, 2}lj=1 is a complete orthogonal system of projections in W .

Corollary 2.2 The spectrum σ(−A) of the matrix −A is given by

σ(−A) = {
−c+
√
c2 − 4λj
2

, j = 1, 2, . . . , l}.

Corollary 2.3 Under the hypothesis of Theorem 2.1, there exist two orthogonal
projectors π0, πs :W →W and a constant M > 0 such that

‖e−Atπ0‖ ≤M, t ∈ R,

‖e−Atπs‖ ≤ e
−βt, t ≥ 0,

IW = π0 + πs, W =W0 ⊕Ws ,

where W0 = Ran(π0), Ws = Ran(πs), and β = β(c) > 0 is given by

−β = max
{
− c, Re(ρj) = Re

(−c±√c2 − 4λj
2

)
: j = 2, . . . , l. i = 1, 2.

}
.
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Proof Since Theorem 2.1 and Corollary 2.2 are proved in [5], we shall only
prove Corollary 2.3. From Corollary 2.2, we have that Re(ρi(j) < 0, j =
2, . . . , l. Therefore β > 0. Since λ1 = 0, the formula (2.7) can be written as

e−Atw = Q1(1)w + e
−ctQ2(1)w +

l∑
j=2

{
eρ1(j)tQ1(j)w + e

ρ2(j)tQ2(j)w
}
,

with w ∈ W and t ∈ R. If we put π0 = Q1(1) and

πs = I − π0 = Q2(1) +
l∑
j=2

{Q1(j) +Q2(j)} ,

we obtain the required projections, and

‖e−Atπ0w‖ = ‖π0e
−Atw‖ = ‖Q1(1)w‖ ≤ ‖Q1(1)‖‖w‖, t ∈ R.

Therefore, ‖e−Atπ0‖ ≤ ‖Q1(1)‖ =M . In the same way we get

‖e−Atπsw‖
2

= ‖πse
−Atw‖2 = ‖e−ctQ2(1)w +

l∑
j=2

{
eρ1(j)tQ1(j)w + e

ρ2(j)tQ2(j)w
}
‖2

= e−2ct‖Q2(1)w‖
2 +

l∑
j=2

{
e2Re ρ1(j)t‖Q1(j)w‖

2 + e2Re ρ2(j)t‖Q2(j)w‖
2
}

≤ e−2βt
{
‖Q2(1)w‖

2 +

l∑
j=2

‖Q1(j)w‖
2 + ‖Q2(j)w‖

2
}

≤ e−2βt‖w‖2, t ≥ 0.

Therefore, ‖e−Atπs‖ ≤ e−βt for t ≥ 0. ♦

Corollary 2.4 For each ε ∈ [0, β) there exists some M(ε) > 0 such that

‖e−Atπ0‖ ≤M(ε)e
ε|t|, t ∈ R,

‖e−Atπs‖ ≤M(ε)e
−(β−ε)t, t ≥ 0 .

3 Main Result

In this section we shall prove the main Theorem of this paper under the hy-
pothesis of Theorem 2.1 (c 6= 2

√
λj , j = 1, 2, . . . , l).

The solution of (2.1) passing through the point w0 at time t = t0 is given by
the variation constants formula

w(t) = e−A(t−t0)w0 +

∫ t
t0

e−A(t−s) {−kH(w(s)) + P(s)} ds, t ∈ R. (3.1)
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We shall use the following notation: For each η ≥ 0 we denote by Zη the Banach
space

Zη =
{
z ∈ C(R;W ) : ‖z‖η = sup

t∈R
e−η|t|‖z(t)‖ <∞

}
. (3.2)

In particular, Z0 = Cb(R,W ) the space of bounded and continuous functions
defined in R taking values in W = Rn × Rn.

Theorem 3.1 Suppose that H is a bounded function or H(0) = 0. Then for
some c and k positive there exist η = η(c) ∈ (0, β) and a continuous manifold
M = M(c, k, P ) such that any solution u(t) of (1.1) with (u(0), u′(0)) ∈ M
satisfies:

sup
t∈R

e−η|t|
{
‖u(t)‖2 + ‖u′(t)‖2

}1/2
<∞, (3.3)

where β, W0 and Ws are as in corollary 2.3. Moreover,

(a) There exists a globally Lipschitz function ψ : W0 → Ws depending on P
such that

M = {w0 + ψ(w0) : w0 ∈W0}, (3.4)

and if we put ψ(w) = ψ(w,P ), there exist M ≥ 1 and 0 < Γ < 1 such that

‖ψ(w1, P1)−ψ(w2, P2)‖ ≤
kLM(1− Γ)−1

β − η
‖w1−w2‖+

1

β
‖P1−P2‖, (3.5)

for w1, w2 ∈ W0, P1, P2 ∈ Cb(R,Rn).

(b) If H is bounded, then ψ is also bounded.

(c) If P = 0 and H(0) = 0, thenM is unique and invariant under the equation
w′ +Aw + kH(w) = 0. In this caseM is called center manifold and it is
tangent to the space W0 at w0 = 0.

Before proving the main theorem, we need some previous results.

Lemma 3.2 Let z ∈ Z0 = Cb(R,W ). Then, z is a solution of (2.1) if and only
if there exists some w0 ∈W0 such that

z(t) = e−Atw0 +

∫ t
0

e−A(t−τ)π0 {−kH(z(τ)) + P(τ)} dτ

+

∫ t
−∞

e−A(t−τ)πs {−kH(z(τ)) + P(τ)} dτ, t ∈ R. (3.6)

Proof Suppose that z is a solution of (2.1). Then, from Corollary 2.3 we get
z(t) = π0z(t) + πsz(t) and from the variation of constants formula (3.1) we
obtain

π0z(t) = e
−Atπ0z(0) +

∫ t
0

e−A(t−τ)π0 {−kH(z(τ)) + P(τ)} dτ, t ∈ R, (3.7)
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and

πsz(t) = e
−A(t−t0)πsz(t0) +

∫ t
t0

e−A(t−τ)πs {−kH(z(τ)) + P(τ)} dτ, t ∈ R.

(3.8)
Since z(t) is bounded, there exists R > 0 such that ‖z(t)‖ ≤ R, for all t ∈ R.
Then , from corollary 2.3 we obtain that

‖e−A(t−t0)πsz(t0)‖ ≤ Re
−β(t−t0) → 0 as t0 → −∞.

Now, if we put

l = sup
τ∈R
‖H(z(τ))‖ and Lp = sup

τ∈R
‖P(τ)‖,

then

‖

∫ t
−∞

e−A(t−τ)πs {−kH(z(τ)) + P(τ)} dτ‖ ≤ ‖

∫ t
−∞

e−β(t−τ) {kl + Lp} dτ‖

=
kl+ Lp
β

.

Hence, passing to the limit in (3.8), as t0 approaches −∞, we obtain

πsz(t) =

∫ t
−∞

e−A(t−τ)πs {−kH(z(τ)) + P(τ)} dτ, t ∈ R. (3.9)

Therefore, putting w0 = π0z(0) we get (3.6).
Conversely, suppose that z is a solution of (3.6). Then

z(t) = e−Atw0 +

∫ t
0

e−A(t−τ)π0 {−kH(z(τ)) + P(τ)} dτ

+

∫ t
0

e−A(t−τ)πs {−kH(z(τ)) + P(τ)} dτ

+

∫ 0
−∞

e−A(t−τ)πs {−kH(z(τ)) + P(τ)} dτ

= e−At
{
w0 +

∫ 0
−∞

eAτπs {−kH(z(τ)) + P(τ)} dτ

}

+

∫ t
0

e−A(t−τ) {−kH(z(τ)) + P(τ)} dτ

= e−Atz(0) +

∫ t
0

e−A(t−τ)π0 {−kH(z(τ)) + P(τ)} dτ,

where

z(0) = w0 +

∫ 0
−∞

eAτπs {−kH(z(τ)) + P(τ)} dτ. (3.10)

This concludes the proof of the lemma. ♦



76 Center manifold and exponentially bounded solutions

Lemma 3.3 Suppose that H(0) = 0 and z ∈ Zη for η ∈ [0, β). Then, z is a
solution of (2.1) if and only if there exists some w0 ∈ W0 such that z satisfies
(3.6).

Proof Suppose that z is a solution of (2.1). Then, in the same way as the
proof of lemma 3.2, we consider

π0z(t) = e
−Atπ0z(0) +

∫ t
0

e−A(t−τ)π0 {−kH(z(τ)) + P(τ)} dτ, t ∈ R.

and

πsz(t) = e
−A(t−t0)πsz(t0) +

∫ t
t0

e−A(t−τ)πs {−kH(z(τ)) + P(τ)} dτ, t ∈ R.

Since z belongs to Zη, there exists R > 0 such that ‖z(t)‖ ≤ Reη|t|, for all t ∈ R.
Fix some t ∈ R and let t0 ≤ min{t, 0}; then we have

‖e−A(t−t0)πsz(t0)‖ ≤ Re
−β(t−t0)e−ηt0 = Re−βte(β−η)t0 → 0 as t0 → −∞.

On the other hand, we obtain the following estimate

‖

∫ t
−∞

e−A(t−τ)πs {−kH(z(τ)) + P(τ)} dτ‖ ≤ e
η|t|

{
kLR

β + η
+

kLR

β − η
+
Lp

β

}
,

(3.11)
where L is the Lipschitz constant of H . Hence, putting w0 = π0z(0) and passing
to the limit when t0 goes to −∞ we get (3.6).
The converse follows in the same way as the foregoing lemma. ♦

Lemma 3.4 Suppose that H is bounded and z ∈ Zη for η ∈ [0, β). Then, z is
a solution of (2.1) if and only if there exists some w0 ∈ W0 such that z satisfies
(3.6).

Now, from (3.6) we only have to prove that the following set

M =M(c, k, P ) = {z(0) : z ∈ Zη, and satisfies (3.6) } (3.12)

is a continuous manifold for some values of c and η ∈ (0, β(c)). From (3.10) we
get that

M = {w0 + πsz(0) : (w0, z) ∈W0 × Zη, (w0, z) satisfying (3.6)} (3.13)

We shall need the following definition and notations:

Definition

(a) For each w0 ∈W0 we define the function Sw0 : R→W by:

(Sw0)(t) = e
−Atw0, t ∈ R;
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(b) for each function z : R → W we define the non-autonomous Nemytski
operator G(z) : R→W by

G(z)(t) = −kH(z(t)) + P(t), t ∈ R;

(c) for those functions z : R→W for which the integrals make sense we define
Kz : R→W by

Kz(t) =

∫ t
0

e−A(t−τ)π0z(τ)dτ +

∫ t
−∞

e−A(t−τ)πsz(τ)dτ, t ∈ R.

With this notation, (3.6) can be written in the following equivalent form in Zη

z = Sw0 +K ◦G(z). (3.14)

The proof of the following lemma is not hard:

Lemma 3.5 (a) S is a bounded operator from W0 into Zη for each η ≥ 0.

(b) if H(0) = 0 or H is bounded, then G maps Zη into itself for η ≥ 0 and

‖G(z1)−G(z2)‖η ≤ kL‖z1 − z2‖η, z1, z2 ∈ Zη;

(c) for η ∈ (0, β) the linear operator K is bounded from Zη into itself and

‖K‖η ≤ R(c) =M(ε)

{
1

η − ε
+

1

β(c) − η

}
, (3.15)

where L is the Lipschitz constant of H, β is given by corollary 2.3, 0 <
ε < η < β and M(ε) is given by corollary 2.4.

Lemma 3.6 Let c > 0, k > 0 and η ∈ (0, β) such that

Γ = ‖K‖ηkL < 1. (3.16)

Then (I −K ◦ G) : Zη → Zη is a homeomorphism with inverse Ψ : Zη → Zη
and the manifold M =M(c, k, P ) is given by

M = {w0 + πsΨ(Sw0)(0) : w0 ∈W0}. (3.17)

Proof It follows from Lemma 3.5 that K ◦ G maps Zη into itself for η ∈
(0, β) and is globally Lipschitzian with Lipschitz constant Γ. Then, under the
condition (3.16) the map (I −K ◦G) : Zη → Zη is invertible, with inverse Ψ :
Zη → Zη which is also globally Lipschitzian with Lipschitz constant (1 − Γ)−1.
In particular Ψ is a continuous function. Therefore, the equation (3.14) has a
unique solution given by

z(t) = (I −K ◦G)−1(Sw0)(t) = Ψ(Sw0)(t), t ∈ R. (3.18)

Hence, from (3.13) we get (3.17). ♦
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Proof of Theorem 3.1. If we take for example η = β/2, then R(c) given by
(3.15) can be written as follow

R(c) =M(ε)

{
2

β − 2ε
+
2

β

}
,

with 0 < ε < β
2 . Hence, from limc→∞R(c) = 0. So, we can choose c such that

Γ = ‖K‖ηkL ≤ R(c)kL < 1.

Then, using Lemma 3.6 we obtain the first conclusion of the Theorem and
defining ψ :W0 → Ws by

ψ(w0) = πsΨ(Sw0)(0), w0 ∈W0,

we get (3.4). Clearly, the function ψ is globally Lipschitzian.
On the other hand, from (3.10) we have

z(0) = w0 + πsz(0) = w0 + ψ(w0)

= w0 +

∫ 0
−∞

eAτπs {−kH(Ψ(Sw0)(τ)) + P(τ)} dτ.

Therefore,

ψ(w0, P ) =

∫ 0
−∞

eAτπs {−kH(Ψ(Sw0)(τ)) + P(τ)} dτ. (3.19)

To complete the proof of part (a), let us consider w1, w2 ∈ W, P1, P2 ∈
Cb(R,R

n) and

ψ(w1, P1)− ψ(w2, P2) =

∫ 0
−∞
−keAτπs {H(Ψ(Sw1)(τ)) −H(Ψ(Sw2)(τ))} dτ

+

∫ 0
−∞

eAτπs {P1(τ)− P2(τ)} dτ.

From Corollary 2.3 we get that

‖Sw1 − Sw2‖η = sup
τ∈R

e−η|τ |‖eAτ (Sw1 − Sw2)‖

≤ M‖w1 − w2‖,

and from Lemma 3.6 we get that

‖Ψ(Sw1)−Ψ(Sw2)‖η ≤ (1− Γ)−1‖Sw1 − Sw2‖η

≤ M(1− Γ)−1‖w1 − w2‖.

Therefore,

‖ψ(w1, P1)− ψ(w2, P2)‖ ≤

∫ 0
−∞

kLM(1− Γ)−1‖w1 − w2‖e
(β−η)τdτ

+

∫ 0
−∞
‖P1 − P2‖e

βτdτ.



Luis Garcia & Hugo Leiva 79

Hence,

‖ψ(w1, P1)− ψ(w2, P2)‖ ≤
kLM(1− Γ)−1

β − η
‖w1 − w2‖+

1

β
‖P1 − P2‖.

To prove part (b), let us suppose that: ‖H(u)‖ ≤ l, u ∈ Rn and Lp =
supτ∈R ‖P (τ)‖. Then, from (3.19) we get that

‖ψ(w0)‖ ≤

∫ 0
−∞

eβτ{kl+ LP }dτ ≤
kl + LP

β
, w0 ∈ W0.

Part (c) follows from Theorem 2.1 of [7]. ♦

Remark The equation (3.6) may not have bounded solutions in R. However,
if H = 0 and P satisfies the condition

sup

{
|

∫ t
0

‖π0P(τ)‖dτ |: t ∈ R

}
<∞,

then for each w0 ∈W0 the equation (3.6) has a bounded solution which is given
by

z(t) = e−Atw0 +

∫ t
0

e−A(t−τ)π0P(τ)dτ +

∫ t
−∞

e−A(t−τ)πsP(τ)dτ, t ∈ R.

An open question, is the following: What conditions do we have to impose to the
functions H and P to insure the existence of bounded solutions of the equation
(3.6)?
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