
Nonlinear Differential Equations,
Electron. J. Diff. Eqns., Conf. 05, 2000, pp. 121–133
http://ejde.math.swt.edu or http://ejde.math.unt.edu
ftp ejde.math.swt.edu or ejde.math.unt.edu (login: ftp)

Bifurcation of reaction-diffusion systems related

to epidemics ∗

Anthony W. Leung & Beatriz R. Villa

Dedicated to Alan Lazer
on his 60th birthday

Abstract

The article considers the reaction-diffusion equations modeling the in-
fection of several interacting kinds of species by many types of bacteria.
When the infected species compete significantly among themselves, it is
shown by bifurcation method that the infected species will coexist with
bacterial populations. The time stability of the postitive steady-states are
also considered by semigroup method. If the infected species do not inter-
act, it is shown that positive coexistence states with bacterial populations
are still possible.

1 Introduction, Epidemic Models

This article considers reaction-diffusion equations modeling the infection of sev-
eral interacting kinds of species by many types of virus or bacteria. Rigorous
mathematical treatments are presented in the series of papers [1], [2] and [3]
for analyzing the infection of one species by one type of bacteria. The situation
can become even more involved in reality when there are more than one kind of
bacteria and species, which may also interact among themselves. We consider
the system:

−∆ui + ai(x)ui =
∑m
j=1 bijvj for x ∈ Ω, i = 1, . . . , n, (1.1)

−∆vk + ãk(x)vk =
∑n
j=1 fkj(uj) + vk

∑m
j=1 ckjvj for x ∈ Ω, k = 1, . . . ,m

ui = vk = 0 for x ∈ ∂Ω, i = 1, . . . , n, k = 1, . . . ,m

where bij > 0 and ckj ≥ 0 are constants, fkj ∈ C1(R), and Ω is a bounded
domain in RN , with ∂Ω of class C2+α, 0 < α < 1. Here, ∆ denotes the Lapla-
cian operator; and the corresponding parabolic system, with ∂ui/∂t and ∂vk/∂t
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122 Bifurcation of reaction-diffusion systems related to epidemics

added to the first n and the second m equations respectively on the left of (1.1),
will also be considered. The functions ui represent n different kinds of bacte-
rial population densities and vk represent m different types of infected species
population densities. The populations are assumed to diffuse in space Ω. The
functions ai(x) are assumed to be positive, because the bacterial populations
tend to die in the absence of other factors; and the terms bijvj represent the
growth of the number bacteria due to infected species. The functions ãk(x)
are assumed to be positive, because a certain proportion of the infected species
recover per unit time; the terms fkj(uj) describe the rate the k-th species be-
comes infected by uj, and the terms vkckjvj describe interaction between the
k-th and j-th infected species. The model can be more readily interpreted in the
form of the corresponding parabolic system, with (1.1) considered as the steady
state solution. The prototype form with m = n = 1, c11 = 0, is introduced and
explained in e.g. [1] and [2]. We will consider the case when all ckj are zero as
well as other cases.
For convenience, we will adopt the following conventions. Let B and K0 be

respectively n×m and m× n constant matrices as follows:

B =



b11 · · · b1m
...

...
bn1 · · · bnm


 K0 =



f ′11(0) · · · f ′1n(0)
...

...
f ′m1(0) · · · f

′
mn(0)


 . (1.2)

Let E = {w = col(w1, . . . , wn+m)|wi ∈ C1(Ω̄), wi = 0 on ∂Ω, i = 1, . . . ,m+ n},
with norm ‖w‖E = max{‖wi‖C1(Ω)|i = 1, . . . ,m + n}; and P denotes the cone
P = {col.(w1, . . . , wn+m) ∈ E|wi ≥ 0 in Ω̄, i = 1, . . . , n + m}. Also, let
F = {w = col.(w1, . . . , wn+m)|wi ∈ C2+α(Ω̄), wi = 0 on ∂Ω} with its norm
denoted as ‖w‖F = max{‖wi‖C2+α(Ω̄)|i = 1, . . . ,m + n}. As operators from

C2+α(Ω) into Cα(Ω), we write Li = −∆ + ai for i = 1, . . . , n, and Ln+k =
−∆+ ãk, for k = 1, . . . ,m. As an operator from F into [Cα(Ω̄)]n+m, we write
L = col(L1, . . . , Ln+m). For abbreviation, we write F̂ = col(F1, . . . , Fn+m),
where Fj are operators from [C

1(Ω̄)]n+m or F into C1(Ω̄) defined by:

Fi[col(u1, . . . , un, v1, . . . , vm)] =

m∑
j=1

bijvj for i = 1, . . . , n

Fn+k[col(u1, . . . , un, v1, . . . , vm)] =

n∑
j=1

fkj(uj) + vk

m∑
j=1

ckjvj (1.3)

for k = 1, . . . ,m

We now label a few key assumptions, some or all of which will be used in various
theorems in this article.

[H1] The functions ai and ãk are members of C
α(Ω̄), 0 < α < 1, and satisfy

ai(x) > 0, ãk(x) > 0 for all x ∈ Ω̄, i = 1, . . . , n, k = 1, . . . ,m.

[H2] The functions fkj ∈ C1(R) satisfy f ′kj(0) > 0 and fkj(0) = 0, fkj(s) ≥ 0
for all s ≥ 0, k = 1, . . . ,m, j = 1, . . . , n. For each k, there exists at least
one j such that 0 < fkj(s) for all s > 0.
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[H2*] In addition to all the properties in [H2], the functions of fkj satisfy
fkj(s) ≤ K1s for all s > 0, where K1 is some positive constant.

[H3] There exists a constant vector ~d = col(d1, . . . , dn), with di > 0, i =

1, . . . , n such that: BK0~d > (λ1 + a
∗)2 ~d.

In [H3] and the rest of the paper, the (strict) inequality between the two vectors
is interpreted to be satisfied for each component. The quantity λ1 denotes the
first eigenvalue of the problem: −∆φ = λφ in Ω, φ = 0 on ∂Ω; and φ will denote
the corresponding positive eigenfunction with ‖φ‖∞ = 1. The symbols a∗ and
a∗∗ are defined as a∗ = sup{ai(x), ãk(x)|x ∈ Ω̄, i = 1, . . . , n, k = 1, . . . ,m} and
a∗∗ = inf{ai(x), ãk(x)|x ∈ Ω̄, i = 1, . . . , n, k = 1, . . . ,m}. Another assumption
which will sometimes be used concerning the interaction of the species vk is as
follows:

[H4] ckk < 0 and |ckk| >
∑m
j=1,j 6=k |ckj |, for each k = 1, . . . ,m.

In Section 2, we will show that problem (1.1) has a positive solution under ap-
propriate conditions. Essentially, we assume that intraspecies interaction among
infected species is large compared with interspecies interactions (cf. hypothesis
[H4]). In Section 3 we consider the time stability of the positive solution as a
steady-state of the corresponding parabolic system, when the infected species
vk compete among themselves (i.e. ckj < 0). In Section 4 we consider the situa-
tion when the infected species vk do not interact (i.e. ckj = 0). We show that a
positive solution still exists, if we assume appropriate infection rates when large
numbers of bacteria are present (cf. [H5]). We will use bifurcation methods to
show the existence of positive steady-state solutions, and semigroup method to
analyze stability of steady-states. In many cases, we only outline the ideas of
the proofs, the complete details will be shown elsewhere.

2 Bifurcation of Infected Species

In this section, we will show that under hypotheses [H1], [H2*], [H3] and [H4],
the problem (1.1) has a positive solution. The main result of this section is
Theorem 2.2. Let w = col(u1, . . . , un, v1, . . . , vm), the system (1.1) can be ab-
breviated as

L[w] = F [w], where w ∈ F, (2.1)

with the operators L and F as introduced before. To study this nonlinear
problem, we consider the auxiliary problem:

L[w] = λF [w], w ∈ F, (2.2)

where λ is a parameter, and investigate the bifurcation from the trivial solution
w = 0 as the parameter λ passes through a certain value λ0. Under conditions
[H1] and [H2], we will see that this bifurcation actually occurs in Theorem 2.1.
Moreover, in Theorem 2.2, we will see that hypotheses [H2*] and [H3] insure
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that λ0 < 1; and hypothesis [H4] insures that the bifurcation curve of nontrivial
solutions connects to λ = +∞. Thus (2.2) has a nontrivial solution when
λ = 1, i.e. (2.1) has a nontrivial solution under appropriate conditions. For
convenience, we let M0 denotes the (n+m)× (n+m) square constant matrix:

M0 =

[
0 B
K0 0

]

where the 0’s along the diagonal are zero matrices with appropriate dimensions.
Applying L−1 to both sides of (2.2), using zero Dirichlet boundary condition,
we obtain: w = λL−1F [w]. Thus, (2.2) can be written as:

Q(λ,w) = 0, (λ,w) ∈ R× E, (2.3)

where Q : R× E→ E is an operator given by

Q(λ,w) := w − λL−1F [w]

(for the entire paper the inverse operators L−1 or L−1i will always mean finding
the solution using zero Dirichlet boundary condition).

Theorem 2.1 Under hypotheses [H1] and [H2], the point (λ0, 0) is a bifurcation
point for problem (2.3). Here λ = λ0 is the unique positive number so that the
problem:

L[w] = λM0w in Ω, w = 0 on ∂Ω, (2.4)

has a nonnegative eigenfunction in E. (The eigenvalue λ0 is simple.) Moreover,
the component of S̄ containing the point (λ0, 0) is unbounded, where

S := {(λ,w) ∈ R+ ×P|Q(λ,w) = 0, λ > 0 and w ∈ P\{0}};

and it also has the property that S̄ ∩ (R × ∂P) = (λ0, 0).

We first state a sequence of Lemmas which will lead to the proof of Theo-
rem 2.1.

Lemma 2.1 (Comparison). Let w, ŵ ∈ [C2(Ω) ∩ C1(Ω̄)]n+m, w 6≡ 0, ŵi ≥
0, wi 6≡ 0 in Ω, for i = 1, . . . , n+m, satisfy

Li[wi(x)] =

n+m∑
j=1

pij(x)wj(x), for x ∈ Ω, i = 1, . . . , n+m

w|∂Ω = 0, w = col(w1, . . . , wn+m),

Li[ŵi(x)] ≥
n+m∑
j=1

qij(x)ŵj(x), for x ∈ Ω, i = 1, . . . , n+m

ŵ = col(ŵ1, . . . , ŵn+m)
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where pij and qij are bounded functions in Ω. Suppose that

qij ≥ pij in Ω̄ for i, j = 1, . . . , n+m,

and qij , pij ≥ 0 in Ω̄ for all i 6= j,

then there exists an integer k, 1 ≤ k ≤ n+m and a real number δ such that

ŵk ≡ δwk, pkj ≡ qkj in Ω̄ for all j = 1, . . . , n+m

and ŵj − δwj ≥ 0 for all j = 1, . . . , n+m.

This lemma is exactly the same as Lemma 2.1 in [10], the proof will thus be
omitted.

Lemma 2.2 Under hypotheses [H1] and [H2], there exists (λ0, w
0) ∈ R × F,

λ0 > 0, such that

L[w0] = λ0M0w
0 in Ω, w0 = 0 on ∂Ω (2.5)

with each component w0i > 0 in Ω, ∂w
0
i /∂ν < 0 on ∂Ω for i = 1, . . . , n+m. Fur-

thermore, 1/λ0 is a simple eigenvalue of the operator L
−1M0 : [C

1(Ω̄)]n+m →
[C1(Ω̄)]n+m (that is the eigenfunction corresponding to this eigenvalue is unique
up to a multiple). The number λ = λ0 is the unique positive number so that the
problem w = λL−1M0w has a nontrivial nonnegative solution for w ∈ P.

Lemma 2.3 Let G : E→ E be the operator defined by:

G[w] = L−1[F (w)−M0w],

then ‖G[w]‖E/‖w‖E → 0 as ‖w‖E → 0.

The details for proving these lemmas will be shown in a forthcoming article.

Outline of Proof of Theorem 2.1: The operator G described above is
completely continuous; and the operator L−1M0 described in Lemma 2.2 is
compact and positive with respect to P. Equation (2.3) can be written as:

w − λL−1[M0w]− λG[w] = 0, for (λ,w) ∈ R
+ × E.

By means of Lemma 2.3 and the existence and uniqueness part of Lemma 2.2 we
can apply Theorem 29.2 in [5] to conclude that (λ0, 0) is a bifurcation point for
problem (2.3), and the component of S̄ containing the point (λ0, 0) as described
above is unbounded.
Let (λi, wi) ∈ S, i = 1, 2, . . . be a sequence tending to a limit point (λ̄, w̄) in

R × ∂P. Using the limiting equation for (λ̄, w̄), we can show by means of the
maximum principle and the uniqueness part of Lemma 2.2 that (λ̄, w̄) = (λ0, 0).
The details will be shown in a later article.
Using additional hypotheses, we can show by means of Theorem 2.1 that the

original problem (2.1) or (1.1) has a nonnegative solution.
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Theorem 2.2 Under hypotheses [H1], [H2*], [H3] and [H4], the problem (2.1)
has a solution w = col(w1, . . . , wn+m) ∈ F, such that wi ≥ 0 in Ω for each i and
w 6≡ 0 (i.e. w ∈ P\{0}).

In order to prove Theorem 2.2, we first show the following two lemmas.

Lemma 2.4 Under hypotheses [H1], [H2] and [H3], the positive number where
bifurcation occurs described in Theorem 2.1 satisfies λ0 < 1.

To prove this lemma, we first use [H3] to find a constant vector ~g such that
L−1[M0~gφ] ≥ rφ~g in Ω for some r > 1. Then we use Theorem 2.5 in [7] to
obtain λ0 ≤

1
r < 1.

Lemma 2.5 Under the hypotheses [H1] and [H2], let (λ̄, w̄) ∈ S, where S is
described in Theorem 2.1. Suppose Rk are positive constants such that 0 ≤
w̄n+k(x) ≤ Rk for all x ∈ Ω̄, k = 1, . . . ,m. Then for each i = 1, . . . , n

0 ≤ wi(x) ≤ λ̄(inf ai)
−1

m∑
k=1

bikRk for all x ∈ Ω̄.

This lemma is proved by the method of upper-lower solution.

Outline of Proof of Theorem 2.2: Let the component of S̄ containing the
point (λ0, 0), described in Theorem 2.1, be denoted by S

+. Since λ0 < 1, by
Lemma 2.4, it suffices to show that the set I := {λ ∈ R+|(λ,w) ∈ S+ for some
w} is unbounded.
We can show by means of [H4] and [H2*] that if there exists λ such that

(λ,w) ∈ S+, then w = col(w1, . . . , wn+m) must satisfy:

0 ≤ wi(x) ≤ N̂ for all x ∈ Ω̄, i = n+ 1, . . . , n+m. (2.6)

for some positive constant N̂ .
Finally, inequality (2.6), Lemma 2.5 and gradient estimates by means of

equation (2.2) imply that S+ cannot be unbounded if I is bounded. Conse-
quently, I must be unbounded, and this completes the proof of the Theorem
2.2.

3 Stability of Infected Competing Species

In this section, we will consider the stability of the steady-state solutions found
in the last section as a solution of the corresponding parabolic system. It will be
seen in Theorem 3.2 that if [H2] and [H4] are strengthened, then the bifurcat-
ing steady-states near the bifurcation point are asymptotically stable in time.
Before obtaining further results with additional hypotheses, we first deduce a
few more consequences of hypotheses [H1] and [H2].
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Lemma 3.1 Under hypotheses [H1] and [H2], the problem

L[w] = λMT0 w in Ω, w = 0 on ∂Ω, (3.1)

has a solution (λ,w) = (λ0, ŵ
0), ŵ0 ∈ F, with each component ŵ0i > 0 in Ω,

∂ŵ0i /∂ν < 0 on ∂Ω for i = 1, . . . , n+m. (Here, λ0 is exactly the same number
as in Lemma 2.2.) Moreover, any solution of (3.1) with λ = λ0 is a multiple of
ŵ0.

Proof. The existence of a positive solution and the simplicity of the corre-
sponding eigenvalue is proved in exactly the same way as Lemma 2.2 with the
role of B and K0 interchanged. The fact that λ0 is exactly the same as in
Lemma 2.2 follows exactly the same procedure as in the proof of Lemma 2.4 in
[10], and will thus be omitted.
For convenience, we will define two operators L0 and L1 : E→ E as follows:

L0 := I − λ0L
−1M0 (3.2)

L1 := −L
−1M0 (3.3)

Lemma 3.2 Under hypotheses [H1] and [H2], the null space and range of L0,
denoted respectively by N(L0) and R(L0) satisfy:

(i) N(L0) is one-dimensional, spanned by w
0;

(ii) dim[E/R(L0)] = 1;

(iii) L1w 6∈ R(L0).

Proof. Part (i) was proved in Lemma 2.2. The remaining parts are proved in
the same way as in Lemma 2.5 in [10]. For the proof of part (iii), the positivity
property of w0 and ŵ0 is used.

Theorem 3.1 Assume hypotheses [H1], [H2] and the additional condition that
fkj ∈ C2(R) for k = 1, . . . , n, j = 1, . . . ,m. Then there exists δ > 0 and a

C1-curve (λ̂(s), φ̂(s)) : (−δ, δ) → R × E with λ̂(0) = λ0, φ̂(0) = 0 such that in
a neighborhood of (λ0, 0), any solution of (2.3) is either of the form (λ, 0) or

on the curve (λ̂(s), s[w0 + φ̂(s)]) for |s| < δ. Furthermore, the set S+\{(λ0, 0)}
is contained in R+ × (Int P), where S+ is the component of the closure of S
(described in Theorem 2.1) containing the point (λ0, 0) in R

+ × E.

Outline of Proof. Equation (2.3) can be written as

Q(λ,w) := L0[w] + (λ− λ0)L1[w]− λG[w] = 0 (3.4)

where the operator G : E → E is defined in Lemma 2.3. Under the additional
smoothness condition on fjk, we can show that Q ∈ C2(R+ × E,E) and the
Frechet derivative of G is continuous on E. Moreover, we can readily deduce as
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in Lemma 2.3 that L0 = D2Q(λ0, 0), L1 = D12Q(λ0, 0), and G[0] = D2G[0] =
0. Hence we can apply the local bifurcation theorem in [4] to obtain the C1-

curve (λ̂(s), φ̂(s)) describing the nontrivial solution of (2.3) near (λ0, 0) as stated
above. The remaining details will be shown elsewhere.
In the remaining part of this section, we will consider the linearized and

asymptotic stability of the positive bifurcating solution described in Theorem
3.1, near (λ0, 0). Applying the bifurcation theory in [4], and the fact that∫

Ω

ŵ0 ·∆−1w0dx 6= 0 (3.5)

(note that each component of both ŵ0 and w0 is strictly positive in Ω), we can
assert that there exist δ1 ∈ (0, δ) and two functions:

(γ(·), z(·)) : (λ0 − δ1, λ0 + δ1)→ R× E,

(η(·), h(·)) : [0, δ1)→ R× E,

with (γ(λ0), z(λ0)) = (η(0), h(0)) = (0, w
0), such that

D2Q(λ, 0)z(λ) = γ(λ)(−L)
−1(z(λ)), and (3.6)

D2Q(λ̂(s), s(w
0 + φ̂(s))h(s) = η(s)(−L)−1(h(s)) (3.7)

Here (3.5) and the theory in [4] imply that γ(λ) and η(s) are respectively L−1-

simple eigenvalues ofD2Q(λ, 0) andD2Q(λ̂(s), s(w
0+φ̂(s)), with eigenfunctions

z(λ) and h(s). Moreover, the theory in [4] further leads to the following lemmas.

Lemma 3.3 Assume all the hypotheses in Theorem 3.1. There exists ρ > 0
such that for each s ∈ [0, δ1), there is a unique (real) eigenvalue η(s) for the
linear operator

Q∗s := −LD2Q(λ̂(s), s(w
0 + φ̂(s)) : F→ [Cα(Ω̄)]m+n (3.8)

satisfying |η(s)| < ρ with eigenfunction h(s) ∈ F. That is,

Q∗sh(s) ≡ −L[h(s)] + λ̂(s)Fw[s(w
0 + φ̂(s))]h(s) = η(s)h(s) (3.9)

The next few lemmas study the behavior of the eigenvalues λ̂(s), η(s) for
small s ≥ 0, and γ(λ) near λ = λ0.

Lemma 3.4 Assume all the hypotheses of Theorem 3.1. Suppose further

[H2** ] f ′′kj(0) < 0 for k = 1, . . . ,m, j = 1, . . . , n;

[H4* ] ckj < 0, for all k, j = 1, . . . ,m.

Then the function λ̂(s) satisfies λ̂′(0) > 0.

Lemma 3.5 Under all the hypotheses in Theorem 3.1, the function γ(λ) satis-
fies γ′(λ0) > 0.
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Lemma 3.6 Under the hypotheses of Theorem 3.1, [H2∗∗] and [H4∗], there
exists δ2 ∈ (0, δ1) such that η(s) < 0 for all s ∈ (0, δ2).

The proof of the last three lemmas will be shown elsewhere.
Equation (2.2) or (2.3) can be written as

−L[w] + λF [w] = 0 (3.10)

The linearized eigenvalue problem for (3.10) at the bifurcating solution w =

s(w0 + φ̂(s)) is precisely (3.9). When λ = λ̂(0) = λ0, the eigenvalue problem
corresponding to (3.9) becomes

−L[h] + λ0M0h = ηh h ∈ E (3.11)

where η is the eigenvalue. Under hypotheses [H1] and [H2], Theorem 2.1 asserts
that η = 0 is an eigenvalue for (3.11), with positive eigenfunction. Using this
property and the fact that the off diagonal terms of M0 are all nonnegative, we
can proceed to show the following.

Lemma 3.7 Under hypotheses [H1] and [H2], all eigenvalues in equation (3.11)
except η = 0 satisfies Re(η) < −r for some positive number r.

Lemma 3.4 to 3.6 above essentially shows the eigenvalue η = 0 corresponding
to (3.9) at s = 0 moves to the left as s increases. As to the other eigenvalues with
Re(η) < −r described in Lemma 3.7, one can show by perturbation arguments
that they should still be in the left open half plane for s > 0 sufficiently small.
More precisely, we have the following.

Lemma 3.8 Under the hypotheses of Theorem 3.1, there exists a number δ∗ ∈
(0, δ) and a positive function η(s) for s ∈ (0, δ∗) such that the real parts of all
the numbers in the point spectrum of the linear operator Q∗s are contained in the
interval (−∞,−η(s)), for s ∈ (0, δ∗). (Here, δ is described in Theorem 3.1 and
Q∗s is described in (3.8) in Lemma 3.3).

For each s ∈ (0, δ∗), the function w̄s := s[w0 + φ̂(s)] described in Theorem
3.1 can be considered as a steady-state solution of the problem:

∂w
∂t
(x, t) + L[w(x, t)] = λF [w(x, t)] in Ω× (0,∞) (3.12)

w(x, t) = 0 x ∈ ∂Ω, t ≥ 0 .

We now consider the time asymptotic stability of this steady-state as a solution
of the parabolic system (3.12). In order to obtain a precise statement, we let
B1 and B2 be Banach spaces as follow:

B1 = {u : u ∈ [C(Ω̄)]n+m, u = 0 on ∂Ω} and

B2 = {u : u ∈ [Lp(Ω)]
n+m} for p large enough such that N/(2p) < 1.

Let A1 be the operator L on B1 with domain D(A1) = {u : u ∈ [W 2,p(Ω)]n+m

for all p, ∆u ∈ [C(Ω̄)]n+m, u = 0 and ∆u = 0 on ∂Ω}; and A2 be the operator
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L on B2 with domain D(A2) = {u ∈ B2 : u ∈ [W 2,p(Ω) ∩W
1,p
0 (Ω)]

n+m}. For
w = col(w1, . . . , wn+m), we consider the following nonlinear initial-boundary
value problem for each i = 1, 2 corresponding to (3.12):

dw

dt
+Aiw(t) = λF (w(t)), w(0) = w0 for t ∈ (0, T ] (3.13)

A solution of (3.13) in Bi is a function w ∈ C([0, T ], Bi) ∩ C1((0, T ], Bi), with
w(0) = w0, w(t) ∈ D(Ai) for all t ∈ (0, T ]; and w(t) satisfies (3.13) for t ∈ (0, T ].
The operatorA2 is an infinitesimal generator of an analytic semigroup, sayM(t),
on B2 for t ≥ 0. It is well known that for α > 0

(−A2)
−α =

1

Γ(α)

∫ ∞
0

τα−1M(τ)dτ

defines a bounded linear operator on B2. Moreover, [(−A2)−α]−1 = (−A2)α is
a closed operator on B2 with dense domain D((−A2)α) = (−A2)−α(B2). We
denote byXα the Banach space (D(−A2)α, ‖ ‖α) where ‖w‖α = ‖(−A2)αw‖Lp
for all w ∈ D((−A2)α).
Using Lemma 3.8, we can use semigroup theory and apply the stability

Theorem 5.1.1 in [6] for sectorial operators to obtain the following asymptotic
stability theorem for the steady-state solution w̄s. The details of the proof are
omitted here.

Theorem 3.2 Assume all the hypotheses of Theorem 3.1, [H2∗∗] and [H4∗].

For each fixed s ∈ (0, δ∗), let λ = λ̂(s), w̄ = s[w0 + φ̂(s)]. Then for each
i = 1, 2, there exists ρ > 0, β > 0 and M > 1 such that equation (3.13) has a
unique solution in Bi for all t > 0 if w0 ∈ B1 and ‖w0 − w̄‖∞ ≤ ρ/(2M) for
i = 1, (or w0 ∈ Xα and ‖w0− w̄‖α ≤ ρ/(2M) for i = 2.) Moreover, the solution
satisfies

‖w(t) − w̄‖∞ ≤ 2Me
−βt‖w0 − w̄‖∞ for all t ≥ 0, i = 1, or (3.14)

‖w(t)− w̄‖α ≤ 2Me
−βt‖w0 − w̄‖α for all t ≥ 0, i = 2. (3.15)

(For solutions in B2, we assume α ∈ (N/(2p), 1) for the space Xα.)

4 Bifurcation of Infected Species with No Inter-
actions

In this section, we consider system (1.1), under the special situation when all
ckj = 0, k, j = 1, . . . ,m; that is, we consider the problem:

−∆ui + ai(x)ui =
∑m
j=1 bijvj for x ∈ Ω, i = 1, . . . , n

−∆vk + ãk(x)vk =
∑n
j=1 fkj(uj) for x ∈ Ω, k = 1, . . . ,m (4.1)

ui = vk = 0 for x ∈ ∂Ω, i = 1, . . . , n, k = 1, . . . ,m .
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In other words, the infected species vk will not interact among themselves.
This situation is a direct generalization of the theory in [1]. Under addi-
tional assumptions on fkj(uj) for large uj (see [H5] below), Theorem 4.1 shows
that problem (4.1) has a positive solution. Letting w = col(w1, . . . , wn+m) =
col(u1, . . . , un, v1, . . . , vm), system (4.1) can be written as:

L[w] = F̃ [w], w ∈ E, (4.2)

where F̃ is the same as F described in (1.3) with the special restriction ckj = 0,
for all k, j = 1, . . . ,m. For convenience, we define

f̂ij(η) :=



fij(η)/η if η 6= 0

f ′ij(0) if η = 0
for i = 1, . . . ,m, j = 1, . . . , n. (4.3)

Also define the m× n matrix

[
f̂ij(ηij)

]m,n
ij=1
:=



f̂11(η11) · · · f̂1n(η1n)
...

...

f̂m1(ηm1) · · · f̂mn(ηmn)


 (4.4)

where ηij are real numbers for i = 1, . . . ,m, j = 1, . . . , n. We will use the
following hypothesis:

[H5 ] There exist a real number η0 > 0, and a constant vector ~q = col(q1, . . . , qn),
with qi > 0, i = 1, . . . , n, such that:

~qTB
[
f̂ij(ηij)

]m,n
i,j=1

< (λ1 + a
∗∗)2~qT for all ηij ≥ η0

Under hypothesis [H5], one can always choose a number ρ1 with 0 < ρ1 <
(λ1 + a

∗∗) such that:

~qTB
[
f̂ij(ηij)

]m,n
i,j=1

< ρ21~q
T < (λ1 + a

∗∗)2~qT for all ηij ≥ η0 (4.5)

The following theorem is the main result of this section.

Theorem 4.1 Under hypotheses [H1], [H2∗], [H3] and [H5], the problem (4.2)
(alternatively, problem (4.1) with w = col(u1, . . . , un, v1, . . . , vm)) has a solution
w = col(w1, . . . , wn+m) ∈ F, such that wi ≥ 0 in Ω̄ for each i and w 6≡ 0 (i.e.
w ∈ P\{0}).

In this entire section, F is considered with the special restriction ckj = 0,
and [H4] is not assumed. We are thus led to the problem:

L[w] = λF̃ [w] w ∈ E (4.6)

with F̃ as described above. Since F̃ is a special case of F , Therem 2.1 applies.
Under the assumptions of Theorem 4.1, let S be as defined in Theorem 2.1,
and S+ be the component of S̄ containing the point (λ0, 0). Recall that S

+ is
proved to be unbounded in Theorem 2.1. The following Lemma will be needed
in the proof of Theorem 4.1.
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Lemma 4.1 Assume all the hypotheses of Theorem 4.1. Suppose {(λ̃r, w̃r)},
r = 1, 2, . . . is a sequence in S+ with the property: λ̃r → λ̂, 0 < λ̂ < ∞, and
‖w̃r‖E → ∞, as r → ∞. Then there exists a subsequence {(λ̃r(j), w̃

r(j))} such

that the first n components of w̃r(j) tend to +∞ uniformly in compact subsets
of Ω, as r(j)→∞.

Outline of Proof of Theorem 4.1: Recall that Lemma 2.4 implies that
λ0 < 1. To prove this Theorem, it suffices to show the fact that if there exists
a sequence in S+ with property as described in Lemma 4.1, then we must have
λ̂ > 1. To show this fact, we use hypothesis [H5] concerning the functions

fkj(uj) for large uj . It will lead to λ̂ ≥ (λ1 + a∗∗)/ρ1 > 1. This leads to the

existence of (λ̃, w̃) in S+ with λ̃ = 1; that is, we obtain a nontrivial, nonnegative
solution of Problem (4.1).

Acknowledgement: The authors would like to express their appreciation to
Professor Luis Ortega for his valuable discussion on the subject.

References

[1] Blat, J. and Brown, K.J., A reaction-diffusion system modelling the spread
of bacterial infections, Math. Meth. in the Appl. Sci. 8(1986) 234-246.

[2] Capasso, V. and Maddalena, L., A non-linear diffusion system modelling
the spread of oro-faecal diseases, Nonlinear Phenomena in Mathematical
Sciences (edited by V. Laksmikantham) New York, Academic Press, 1981.

[3] Capasso, V. and Maddalena, L., Convergence to equilibrium states for a
reaction-diffusion system modelling the spread of a class of bacterial and
viral diseases, J. Math. Biology 13(1981) 173-184.

[4] Crandall, M. and Rabinowitz, P., Bifurcation, perturbation of simple eigen-
values and linearized stability, Arch. Rat. Mech. Anal. 52(1973) 161-181.

[5] Deimling, K., Nonlinear Functional Analysis, Springer-Verlag, New York,
1985.

[6] Henry, D., Geometric Theory of Semilinear Parabolic Equations, Lecture
Notes in Mathematics 840(1981), Springer-Verlag, New York.

[7] Krasnosel’skii, M.A., Positive Solutions of Operator Equations, P. Noorhoff
Ltd., Groningen, 1964.

[8] Lazer, A., Leung, A., and Murio, D., Monotone scheme for finite difference
equations concerning steady-state prey-predator interactions, J. of Comp.
and Appl. Math. 8(1982) 243-252.



Anthony W. Leung & Beatriz R. Villa 133

[9] Leung, A., Systems of Nonlinear Partial Differential Equations, Applica-
tions to Biology and Engineering, Kluwer Academic Publishers, Boston,
1989.

[10] Leung, A. and Villa, B., Reaction-diffusion systems for multigroup neu-
tron fission with temperature feedback: positive steady-state and stability,
Differential and Integral Eqs. 10(1997), 739-756.

[11] Leung, A. and Ortega, L., Bifurcating solutions and stabilities for multi-
group neutron fission systems with temperature feedback, J. Math. Anal.
Appl. 194(1995) 489-510.

[12] Pao, C.V., Nonlinear Parabolic and Elliptic Equations, Plenum, New York,
1992.

[13] Pazy, A., Semigroup of Linear Operators and Applications to Partial Dif-
ferential Equations, Springer-Verlag, New York, 1983.

[14] Protter, M. and Weinberger, H., Maximum Principles in Differential Equa-
tions, Prentice Hall, Englewood Cliff, New Jersey, 1967.

[15] Stewart, B., Generation of analytic semigroups by strongly elliptic opera-
tors, Tran. Amer. Math. Soc. 199(1974) 141-161.

Anthony W. Leung
Department of Mathematical Sciences
University of Cincinnati
Cincinnati OH 45221-0025, USA
e-mail: Anthony.Leung@uc.edu

Beatriz R. Villa
Department of Mathematics
Universidad Nacional de Colombia
Bogota, Colombia
e-mail: bvilla@matematicas.unal.edu.co


