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LARGE SOLUTIONS, METASOLUTIONS, AND

ASYMPTOTIC BEHAVIOUR OF THE REGULAR POSITIVE

SOLUTIONS OF SUBLINEAR PARABOLIC PROBLEMS

Julián López-Gómez

Dedicated to Alan C. Lazer on his 60th birthday

Abstract. In this paper we analyze the existence of regular and large positive
solutions for a class of non-linear elliptic boundary value problems of logistic type
in the presence of refuges. These solutions describe the asymptotic behaviour of
the regular positive solutions of the associated parabolic model. The main tool in
our analysis is an extension of the interior estimates found by J. B. Keller in [Ke57]
and R. Osserman in [Os57] to cover the case of changing sign nonlinearities combined
with the construction of adequate sub and supersolutions. The supersolutions are far
from obvious since the nonlinearity vanishes in finitely many regions of the underlying
support domain.

1. Introduction

In this paper we analyze the asymptotic behaviour of the positive solutions of

∂u

∂t
−∆u = λu − a(x)f(x, u)u in Ω× (0,∞) ,

u(x, t) = 0 on ∂Ω× (0,∞) ,

u(·, 0) = u0 ≥ 0 in Ω ,

(1.1)

where Ω is a bounded domain of RN , N ≥ 1, with boundary ∂Ω of class C3, λ ∈ R,
and a ≥ 0, a 6= 0, is a function of class Cµ(Ω̄), for some µ ∈ (0, 1), satisfying the
following assumptions:

(Ha1) The open set
Ω+ := { x ∈ Ω : a(x) > 0 }

is connected with boundary ∂Ω+ of class C
3. Moreover, if Γ+ and Γ are

components of ∂Ω+ and ∂Ω, respectively, such that Γ+∩Γ 6= ∅, then Γ+ = Γ
and a(x) is bounded away from zero on Γ+.

(Ha2) If Γ+ is a component of ∂Ω+ such that Γ+ ∩ ∂Ω = ∅, then

a(x) = o(dist(x,Γ+)) as dist(x,Γ+) ↓ 0 , x ∈ Ω+ . (1.2)
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(Ha3) The open set Ω0 := Ω \ Ω̄+ possesses a finite number of components, say
Ωi0,j , 1 ≤ i ≤ m, 1 ≤ j ≤ ni, such that

Ω̄i0,j ∩ Ω̄
î
0,ĵ
= ∅ if (i, j) 6= (̂i, ĵ) .

In the sequel given a regular subdomain D of Ω and V ∈ Cµ(D̄), we denote
by σD[−∆+V ] the principal eigenvalue of −∆+V in D under homogeneous
Dirichlet boundary conditions, and set σD := σD[−∆]. Without loss of
generality we can label the components of Ω0 so that

σΩ
i
0,j = σΩ

i
0,j+1 , 1 ≤ i ≤ m, 1 ≤ j ≤ ni − 1 , (1.3a)

and
σΩ

i
0,1 < σΩ

i+1
0,1 , 1 ≤ i ≤ m− 1 . (1.3b)

As for the nonlinearity, we suppose the following:

(Hf) The function f : Ω̄ × [0,∞) → R is continuous and of class Cµ,1+µ(Ω̄ ×
(0,∞)) and it satisfies f(x, 0) = 0, f(x, u) > 0, and ∂uf(x, u) > 0 for all
u > 0 and x ∈ Ω. Moreover,

lim
u↑∞

f(x, u) =∞

uniformly on compact subsets of Ω̄+.

Problem (1.1) provides us with the evolution of a single species obeying a generalized
logistic growth law [Mu93], [Ok80]. Typically, u is the density of the species, Ω
is the inhabiting region, λ is the net growth rate of u, and the coefficient a(x)
measures the saturation effect responses to the population stress in Ω+. In Ω0
the individuals of the population are free from other effects than diffusion and so
each of the components of Ω0 can be regarded as a refuge. The refuges have been
ordered accordingly to the size of the principal eigenvalue of−∆ under homogeneous
Dirichlet boundary conditions. The refuges Ω10,j, 1 ≤ j ≤ ni, will be called the lower
order refuges. Throughout this paper we use the following notation

σ0 := σ
Ω , σi := σ

Ωi0,1 , 1 ≤ i ≤ m. (1.4)

Thanks to (1.3b),
σ0 < σ1 < σ2 < · · · < σm .

In case m = 1 one should simply write σ0 < σ1.
The classical results for the case when a(x) is bounded away from zero in Ω̄

strongly suggest that the dynamics of the positive solutions of (1.1) should be
regulated by its non-negative steady states, which are the non-negative solutions of

−∆u = λu− a(x)f(x, u)u in Ω , u|∂Ω = 0 . (1.5)

Under the assumptions above, any non-negative solution of (1.5) lies in the Banach
space

U := { u ∈ C2+µ(Ω̄) : u|∂Ω = 0 } .
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Moreover, if u ∈ U \ {0} is a non-negative solution of (1.5), then it follows from
the strong maximum principle that u(x) > 0 for all x ∈ Ω and ∂u

∂n
(x) < 0 for all

x ∈ ∂Ω, where n is the outward unit normal to Ω at x, i.e. u lies in the interior
of the cone U+ of non-negative functions of U . Furthermore, for any p > N

2 and

u0 ∈ U0 := W 2,p
0 (Ω), u0 ≥ 0, the parabolic problem (1.1) has a unique global

regular solution u[λ,a,Ω](x, t;u0) (cf. Proposition 24.9 of [DK92]). By a global
regular solution we mean that

u[λ,a,Ω] ∈ C(Ω̄× [0,∞)) ∩C
2+µ,1+ µ2 (Ω̄× (0,∞)) . (1.6)

Indeed, for any non-negative solution u of (1.1) we have

∂u

∂t
−∆u = λu− a(x)f(x, u)u ≤ λu ,

and hence
u(x, t;u0) ≤ T (t)u0 ,

where T (t) is the Lp-evolution operator associated with ∆+ λ under homogeneous
Dirichlet boundary conditions. Therefore, the solutions are global in time. If the
initial data has less regularity, e.g. u0 ∈ C(Ω̄) instead of u0 ∈ U0, then (1.6) might
fail. Nevertheless, by parabolic regularity, for any u0 ∈ C(Ω̄), u0 ≥ 0, we have

u[λ,a,Ω] ∈ C
2+µ,1+ µ2 (Ω̄× (0,∞)) .

Some pioneer results about the dynamics of the positive solutions of (1.1) in the
presence of refuges were found in [FKLM96], where assuming m = 1 and n1 = 1
it was shown that problem (1.5) possesses a positive solution if, and only if, σ0 <
λ < σ1 and that within this range of values of the parameter λ the unique positive
solution of (1.5) is a global attractor for the positive solutions of (1.1), whereas the
species is driven to extinction if λ ≤ σ0. Some pioneer results about the existence
of positive solutions of (1.5) had already been given in [BO86] and [Ou92].
In [GGLS98] problem (1.5) was analyzed under more restrictive assumptions

than those imposed here in. Precisely, it was assumed that m = n1 = 1, that
D := Ω \ Ω̄10,1 satisfies D̄ ⊂ Ω, and that there exists p > 0 such that

f(x, u) = |u|p , (x, u) ∈ Ω̄× R . (1.7)

One of the many results found in [GGLS98] shows that if uλ stands for the maximal
regular non-negative steady-state of (1.5), then

lim
λ↑σ1

uλ =∞ uniformly in Ω̄10,1 ,

while in D := Ω\ Ω̄10,1 the positive solutions uλ stabilize as λ ↑ σ1 to a large regular
positive solution of the problem

−∆u = λu − a|u|pu in D ,

u =∞ on ∂D ,
(1.8)

for the value of the parameter λ = σ1. This result is of great interest by itself
because it implies the existence of a large solution in a problem where the weight
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function a(x) vanishes on a component of the boundary, whereas most of the pre-
vious results about the existence of large solutions had been given in the simplest
case when the nonlinearity is bounded away from zero (cf. [Ke57], [Os57], [BM91],
[Ve92], [LM93], [LM94], [MV97], and the references therein), and in addition it
shows how a uniform interior Harnack inequality might fail when the nonlinearity
vanishes in some region of the support domain. It should be pointed out that the
classical interior estimates of [Ke57] and [Os57] can not be applied straight away
to show the existence of a large positive solution of (1.8), since our nonlineari-
ties change of sign, and that this fact provokes the existence of some unimportant
gaps in some of the proofs given in references (e.g. the proof of Lemma 1.3 in
[MV97]). Nevertheless, the results of [LM93], [LM94] and [GGLS98] can be used
to fill in these gaps, since the large solutions in balls provide us with those interior
estimates.
Thanks to these results a rather natural question arises. How does behave the

population as times grows to infinity when λ ≥ σ1? It can not approach to a regular
positive solution, of course. In fact, for any u0 > 0 and ε > 0 we have that

u[λ,a,Ω](·, t;u0) ≥ u[σ1−ε,a,Ω](·, t;u0) ,

and hence
lim inf
t↑∞

u[λ,a,Ω](·, t;u0) ≥ uσ1−ε .

On the other hand, thanks to Theorem 3.1 of [GGLS98],

lim
ε↓0

uσ1−ε =∞ uniformly in Ω̄10,1 .

Therefore, for each λ ≥ σ1 it follows that

lim inf
t↑∞

u[λ,a,Ω](·, t;u0) =∞ uniformly in Ω̄10,1 , (1.9)

and hence the population grows arbitrarily in the refuge as times passes by. How
does behave the population in the complement of the refuge? The answer to this
question in the very special case when m = 1, n1 = 1, Ω̄

1
0,1 ⊂ Ω and (1.7) are

satisfied was given very recently in [DH99], where it was shown that the limiting
population inD as t ↑ ∞ lies in between the minimal and the maximal large solution
of the following problem

−∆u = λu− a(x)up+1 in D ,

u =∞ on ∂D ∩ Ω ,

u = 0 on ∂D ∩ ∂Ω .

(1.10)

For this special location of the refuge one can consider a general boundary operator
on ∂D ∩ ∂Ω of mixed tipe (cf. [FKLM96] and [DH99]). Note that in (1.10) a(x) is
bounded away from zero in any compact subset of D.
The case when the species possesses an arbitrarily large number of refuges within

its inhabiting region and (1.7) is satisfied has been already analyzed in [GL98] and
[G99], where the concept of metasolution was introduced in order to characterize
all the possible limiting profiles of the population as t ↑ ∞. Setting

Ωk := Ω \ ∪
k
i=1 ∪

ni
j=1 Ω̄

i
0,j , 1 ≤ k ≤ m,
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a function
M : Ω→ [0,∞]

is said to be a metasolution of order k of (1.5) supported in Ωk ifM|Ωk is a large
regular solution of

−∆u = λu − a(x)uf(x, u) in Ωk ,

u =∞ on ∂Ωk \ ∂Ω ,

u = 0 on ∂Ωk ∩ ∂Ω ,

(1.11)

and
M =∞ in (Ω \ Ωk) ∪ (∂Ωk \ ∂Ω) .

In other words, a metasolution is the continuous extension by infinity to the totality
of Ω of a large solution of (1.11). The main analytical result obtained in [GL98]
shows that (1.5) possesses a metasolution of order k supported in Ωk provided

σk ≤ λ < σk+1

if k ≤ m − 1, and provided λ ≥ σm if k = m. This result was obtained for the
special choice (1.7), where the interior estimates of [GGLS98] work out.
In this paper we obtain some substantial generalizations of all these results to

cover the general case when conditions (Ha1-3) and (Hf) are satisfied, and in par-
ticular we complete the analysis already begun in [GL98] where it was conjectured
that the metasolutions of order k ≤ m − 1 (resp k = m) should give the limiting
profile of the population as t ↑ ∞ if σk ≤ λ < σk+1 (resp. λ ≥ σm).
The distribution of this paper is as follows. In Section 2 we characterize the

existence of regular positive solutions for (1.5) and show their global asymptotic
stability with respect to the positive solutions of (1.1).
In Section 3 we generalize the interior estimates of J. B. Keller [Ke57] and R.

Osserman [Os57] to cover the case when the nonlinearity changes of sign. Some
previous results for changing sign nonlinearities were found by A. C. Lazer and P.
J. McKenna in [LM94]. In the special case when a, λ ∈ R and the nonlinearity has
the form

h(u) := auf(u)− λu (1.12)

it was assumed in [LM94] that h ∈ C1([f−1(λ
a
),∞) with h′ ≥ 0 and that in addition

h′(u) is nondecreasing for u large, and

lim inf
u↑∞

h′(u)√∫ u
f−1(λa )

h(z) dz
> 0 . (1.13)

Instead of these conditions, for the special choice (1.12) we only need to assume
that there exists u∗ > f−1(λ

a
) such that

∫ ∞
u∗

[∫ u
u∗

h(z) dz

]− 12
du <∞ . (1.14)

Note that for the choice (1.7), (1.14) is satisfied for any p > 0, while (1.13) is only
satisfied for p ≥ 2. It should be pointed out that if f(u) satisfies (Hf), then

∫ ∞
f−1(λa )

[∫ u
f−1(λa )

h(z) dz

]− 12
du =∞ ,
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and hence condition (2) of [Ke57] fails. Therefore, the interior estimates of [Ke57]
can not be applied straight away to our problem.
Once obtained these interior estimates, we shall use them to get some very

general results about the existence of large solutions going to infinity on some of
the components of the boundary where a(x) is bounded away from zero. These
results are completely new, since a(x) can vanish on a finite number of interior
subdomains. This degenerate situation was dealt with by the first time in [GL98].
These results provide us with the first step to obtain the existence of metasolutions
of order 1 ≤ k ≤ m by slightly modifying the domain Ωk along the components of
its boundary where a(x) vanishes, but this analysis will be done in Section 5, not
in Section 3.
In Section 4 we use the results of Section 3 to characterize the limiting behaviour

of the regular positive solution as λ ↑ σ1. It will be shown that the regular positive
solution is point-wise increasing towards the minimal metasolution of order one of
(1.5) supported in Ω1 (for λ = σ1).
In Section 5 we use the theory of Section 3 to show that if k ≤ m − 1, then

(1.5) exhibits a metasolution of order k supported in Ωk if, and only if, λ < σk+1,
and that in case k = m (1.5) possesses a metasolution of order m supported in
Ωm = Ω+ for each λ ∈ R, as well as to prove that the point-wise limit of the minimal
metasolution of order k ≤ m − 1 as λ ↑ σk+1 provides us with a metasolution of
order k + 1 supported in Ωk+1 for the value of the parameter λ = σk+1.
In Section 6 we combine the previous results with the parabolic interior estimates

obtained in [Re82] and [Re86] to show that for any 1 ≤ k ≤ m− 1, λ ∈ [σk, σk+1),
and u0 ∈ U0, u0 > 0, the restriction of the orbit of u[λ,a,Ω](·, t;u0), t ≥ 0, to
any compact subset K of Ωk is relatively compact in C

2(K) with its ω-limit set
contained in the closed interval whose ends are the minimal and the maximal regular
positive solutions of (1.11), whereas

lim
t↑∞

u[λ,a,Ω](·, t;u0) =∞ uniformly in ∪ki=1 ∪
ni
j=1Ω̄

i
0,j .

Therefore, if (1.11) possesses a unique regular solution, say θ, then u[λ,a,Ω](·, t;u0)
stabilizes to the metasolution defined by θ as t ↑ ∞.
Most of the available results about the uniqueness of large solutions were ob-

tained in domains where a(x) is bounded away from zero and for rather special
classes of nonlinearities (cf. [BM91], [LM93], [LM94], [MV97], and the references
there in). One of the main results of [DH99] establishes that if m = 1, n1 = 1,
Ω̄10,1 ⊂ Ω, and there exist positive constants α and c such that

lim
d(x)↓0

a(x)

dα(x)
= c , d(x) := dist(x, ∂Ω10,1) ,

then (1.10) possesses a unique regular solution. The idea of the proof consists in
combining an extension of Theorem I in [Ke57] with a very well known uniqueness
device coming from [BO86]. This seems to be the sole uniqueness result for the
case when the coefficient is not bounded away from zero in the totality of Ω. We
shall analyze the uniqueness problem in a forthcoming paper.
It should be pointed out that in order to prove most of the results of this paper

we need assuming that in any compact subset K of Ω+ the following estimate holds

a(x)uf(x, u)− λu ≥ hK(u)
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for some function hK(u) satisfying (1.14). This assumption is far from being of
technical nature. In fact, if it fails one would need to impose some additional
condition on the size of the domain to get the existence of large solutions even in
the most simple situations, but this analysis is out of the scope of this work.
The results contained in this paper were communicated in a talk given by the

author in Miami during the celebration of the Conference honoring Alan C Lazer
(January/9th/1999). The paper was concluded and sent to the journal on August
1999.

2. Regular positive steady states.

In this section we characterize the existence, prove the uniqueness and analyze the
point-wise growth of the regular positive solutions of (1.5), as well as their global
attractive character with respect to the positive solutions of (1.1).
In the sequel, given a function w ∈ C(Ω̄) we say that w > 0 if w ≥ 0 and w 6= 0.

Given w ∈ U we say that w� 0 if w lies in the interior of U+.

Theorem 2.1. Assume (Ha1-3) and (Hf). Then, the following assertions are true:

(i) The problem (1.5) possesses a regular positive solution if, and only if,

σ0 < λ < σ1 . (2.1)

Moreover, it is unique if it exists. In the sequel it will be denoted by θ[λ,a,Ω].

(ii) The map
(σ0, σ1) 7−→ U

λ → θ[λ,a,Ω]

is point-wise increasing and differentiable. Moreover, ∂λθ[λ,a,Ω] ∈ U
+.

(iii) Suppose (2.1). Then,

lim
λ↓σ0
‖θ[λ,a,Ω]‖C(Ω̄) = 0 , (2.2)

and
lim
λ↑σ1

θ[λ,a,Ω] =∞ uniformly in ∪n1j=1 Ω̄
1
0,j \ ∂Ω . (2.3)

Proof. (i) Let u be a regular positive solution of (1.5). Then, u|∂Ω = 0 and

(−∆+ af(·, u))u = λu .

Hence, u is a positive eigenfunction associated with the eigenvalue λ of the operator
−∆ + af(·, u0) under homogeneous Dirichlet boundary conditions. Thus, by the
uniqueness of the principal eigenvalue (e.g. [Am76]),

λ = σΩ[−∆+ af(·, u)] , (2.4)

and hence, by the monotonicity of the principal eigenvalue with respect to the
potential

λ > σΩ[−∆] = σ0 ,
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because a > 0, u � 0 and f(x, u(x)) > 0 for all x ∈ Ω. Moreover, since a = 0 in
Ω10,1, we find from (2.4) that

λ = σΩ1 [−∆+ af(·, u)] < σΩ
1
0,1 = σ1 ,

by the monotonicity of the principal eigenvalue with respect to the domain. There-
fore, (2.1) is necessary for the existence of a regular positive solution of (1.5). In
order to show that condition (2.1) is sufficient for the existence of a regular positive
solution we use the method of sub and supersolutions. Suppose (2.1) and let ϕ
denote the principal eigenfunction associated with σ0. Then, thanks to (Hf), for
any ε > 0 sufficiently small the function εϕ provides us with a positive subsolution
of (1.5). To complete the proof of the existence it remains to show the existence
of a supersolution ū of (1.5) such that εϕ ≤ ū. For any δ > 0 sufficiently small we
consider the δ-neighborhood of Ω0 in Ω

Ωδ0 := { x ∈ Ω : dist(x,Ω0) < δ } .

Then,

Ωδ0 = ∪
m
i=1 ∪

ni
j=1 Ω

i,δ
0,j , (2.5)

where

Ωi,δ0,j := { x ∈ Ω : dist(x,Ω
i
0,j) < δ } , 1 ≤ i ≤ m, 1 ≤ j ≤ ni .

Thanks to (Ha3), Ω̄i0,j ∩ Ω̄
î
0,ĵ
= ∅ if (i, j) 6= (̂i, ĵ), and hence δ > 0 can be chosen

sufficiently small so that

Ω̄i,δ0,j ∩ Ω̄
î,δ

0,ĵ
= ∅ if (i, j) 6= (̂i, ĵ) . (2.6)

In the sequel we shall assume that δ > 0 has been chosen in this way.
Since a > 0, and hence Ω+ 6= ∅, for each 1 ≤ i ≤ m and 1 ≤ j ≤ ni the

component Ωi0,j is a proper subdomain of Ω. Thus, ∂Ω
i
0,j ∩ Ω 6= ∅, and so Ω

i
0,j is

a proper subdomain of Ω
i,δ/2
0,j and Ω

i,δ/2
0,j is a proper subdomain of Ωi,δ0,j . Therefore,

by the monotonicity of the principal eigenvalue with respect to the domain, we find
that

σΩ
i,δ
0,j < σΩ

i,δ/2
0,j < σΩ

i
0,j , 1 ≤ i ≤ m, 1 ≤ j ≤ ni . (2.7)

On the other hand, thanks to (Ha1), if Γ0 and Γ are components of ∂Ω0 and ∂Ω,
respectively, such that Γ0 ∩ Γ 6= ∅, then Γ0 = Γ. Thus, it follows from (2.5) and
(2.6) that

∂Ωδ0 \ ∂Ω ⊂ Ω+ . (2.8)

Moreover, for each 1 ≤ i ≤ m and 1 ≤ j ≤ ni we have that

lim
δ↓0
Ωi,δ0,j = Ω

i
0,j ,

e.g. in the sense of Definition 4.1 of [Lo96]. Thus, it follows from Theorem 4.2 of
[Lo96] that

lim
δ↓0

σΩ
i,δ
0,j = σΩ

i
0,j , 1 ≤ i ≤ m, 1 ≤ j ≤ ni . (2.9)
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Therefore, thanks to (1.3), (2.1), (2.7) and (2.9), we find that for each δ > 0
sufficiently small

λ < σΩ
1,δ
0,j < σ

Ωi,δ
0,ĵ , 1 ≤ j ≤ n1 , 2 ≤ i ≤ m, 1 ≤ ĵ ≤ ni . (2.10)

Now, for any 1 ≤ i ≤ m and 1 ≤ j ≤ ni let ϕ
i,δ
0,j � 0 denote the principal

eigenfunction associated with σΩ
i,δ
0,j , and consider the function

Φ(x) :=



ϕi,δ0,j(x) if x ∈ Ω

i,δ/2
0,j for some 1 ≤ i ≤ m, 1 ≤ j ≤ ni ,

ψ(x) if x ∈ Ω̄ \ Ωδ/20 ,

(2.11)

where ψ(x) is any regular extension of the functions ϕi,δ0,j outside Ω
δ/2
0 . Thanks to

(2.8), we can assume that ψ is positive and bounded away from zero in Ω̄ \ Ω
δ/2
0 .

We claim that if κ > 1 is sufficiently large, then the function

ū := κΦ

is a supersolution of (1.5) satisfying εϕ ≤ ū for ε > 0 small enough. Indeed, in the
set

Ω̄ \ Ωδ/20 ⊂ Ω̄+

the function ψ is positive and bounded away from zero, as well as a(x), by (Ha1).
Thus, for κ large

−∆ψ ≥ λψ − aψf(·, κψ) in Ω̄ \ Ωδ/20 ,

since for each x ∈ Ω̄ \ Ωδ/20

f(x, κψ(x)) ≥ f(x, κ inf
Ω̄\Ωδ/20

ψ)

and
lim
κ↑∞

f(·, κ inf
Ω̄\Ωδ/20

ψ) =∞

uniformly in Ω̄ \ Ωδ/20 . Moreover, thanks to (2.10), in each of the components of

Ω
δ/2
0 , Ω

i,δ/2
0,j , 1 ≤ i ≤ m, 1 ≤ j ≤ ni, we have that for any κ > 0

−∆(κΦ) = κσΩ
i,δ
0,jϕi,δ0,j > λκϕi,δ0,j ≥ λκϕ

i,δ
0,j − a κϕ

i,δ
0,jf(·, κ ϕ

i,δ
0,j) .

Therefore, kΦ provides us with a positive supersolution of (1.5) if κ is sufficiently
large.
Let Γ be a component of ∂Ω. If Γ is a component of Ω+, then by the construction

itself we have that Φ is positive and bounded away from zero on Γ, while if Γ∩∂Ω+ =
∅, then Φ = 0 on Γ and ∂Φ∂n (x) < 0 for all x ∈ Γ, where n is the outward unit normal.
Therefore, εϕ ≤ κΦ provided ε > 0 is sufficiently small. This shows that (2.1) is
sufficient for the existence of a regular positive solution of (1.5).
We now show the uniqueness of the positive solution. Suppose (2.1) and let u,

v be two positive solutions of (1.5), u 6= v. Then,

(−∆+ ag − λ)(u − v) = 0 in Ω , u− v = 0 on ∂Ω , (2.12)
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where

g(x) :=



u(x)f(x,u(x))−v(x)f(x,v(x))

u(x)−v(x) if u(x) 6= v(x) ,

f(x, u(x)) if u(x) = v(x) ,

x ∈ Ω̄ .

By the monotonicity of f on its second argument, it is easily seen that

g > f(·, u) in Ω ,

since u 6= v. Thus, it follows from (2.4) and the monotonicity of the principal
eigenvalue with respect to the potential that

σΩ[−∆+ a g − λ] ≥ σΩ[−∆+ af(·, u)− λ] = 0 .

Note that it might happen g = f(·, u) in Ω+, and hence in the previous inequality
we should not substitute ≥ by > without some additional work. Assume

σΩ[−∆+ a g − λ] > 0 .

Then, zero can not be an eigenvalue of −∆+a g−λ, and hence we find from (2.12)
that u = v, which is impossible. Thus,

σΩ[−∆+ a g − λ] = 0 .

Moreover, u 6= v. Hence, it follows from (2.12) that there exists κ ∈ R \ {0} such
that

u− v = κϕ ,

where ϕ� 0 stands for the principal eigenfunction associated with σΩ[−∆+ a g−
λ] = 0. Therefore, either u(x) < v(x) for all x ∈ Ω, or u(x) > v(x) for all x ∈ Ω.
In any of these situations we have that g > f(·, u) in Ω+ and therefore

σΩ[−∆+ a g − λ] > 0 ,

which implies u = v. This contradiction shows the uniqueness and concludes the
proof of Part (i).
(ii) Consider the operator F : R× U+ → Cµ(Ω̄) defined by

F(λ, u) := −∆u− λu+ auF (·, u) , (λ, u) ∈ R× U+ ,

where F stands for the substitution operator induced by f , and pick up λ ∈ (σ0, σ1).
Then, F is an operator of class C1 in the interior of U+ such that

F(λ, θ[λ,a,Ω]) = 0 ,

and

DuF(λ, θ[λ,a,Ω]) = −∆− λ+ af(·, θ[λ,a,Ω]) + aθ[λ,a,Ω]∂uf(·, θ[λ,a,Ω]) .
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By (Hf), (2.4) and the monotonicity of the principal eigenvalue with respect to the
potential we find that

σΩ[DuF(λ, θ[λ,a,Ω])] > σΩ[−∆− λ+ af(·, θ[λ,a,Ω])] = 0 . (2.13)

Therefore, DuF(λ, θ[λ,a,Ω]) is an isomorphism and it follows from the implicit func-
tion theorem that there exist ε > 0 and a map of class C1, u : (λ− ε, λ+ ε)→ U+,
such that u(λ) = θ[λ,a,Ω] and for each s ∈ (λ− ε, λ+ ε)

F(s, u(s)) = 0 .

Moreover, those are the unique zeroes of F in a neighborhood of (λ, θ[λ,a,Ω]) in
R × U+, and u(s) � 0, since u(λ) � 0. Thus, thanks to the uniqueness of the
positive solution,

u(s) = θ[s,a,Ω] , s ' λ .

Furthermore, by implicit differentiation we find that

DuF(λ, θ[λ,a,Ω])∂λθ[λ,a,Ω] = θ[λ,a,Ω] � 0 . (2.14)

Thanks to (2.13) the differential operator on the left hand side of (2.14) satisfies
the strong maximum principle. Therefore, (2.14) implies

∂λθ[λ,a,Ω] � 0 .

This completes the proof of Part (ii).
(iii) Relation (2.2) follows from the uniqueness of the positive solution taking

into account that thanks to the main theorem of [CR71] λ = σ0 is a bifurcation
value to positive solutions of (1.5) from u = 0. We now show (2.3). Set

Ω10 := ∪
n1
j=1Ω

1
0,j .

Since a = 0 in Ω10, (2.14) gives

(−∆− λ)∂λθ[λ,a,Ω] = θ[λ,a,Ω] in Ω
1
0 , λ ∈ (σ0, σ1) .

Now, pick λ̂ ∈ (σ0, σ1) and consider c > 0 such that for each 1 ≤ j ≤ n1,

θ[λ̂,a,Ω] > cϕ10,j in Ω
1
0,j .

Recall that ϕ10,j is the principal eigenfunction associated with σ
Ω10,j . Thanks to

Part (ii), for each λ ∈ (λ̂, σ1) we have that

θ[λ,a,Ω] > θ[λ̂,a,Ω] > cϕ10,j in Ω
1
0,j , 1 ≤ j ≤ n1 .

Moreover, for each λ ∈ (λ̂, σ1) and 1 ≤ j ≤ n1 the operator −∆ − λ satisfies the
strong maximum principle in Ω10,j . Hence,

∂λθ[λ,a,Ω] > c (−∆− λ)−1ϕ10,j =
c

σ1 − λ
ϕ10,j in Ω

1
0,j .
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Note that, thanks to (Ha3), σ1 = σΩ
1
0,j for each 1 ≤ j ≤ n1. On the other hand,

for each 1 ≤ j ≤ n1, the function ϕ
1
0,j is bounded away from zero on any compact

subset of Ω10,j . Thus,

lim
λ↑σ1

∂λθ[λ,a,Ω] =∞ uniformly in compact subsets of Ω10 ,

and therefore

lim
λ↑σ1

θ[λ,a,Ω] =∞ uniformly in compact subsets of Ω10 .

It remains to show that

lim
λ↑σ1

θ[λ,a,Ω](x) =∞ for all x ∈ ∂Ω10 \ ∂Ω . (2.15)

For this, consider δ > 0 sufficiently small, pick λ satisfying

σΩ
1,δ
0,j < σΩ

1,δ/2
0,j < λ < σΩ

1
0,j = σ1 , 1 ≤ j ≤ n1 ,

and introduce the function uδ ∈ C(Ω̄) defined by

uδ(x) :=



C ϕ1,δ0,j(x) if x ∈ Ω̄1,δ/20,j for some 1 ≤ j ≤ n1 ,

0 if x ∈ Ω̄ \ ∪n1j=1Ω
1,δ/2
0,j ,

(2.16)

where C > 0 is a positive constant. Then, the argument of the proof of Theorem
4.3 in [LS98] can be easily adapted to show that under condition (Ha2) there exists
C = C(δ) > 0 such that uδ is a subsolution of (1.5) satisfying

lim
δ↓0

uδ(x) =∞

for each x ∈ ∂Ω10 \ ∂Ω. By the uniqueness of the positive solution, necessarily
uδ ≤ θ[λ,a,Ω] and hence, (2.15) is satisfied. The uniform divergence in ∂Ω

1
0 follows

from the point-wise monotonicity in λ as an immediate consequence from Dini’s
theorem. This concludes the proof of the theorem. �
We shall say that a non-negative positive steady-state u of (1.1), i.e. a non-negative
solution of (1.5), is globally asymptotically stable if

lim
t↑∞
‖u[λ,a,Ω](·, t;u0)− u‖C(Ω̄) = 0

for each u0 ∈ U0, u0 > 0. The main result on the longtime behaviour of the positive
solutions of (1.1) reads as follows.

Theorem 2.2. Under the assumptions of Theorem 2.1, the following assertions
are true:

(i) If λ ≤ σ0, then u = 0 is globally asymptotically stable.

(ii) If σ0 < λ < σ1, then θ[λ,a,Ω] is globally asymptotically stable.

(iii) Set
Ωi0 := ∪

ni
j=1Ω

i
0,j , 1 ≤ i ≤ m, (2.17)

and assume σi ≤ λ for some 1 ≤ i ≤ m. Then, for any u0 ∈ U0 with u0 > 0
we have

lim
t↑∞

u[λ,a,Ω](·, t;u0) =∞ uniformly in ∪ik=1 Ω̄
k
0 \ ∂Ω . (2.18)
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Proof. Recall that in the proof of Theorem 2.1(i) we have shown that (1.5) possesses
arbitrarily large supersolutions in the interior of U+ for any λ < σ1.
(i) Let u0 ∈ U0 such that u0 > 0 and consider the solution u(x, t;u0) of (1.1).

By the parabolic maximum principle for any t > 0 the function u(·, t;u0) lies in the
interior of U+. Fix t1 > 0 and consider a supersolution ū� 0 of (1.5) such that

u(·, t1;u0)� ū .

Then, for all t ≥ t1 we have that

u(·, t;u0)� u(·, t− t1; ū) . (2.19)

Thanks to the results of [Sa73], the function t→ u(·, t−t1; ū) is decreasing and con-
verges to a non-negative solution of (1.5). Due to Theorem 2.1(i) it must converge
to zero. Therefore, (2.19) completes the proof of Part (i).
(ii) Let u0 ∈ U0 be such that u0 > 0 and pick t1 > 0. Since σ0 < λ < σ1, there

exist a subsolution u and a supersolution ū of (1.5), both in the interior of U+,
such that

u� u(·, t1;u0)� ū .

Then, for all t ≥ t1 we have that

u(·, t− t1;u)� u(·, t;u0)� u(·, t− t1; ū) . (2.20)

Thanks to the results of [Sa73], the function t → u(·, t − t1; ū) is decreasing and
converges to a non-negative solution of (1.5), whereas t→ u(·, t−t1;u) is increasing
and converges to a positive solution of (1.5). By the uniqueness of the positive
solution, both functions must converge to θ[λ,a,Ω]. Combining these features with
(2.20) concludes the proof of this part.
(iii) Assume that λ ≥ σi for some 1 ≤ i ≤ m and consider u0 ∈ U0 with u0 > 0.

Let u = u[λ,a,Ω](x, t;u0) be the unique global regular solution of (1.1). For all ε > 0
we have λ > σ1 − ε, and hence

∂tu−∆u = λu − auf(x, u) > (σ1 − ε)u− auf(x, u) .

Thus, for each t > 0

u[λ,a,Ω](·, t;u0)� u[σ1−ε,a,Ω](·, t;u0) . (2.21)

By Part (ii), we already know that

lim
t↑∞
‖u[σ1−ε,a,Ω](·, t;u0)− θ[λ,a,Ω]‖C(Ω̄) = 0 .

Hence, it follows from (2.21) that for each ε > 0

lim inf
t↑∞

u[λ,a,Ω](·, t;u0) ≥ θ[σ1−ε,a,Ω] . (2.22)

Thanks to Theorem 2.1(iii),

lim
ε↓0

θ[σ1−ε,a,Ω] =∞ uniformly in Ω̄10 \ ∂Ω .
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Therefore, we find from (2.22) that

lim inf
t↑∞

u[λ,a,Ω](·, t;u0) =∞ uniformly in Ω̄10 \ ∂Ω .

This completes the proof if i = 1.
Assume i ≥ 2 and

lim inf
t↑∞

u[λ,a,Ω](·, t;u0) =∞ uniformly in ∪i−1k=1 Ω̄
k
0 \ ∂Ω .

Let â ∈ Cµ(Ω̄) any weight function such that â > a and â(x) > 0 if, and only if,
x ∈ Ω+ ∪ ∪

i−1
k=1Ω̄

k
0 . Then, the lower order refuges of â are Ω

i
0,j, 1 ≤ j ≤ ni. Recall

that we are assuming

λ ≥ σi = σ
Ωi0,1 .

Since â > a, we have

u[λ,a,Ω](·, t;u0)� u[λ,â,Ω](·, t;u0) .

Moreover, by the corresponding result for the case i = 1,

lim inf
t↑∞

u[λ,â,Ω](·, t;u0) =∞ uniformly in Ω̄i0 \ ∂Ω .

This completes the proof of the theorem. �

3. A priori interior estimates and the

existence of large regular solutions.

Beside their own interest, the following results are crucial to show the stabiliza-
tion in Ω \ Ω̄10 of the regular positive solutions of (1.5) as λ ↑ σ1. They also show
the existence of large regular solutions of

−∆u = λu − auf(·, u)

in Ω. By a large regular solution we mean a solution of class C2+µ which grows
arbitrarily when the spatial variable approaches to some of the components of ∂Ω.
Those solutions will provide us with the limiting behaviour of the population as
times grows to infinity for any λ ≥ σ1.

Theorem 3.1. Suppose (Ha1-3), (Hf) and

∂Ω ∩ ∂Ω+ 6= ∅ .

Let Γj+, 1 ≤ j ≤ q, be q arbitrary components of ∂Ω∩ ∂Ω+, and αj > 0, 1 ≤ j ≤ q,
q arbitrary constants, and consider the nonlinear boundary value problem

−∆u = λu − a(x)uf(x, u) in Ω ,

u|Γj+
= αj > 0 , 1 ≤ j ≤ q ,

u = 0 on ∂Ω \ ∪qj=1Γ
j
+ .

(3.1)
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The following assertions are true:

(i) Problem (3.1) possesses a regular positive solution if, and only if, λ < σ1.
Moreover, it is unique if it exists. In the sequel we shall denote it by
Θ[λ,a,Ω,Γ+,α] where

Γ+ := (Γ
1
+, . . . ,Γ

q
+) , α := (α1, . . . , αq) .

(ii) The map (−∞, σ1) → C(Ω̄), λ → Θ[λ,a,Ω,Γ+,α] is point-wise increasing,

as well as the map (0,∞)q → C(Ω̄), α = (α1, . . . , αq) → Θ[λ,a,Ω,Γ+,α].
Moreover,

lim
λ↑σ1
Θ[λ,a,Ω,Γ+,α] =∞ uniformly in ∪n1j=1 Ω̄

1
0,j \ ∂Ω . (3.2)

Proof. (i) Suppose (3.1) possesses a regular positive solution, say u. Then,

(−∆+ af(·, u)− λ)u = 0 in Ω ,

and u|∂Ω > 0. Thus, u provides us with a positive strict supersolution of −∆ +
af(·, u) − λ in Ω under homogeneous Dirichlet boundary conditions. Hence, it
follows from the characterization of the strong maximum principle found in [LM94]
(cf. [Lo96] and [AL98]) that

σΩ[−∆+ af(·, u)− λ] > 0 . (3.3)

Therefore,

λ < σΩ[−∆+ af(·, u)] < σΩ
1
0,1 = σ1 ,

since a = 0 in Ω10,1.
Suppose λ < σ1. To show that (3.1) possesses a regular positive solution we

use the method of sub and supersolutions. The function u := 0 provides us with
a subsolution of (3.1). Moreover, we can use the same supersolutions constructed
in the proof of Theorem 2.1. Indeed, to show that κΦ provides us with a positive
supersolution of (3.1), where Φ is the function defined in (2.11), it remains to check
that for any κ sufficiently large

κΦ|Γj+
> αj , 1 ≤ j ≤ q . (3.4)

By construction,

∪qj=1Γ
j
+ ⊂ Ω̄ \ Ω

δ/2
0 ,

and hence
κΦ|Γj+

= κψ|Γj+
, 1 ≤ j ≤ q .

Moreover, ψ is positive and bounded away from zero in Ω̄ \ Ωδ/20 . Therefore, (3.4)
holds provided κ is large enough. This concludes the proof of the existence.
The uniqueness of the regular positive solution follows from (3.3) with the same

argument used to show the uniqueness in the proof of Theorem 2.1. This completes
the proof of Part (i).
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(ii) Let λ1, λ2 ∈ (σ0, σ1) such that λ1 < λ2. Then, setting

Θi := Θ[λi,a,Ω,Γ+,α] , i = 1 , 2 ,

we find from their definition that

(−∆+ a g − λ1)(Θ2 −Θ1) > 0 in Ω , (Θ2 −Θ1)|∂Ω = 0 . (3.5)

where

g(x) :=



Θ2(x)f(x,Θ2(x)) −Θ1(x)f(x,Θ1(x))

Θ2(x) −Θ1(x)
if Θ2(x) 6= Θ1(x) , x ∈ Ω̄ ,

f(x,Θ2(x)) if Θ2(x) = Θ1(x) , x ∈ Ω̄ .

By the monotonicity of f on its second argument, it is easily seen that

g > f(·,Θ1) in Ω ,

since Θ2 6= Θ1. Thus, thanks to (3.3), it follows from the monotonicity of the
principal eigenvalue with respect to the potential that

σΩ[−∆+ a g − λ1] ≥ σ
Ω[−∆+ af(·,Θ1)− λ1] > 0 .

Henceforth, the operator −∆+ a g − λ1 satisfies the strong maximum principle in
Ω under homogeneous Dirichlet boundary conditions, and therefore we find from
(3.5) that

Θ2 −Θ1 � 0 .

This completes the proof of the monotonicity in λ. The same argument can be
easily adapted to get the monotonicity in α.
Relation (3.2) follows easily from Theorem 2.1 taking into account that for any

λ ∈ (σ0, σ1)
Θ[λ,a,Ω,Γ+,α] � θ[λ,a,Ω] .

The proof is completed. �

Remark 3.2: (a) Theorem 3.1 also holds in the absence of refuges, i.e. in case
Ω = Ω+. In this special situation its proof is simpler, since large constants provide
us with supersolutions for any λ ∈ R. Therefore, in case Ω = Ω+ the positive
solution exists for each λ ∈ R. This is the case dealt with in most of the references
and in particular in [MV97] and [DH99] for the special choice (1.7).

(b) By the uniqueness of the positive solution, any couple (u, u) formed by a non-
negative subsolution u and a nonnegative supersolution u of (3.1) must satisfy

u ≤ Θ[λ,a,Ω,Γ+,α] ≤ u .

This estimate can be easily obtained with the same comparison argument used to
show the uniqueness and the monotonicities, and so we will omit the details of its
proof.

In the sequel we shall assume the following:

(Hfb) There exists a continuous function fb : [0,∞) → R of class C1+µ((0,∞))
such that fb(0) = 0, fb(u) > 0 and f

′
b(u) > 0 for all u > 0,

lim
u↑∞

fb(u) =∞ ,

and
f(·, u) ≥ fb(u) , u ≥ 0 .
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The following result is a substantial generalization of the interior estimates found
in [Ke57] and [Os57]. It provides us with uniform interior estimates in Ω+ for
the solutions of (3.1) under assumption (Hfb), and we shall we use it to show the
stabilization in Ω+ of Θ[λ,a,Ω,Γ+,α] as either αj ↑ ∞, 1 ≤ j ≤ q, or λ ↑ σ1, and to
obtain very general existence results of large regular solutions.

Theorem 3.3. Suppose (Ha1-3), (Hf) and (Hfb). Let D ⊂ Ω+ be open and K ⊂
Ω+ compact such that D+Bδ ⊂ K for some δ > 0, where Bδ stands for the ball of
radius δ centered at the origin. Set

A := inf
x∈K

a(x) > 0 ,

fix β > 0 and let uK denote the unique positive zero of the function

h(u) := Aufb(u)− βu . (3.6)

Thanks to (Hfb), uK is well defined. Assume in addition that for each u∗ > uK

I(u∗) :=

∫ ∞
u∗

[∫ u
u∗

h(z) dz

]−1/2
du <∞ . (3.7)

Then, there exists a universal constant M = M(β) such that for any λ ≤ β and
any regular positive solution uλ of

−∆u = λu− auf(·, u) in Ω+ , (3.8)

the following uniform estimate is satisfied

‖uλ‖C(D̄) ≤M . (3.9)

Remarks 3.4: (a) In (3.9) no condition on the growth of uλ on ∂Ω+ is imposed.
Therefore, (3.9) provides us with a universal interior estimate for the positive solu-
tions of (3.8) which is independent of the behaviour of the solutions on the boundary.

(b) We should point out that

∫ ∞
uK

[∫ u
uK

h(z) dz

]−1/2
du =∞ . (3.10)

Indeed, the auxiliary function

g(u) :=

∫ u
uK

h(z) dz , u > uK ,

satisfies
g(uK) = 0 , g′(uK) = h(uK) = 0 ,

and

g′′(uK) = h
′(uK) = Afb(uK) +AuKf

′
b(uK)− β = AuKf

′
b(uK) > 0 .

Therefore, the integral diverges.



152 Julian López-Gómez

(c) If there exist η > 0 and p > 0 such that

fb(u) ≥ η u
p , u ≥ 0 ,

then condition (3.7) is satisfied for any A > 0 and β > 0, and therefore the estimate
(3.9) is valid in any open set D satisfying D̄ ⊂ Ω+. Indeed, for any u∗ > uK we
have that

I(u∗) =
√
2

∫ ∞
u∗

[
2A

∫ u
u∗

zfb(z) dz − β(u
2 − u2∗)

]−1/2
du

=
√
2

∫ ∞
1

[
2A

∫ θ
1

tfb(u∗t) dt− β(θ
2 − 1)

]−1/2
dθ .

In particular, I(u∗) is decreasing and

I(u∗) ≤
√
2

∫ ∞
1

[
2Aη

p+ 2
up∗(θ

p+2 − 1)− β(θ2 − 1)

]−1/2
dθ <∞ .

(d) Condition (3.7) entails the existence of a unique regular positive solution of

−u′′ = βu−Aufb(u) in (−R,R) , u(−R) = u(R) =∞ , (3.11)

for each R > 0. Indeed, multiplying the differential equation of (3.11) by u′ and
setting

v = u′ , u(0) = u∗ ,

it is easily seen that the solutions of (3.11) are given by the u∗’s such that for each
x ∈ (0, R)

v2(x) = 2

∫ u(x)
u∗

h(z) dz

and limx↑R u(x) = ∞. Necessarily u∗ > uK , because otherwise u ≤ uK , since uK
is an equilibrium of the equation. Moreover, this occurs if and only if

R =
√
2

∫ ∞
u∗

[∫ u
u∗

h(z) dz

]−1/2
du .

Therefore, u∗ corresponds to a solution of (3.11) if and only if u∗ > uK and

R =
√
2I(u∗) .

We already know that limu∗↓uK I(u∗) =∞ and that I(u∗) is decreasing. Moreover,
since h is nondecreasing, it is easily seen from (3.7) that

lim
u∗↑∞

I(u∗) = 0 .

Therefore, there exists a unique u∗ ∈ (uK ,∞) such that R =
√
2I(u∗). Actually,

this implies the existence of a radially symmetric regular large solution for the
problem in a ball (cf. Lemma 6.2 of [GGLS98]). The proof of Theorem 3.3 can



Large solutions and metasolutions 153

be accomplished very easily from these facts, but in this paper we prefer using the
techniques introduced in [Ke57], since they are pioneer in the field. If in addition
h′′(u) ≥ 0 for u large and

lim
u↑∞

h′(u)√∫ u
uK

h(z) dz
> 0 ,

then the regular large solution in the ball is unique, [LM94].

(e) Even in the simplest case when there exists p > 0 such that f(x, u) = fb(u) = u
p

the condition (2) of [Ke57] fails, because of (3.10). This is because the nonlinearity
h(u) of [Ke57] is increasing and bounded away from zero. Therefore, the interior
estimates obtained in [Ke57] do not guarantee straight away the existence of interior
estimates for the positive solutions of (3.1). Among other things this implies that
the proof of Lemma 1.3 of [MV97] contains a gap, since the interior estimates of
[Ke57] can not be used. Our Theorem 3.3 completes the proof of Lemma 1.3 of
[MV97].

Although the proof of Theorem 3.3 is an easy consequence from Theorem III of
[Ke57], as pointed out to us by the referee, we are going to give a complete selfcon-
tained proof of it by means of the technical tools introduced in the proof of Theorem
I of [Ke57]. Note that in [Ke57] Theorem III was obtained as a consequence from
Theorem I.

Proof of Theorem 3.3. It suffices to show that for each x0 ∈ D̄ there exists η > 0
and a constant M > 0 such that for any λ ≤ β and any regular positive solution
uλ of (3.8)

‖uλ‖C(Bη(x0)) ≤M ,

where Bη(x0) stands for the ball of radius η centered at x0. Let x0 ∈ D̄ and
consider R > 0 such that B̄R(x0) ⊂ K. Then, for each λ ≤ β the following
differential inequality holds

∆uλ ≥ h(uλ) in BR(x0) , (3.12)

where h(u) is the function defined by (3.6). Set

αλ := max{uK + 1 , sup
x∈∂BR(x0)

uλ} , (3.13)

and let Θλ denote the unique positive solution of

∆u = h(u) in BR(x0) , u|∂BR(x0) = αλ , (3.14)

whose existence is guaranteed by Theorem 3.1 (cf. Remark 3.2(a)). Thanks to
(3.12) and (3.13), for each λ ≤ β any solution uλ of (3.8) is a positive subsolution
of (3.14) in BR(x0), and hence it follows from Remark 3.2(b) that

uλ ≤ Θλ in BR(x0) .

Thus, to complete the proof it suffices to show that there exist η ∈ (0, R) and a
constant M > 0 such that for any αλ > 0 sufficiently large

‖Θλ‖C(Bη(x0)) ≤M . (3.15)
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By definition, h(uK) = 0 and h(u) > 0 for u > uK . Thus, for any αλ > uK the
constant uK is a strict positive subsolution of (3.14), and hence it follows from
Remark 3.2(b) that

uK ≤ Θλ .

In fact, the strong maximum principle implies uK � Θλ. On the other hand, by
the uniqueness of the positive solution of (3.14), Θλ must be radially symmetric,
since the problem is invariant by rotations. Thus,

Θλ(x) = Ψλ(|x− x0|) , x ∈ BR(x0) ,

where Ψλ(r) is the unique positive solution of

ψ′′(r) +
N − 1

r
ψ′(r) = h(ψ(r)) , 0 < r < R , ψ′(0) = 0 , ψ(R) = αλ . (3.16)

Therefore, to prove (3.15) it suffices to show that there exist η > 0 andM > 0 such
that for any αλ > uK

‖Ψλ‖C([0,η]) ≤M . (3.17)

We already know that Ψλ(r) > uK for each r ∈ [0, R] and αλ > uK . Hence,

h(Ψλ(r)) > 0 .

Moreover, for each u > uK we have that

h′(u) = Afb(u) +Auf
′
b(u)− β > Afb(uK)− β +Auf

′
b(u) = Auf

′
b(u) > 0 ,

and hence h is increasing. We now follow the proof of Theorem I in page 506 of
[Ke57]. The functions Ψλ satisfy

(RN−1Ψ′λ(r))
′ = rN−1h(Ψλ(r)) , (3.18)

and hence integrating (3.18) from 0 to r yields

Ψ′λ(r) = r
1−N

∫ r
0

sN−1h(Ψλ(s)) ds > 0 . (3.19)

This shows that r → Ψλ(r) is increasing, as well as r → h(Ψλ(r)). Thus, we find
from (3.19) that

Ψ′λ(r) ≤ r
1−Nh(Ψλ(r))

∫ r
0

sN−1 ds =
r

N
h(Ψλ(r)) . (3.20)

Now, substituting (3.20) into (3.16) gives

Ψ′′λ ≥
h(Ψλ)

N
.

Moreover, since Ψ′λ ≥ 0, (3.16) gives Ψ
′′
λ ≤ h(Ψλ). Hence,

h(Ψλ) ≥ Ψ
′′
λ ≥

h(Ψλ)

N
. (3.21)
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We now multiply (3.21) by Ψ′λ and integrate from 0 to r to obtain

2

∫ Ψλ(r)
Ψλ(0)

h(z) dz ≥ [Ψ′λ(r)]
2 ≥

2

N

∫ Ψλ(r)
Ψλ(0)

h(z) dz . (3.22)

Now, taking the square root of the reciprocal of (3.22) and integrating again gives

1
√
2

∫ Ψλ(r)
Ψλ(0)

[∫ u
Ψλ(0)

h(z) dz

]−1/2
du ≤ r ≤

√
N

2

∫ Ψλ(r)
Ψλ(0)

[∫ u
Ψλ(0)

h(z) dz

]−1/2
du .

(3.23)
In particular,

1
√
2

∫ αλ
Ψλ(0)

[∫ u
Ψλ(0)

h(z) dz

]−1/2
du ≤ R .

Hence, thanks to (3.10), Ψλ(0) must be uniformly bounded away from uK . More-
over,

R ≤

√
N

2

∫ ∞
Ψλ(0)

[∫ u
Ψλ(0)

h(z) dz

]−1/2
du .

So, since h in increasing we find from (3.7) that Ψλ(0) must be uniformly bounded
above. Therefore, using Remark 3.2(b) gives

Ψλ(0) < lim sup
αλ↑∞

Ψλ(0) = Ψ0 ∈ (uK ,∞) ,

for any αλ > uK . Let Ψ∞ denote the unique positive solution of the Cauchy
problem

ψ′′(r) +
N − 1

r
ψ′(r) = h(ψ(r)) 0 < r < R , ψ′(0) = 0 , ψ(0) = Ψ0 .

By continuous dependence, Ψ∞ is defined in [0, R) and

lim
r↑R
Ψ∞(r) =∞ .

Moreover, thanks to Remark 3.2(b), Ψλ ≤ Ψ∞. This completes the proof. �

Note that Ψ∞ is the minimal large solution of ∆u = h(u) in the ball BR. The
heart of the proof of Theorem 3.3 consists in showing the existence of such large
solution. A different proof of this fact was given in [GGLS98] for the special case
when f(x, u) = fb(u) = u

p.

Combining Theorem 3.1 with Theorem 3.3 it follows the existence of large pos-
itive solutions for a wide class of semilinear boundary value problems, even in the
presence of refuges. In fact the following result provides us with a substantial
extension of most of the results available in the literature.
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Theorem 3.5. Suppose (Ha1-3), (Hf), (Hfb) and λ < σ1. Assume in addition
that (3.7) is satisfied for any compact subset K ⊂ Ω+ and β = σ1 and that

∂Ω ∩ ∂Ω+ 6= ∅ .

Let Γj+, 1 ≤ j ≤ q, be q arbitrary components of ∂Ω∩∂Ω+ and consider the singular
boundary value problem

−∆u = λu− a(x)uf(x, u) in Ω ,

u =∞ on γ∞ := ∪
q
j=1Γ

j
+ ,

u = 0 on γ0 := ∂Ω \ γ∞ .

(3.24)

Then, the following assertions are true:

(i) The problem (3.24) possesses a regular positive solution u. By regular solu-
tion we mean u ∈ C2+µ(Ω) and

lim
dist(x,γ∞)↓0

u(x) =∞ , lim
dist(x,γ0)↓0

u(x) = 0 .

(ii) The function

Θ[λ,a,Ω,Γ+,∞](x) := lim
α↑∞
Θ[λ,a,Ω,Γ+,α](x) , x ∈ Ω , (3.25)

where Θ[λ,a,Ω,Γ+,α] is the unique regular positive solution of (3.1), is the
minimal regular positive solution of (3.24). Moreover,

lim
α↑∞
‖Θ[λ,a,Ω,Γ+,α] −Θ[λ,a,Ω,Γ+,∞]‖C2+µ(Ω) = 0 . (3.26)

By α ↑ ∞ we mean αj ↑ ∞ for each 1 ≤ j ≤ q.

(iii) For each x ∈ ∪n1j=1Ω̄
1
0,j \ ∂Ω

lim
λ↑σ1
Θ[λ,a,Ω,Γ+,∞](x) =∞ , (3.27)

whereas the function

Θ[σ1,a,Ω,Γ+,∞](x) := lim
λ↑σ1
Θ[λ,a,Ω,Γ+,∞](x) , x ∈ Ω \ ∪n1j=1Ω̄

1
0,j , (3.28)

is well defined and it provides us with the minimal regular positive solution
of

−∆u = λu− a(x)uf(x, u) in Ω \ ∪n1j=1Ω̄
1
0,j ,

u =∞ on γ1∞ := γ∞ ∪ (∪
n1
j=1∂Ω

1
0,j \ ∂Ω) ,

u = 0 on ∂(Ω \ ∪n1j=1Ω̄
1
0,j) \ γ

1
∞ .

(3.29)
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Proof. Choose δ > 0 sufficiently small so that

Kj,δ := {x ∈ Ω : dist(x,Γ
j
+) ≤ δ} ⊂ Ω+ , 1 ≤ j ≤ q ,

and Ki,δ ∩Kj,δ = ∅ if i 6= j, and consider the open set

D := Ω \ ∪qj=1Kj,δ .

By construction

D+ := {x ∈ D : a(x) > 0} = Ω+ \ ∪
q
j=1Kj,δ

and
D̄0 := {x ∈ D : a(x) = 0} = Ω̄0 .

Moreover,
∂D = γ0 ∪ γ

D
∞ ,

where
γD∞ := ∪

q
j=1{x ∈ Ω+ : dist(x,Γ

j
+) = δ} .

By construction, γD∞ is a compact subset of Ω+, and hence it follows from Theorem
3.3 that there exists a universal constant M > 0 such that

‖Θ[λ,a,Ω,Γ+,α]‖C(γD∞) ≤M

for all α = (α1, . . . , αq) ∈ (0,∞)q. Thus, any solution of (3.1) provides us with a
subsolution of

−∆u = λu− a(x)uf(x, u) in D ,

u =M on γD∞ ,

u = 0 on γ0 .

(3.30)

Due to Remark 3.2(b) we have that for each α ∈ (0,∞)q

Θ[λ,a,Ω,Γ+,α] ≤ Θ[λ,a,D,γD∞,M ] in D , (3.31)

where Θ[λ,a,D,γD∞,M ] is the unique positive solution of (3.30), whose existence is
guaranteed by Theorem 3.1.
Since δ can be taken arbitrarily small,

lim
δ↓0

D = Ω

in the sense of [Lo96], and the mapping α → Θ[λ,a,Ω,Γ+,α] is increasing, we find
from (3.31) that the point-wise limit (3.25) is well defined.
Let O1 ⊂ O two open subsets of Ω such that Ō1 ⊂ O, Ō ⊂ Ω, and choose δ > 0

sufficiently small so that Ō ⊂ D. Then, (3.31) implies

Θ[λ,a,Ω,Γ+,α] ≤ Θ[λ,a,D,γD∞,M ] in O ,

for each α ∈ (0,∞)q, and hence, by the Lp-estimates of Agmon, Douglis & Niren-
berg, for each p > 1 there exists a constant M1 =M(p,O1) such that

‖Θ[λ,a,Ω,Γ+,α]‖W 2,p(O1) ≤M1
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for each α ∈ (0,∞)q. Thus, thanks to Morrey’s embedding theorem and Schauder’s
estimates, there exists a constant M2 =M(O1) such that

‖Θ[λ,a,Ω,Γ+,α]‖C2+µ(Ō1) ≤M2 , α ∈ (0,∞)q .

Now, a rather standard compactness argument combined with the uniqueness of the
point-wise limit (3.25) shows that Θ[λ,a,Ω,Γ+,∞] ∈ C

2+µ(Ō1) is a regular solution of

−∆u = λu − auf(·, u)

in O1, and that

lim
α↑∞
‖Θ[λ,a,Ω,Γ+,α] −Θ[λ,a,Ω,Γ+,∞]‖C2+µ(Ō1) = 0 . (3.32)

This completes the proof of Parts (i) and (ii).
We now prove Part (iii). By construction, for each α ∈ (0,∞)q we have that

Θ[λ,a,Ω,Γ+,α] < Θ[λ,a,Ω,Γ+,∞] . (3.33)

Therefore, thanks to (3.2),

lim
λ↑σ1
Θ[λ,a,Ω,Γ+,∞] =∞ uniformly in ∪n1j=1 Ω̄

1
0,j \ ∂Ω . (3.34)

We now show that the point-wise limit (3.28) is well defined. Reduce δ > 0, if
necessary, so that the open neighborhoods

Ω1,δ0,j := {x ∈ Ω : dist(x,Ω
1
0,j) < δ} , 1 ≤ j ≤ n1 ,

satisfy

Ω̄1,δ0,j ∩ Ω̄
1,δ
0,` = ∅

for any j 6= `, and consider the open set

D1 := D \ ∪
n1
j=1Ω̄

1,δ
0,j .

Then,

∂D1 = ∂D ∪ ∪
n1
j=1(∂Ω

1,δ
0,j \ ∂Ω) = γ0 ∪ γ

D
∞ ∪ ∪

n1
j=1(∂Ω

1,δ
0,j \ ∂Ω) .

By construction, the set

K1 := γ
D
∞ ∪ ∪

n1
j=1(∂Ω

1,δ
0,j \ ∂Ω)

is a compact subset of Ω+. Thus, thanks to Theorem 3.3, there exists a universal
constant M3 > 0 such that for any λ < σ1

‖Θ[λ,a,Ω,Γ+,∞]‖C(K1) ≤M3 .
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Hence, for each λ < σ1 the function Θ[λ,a,Ω,Γ+,∞] provides us with a subsolution of
the problem

−∆u = λu − a(x)uf(x, u) in D1 ,

u =M3 on K1 ,

u = 0 on γ0 = ∂D1 \K1 .

(3.35)

The lower order refuges of D1 are Ω
2
0,j , 1 ≤ j ≤ n2. Therefore, thanks to Theorem

3.1 the problem (3.35) possesses a regular positive solution if, and only if, λ < σ2.
Moreover, it is unique if it exists. Let Θ[σ1,a,D1,K1,M3] denote the unique regular
positive solution of (3.35) for λ = σ1. Thanks to Remark 3.2(b), for each λ < σ1
we have

Θ[λ,a,Ω,Γ+,∞] ≤ Θ[σ1,a,D1,K1,M3] in D1 . (3.36)

Since δ can be taken arbitrarily small and the mapping λ→ Θ[λ,a,Ω,Γ+,∞] is nonde-
creasing, it follows from (3.36) that the point-wise limit (3.28) is well defined. The
same bootstrapping and compactness arguments as above combined with (3.28)
show that Θ[σ1,a,Ω,Γ+,∞] is a regular large solution of (3.29). Its minimal character
follows easily from the construction itself. This completes the proof. �

4. Stabilization of the regular positive solutions in Ω \ Ω̄10 as λ ↑ σ1.

Thanks to Theorem 2.1, the problem (1.5) possesses a regular positive solution
if, and only if,

σ0 < λ < σ1 .

Moreover, it is unique if it exists. As in Section 2 we shall denote it by θ[λ,a,Ω]. The

following result shows that θ[λ,a,Ω] converges to a large regular solution in Ω \ Ω̄
1
0

as λ ↑ σ1.

Theorem 4.1. Suppose (Ha1-3), (Hf) and (Hfb), and assume in addition that
(3.7) is satisfied for any compact subset K of Ω+ and β = σ1. Set

Ω1 := Ω \ Ω̄
1
0 , Ω10 := ∪

n1
j=1Ω

1
0,j .

Then, the point-wise limit

Ξ[σ1,a,Ω1](x) := lim
λ↑σ1

θ[λ,a,Ω](x) x ∈ Ω1 , (4.1)

is well defined. Moreover, Ξ[σ1,a,Ω1] ∈ C
2+µ(Ω1),

lim
λ↑σ1
‖θ[λ,a,Ω] − Ξ[σ1,a,Ω1]‖C2+µ(Ω1) = 0 , (4.2)

and Ξ[σ1,a,Ω1] is the minimal large regular solution of

−∆u = σ1u− a(x)uf(x, u) in Ω1 ,

u =∞ on ∂Ω1 ∩ Ω ,

u = 0 on ∂Ω1 ∩ ∂Ω ,

(4.3)

Proof. Basically this result is a particular case of Theorem 3.5(iii), but not exactly,
since Theorem 3.5 dealt with the limiting behaviour of large regular solutions of
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(3.1) going to infinity on some of the components of ∂Ω+ ∩ ∂Ω and now it might
occur ∂Ω+∩∂Ω = ∅. Nevertheless, the proof of Theorem 3.5(iii) carries over almost
mutatis mutandis to prove Theorem 4.1. In the sequel the notations introduced in
the proof of Theorem 3.5 will be kept out.
Pick up δ > 0 sufficiently small so that the open neighborhoods

Ω1,δ0,j := {x ∈ Ω : dist(x,Ω
1
0,j) < δ} , 1 ≤ j ≤ n1 ,

satisfy

Ω̄1,δ0,j ∩ Ω̄
1,δ
0,` = ∅

for any j 6= `, and consider the open set

D := Ω \ ∪n1j=1Ω̄
1,δ
0,j .

By definition, D ⊂ Ω1. Moreover, any component of ∂Ω
1,δ
0,j \ ∂Ω, 1 ≤ j ≤ n1, lies

within Ω+. Let Γ
j
+, 1 ≤ j ≤ q, denote all the components of ∂D contained in Ω+.

Note that any component of ∂D either it is entirely contained in Ω+, or it is a
component of ∂Ω. Then,

K := ∪qj=1Γ
j
+

is a compact subset of Ω+. Thanks to Theorem 3.3, there exists a universal constant
M > 0 such that

‖θ[λ,a,Ω]‖C(K) ≤M

for any λ ∈ (σ0, σ1), and hence θ[λ,a,Ω] provides us with a subsolution of

−∆u = λu− a(x)uf(x, u) in D ,

u =M on K ,

u = 0 on ∂D \K .

(4.4)

The lower order refuges of D are Ω20,j , 1 ≤ j ≤ n2. Therefore, thanks to Theorem

3.1 the problem (4.4) possesses a regular positive solution if, and only if, λ < σ2.
Moreover, it is unique if it exists. Let Θ[σ1,a,D,K,M ] denote the unique regular
positive solution of (4.4) for λ = σ1. Thanks to Remark 3.2(b) we have that

θ[λ,a,Ω] ≤ Θ[σ1,a,D,K,M ] in D , (4.5)

for all λ ∈ (σ0, σ1). Since δ can be taken arbitrarily small,

lim
δ↓0

D = Ω1 ,

and the mapping λ→ θ[λ,a,Ω] is increasing, it follows from (4.5) that the point-wise
limit (4.1) is well defined.
Let O1 ⊂ O two open subsets of Ω1 such that Ō1 ⊂ O, Ō ⊂ Ω1, and choose

δ > 0 sufficiently small so that Ō ⊂ D. Then, (4.5) implies

θ[λ,a,Ω] ≤ Θ[σ1,a,D,K,M ] in Ō , λ ∈ (σ0, σ1) .
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Thus, by the Lp-estimates of Agmon, Douglis & Nirenberg, for each p > 1 there
exists a constant C1 = C(p,O1) such that

‖θ[λ,a,Ω]‖W 2,p(O1) ≤ C1 , λ ∈ (σ0, σ1) .

Hence, thanks to Morrey’s embedding theorem and Schauder’s estimates, there
exists a constant C2 = C(O1) such that

‖θ[λ,a,Ω]‖C2+µ(Ō1) ≤ C2 , λ ∈ (σ0, σ1) .

Now, a well known compactness argument combined with the uniqueness of the
point-wise limit (4.1) shows that Ξ[σ1,a,Ω1] ∈ C

2+µ(Ō1) is a regular solution of

−∆u = σ1u− auf(·, u)

in O1, and that

lim
λ↑σ1
‖θ[λ,a,Ω] − Ξ[λ1,a,Ω1]‖C2+µ(Ō1) = 0 .

This completes the proof of (4.2). By (2.3) and the construction itself Ξ[σ1,a,Ω1]
must be the minimal regular positive solution of (4.3). The proof is completed. �

5. The existence of metasolutions for λ ≥ σ1.

The following concept goes back to [GL98] and [Go99], where it was introduced
in the special case when f(x, u) = up for some p > 0.

Definition 5.1. Suppose (Ha1-3), (Hf) and set

Ωk := Ω \ ∪
k
i=1 ∪

ni
j=1 Ω̄

i
0,j , 1 ≤ k ≤ m.

A function

u : Ω→ [0,∞]

is said to be a regular metasolution of order k of (1.5) supported in Ωk if u|Ωk is a
large regular solution of

−∆u = λu − a(x)uf(x, u) in Ωk ,

u =∞ on ∂Ωk ∩ Ω ,

u = 0 on ∂Ωk ∩ ∂Ω ,

(5.1)

in the sense of the statement of Theorem 3.5(i), while

u =∞ in (Ω \ Ω̄k) ∪ (∂Ωk ∩ Ω) .

Using this concept, the following result is an immediate consequence from The-
orem 4.1.
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Corollary 5.2. Suppose (Ha1-3), (Hf) and (Hfb), and assume in addition that
(3.7) is satisfied for any compact subset K of Ω+ and β = σ1. Then, the function
M[σ1,a,Ω] : Ω→ [0,∞] defined by

M[σ1,a,Ω] :=

{
Ξ[σ1,a,Ω1] in Ω1 ,

∞ in (Ω \ Ω̄1) ∪ (∂Ω1 ∩Ω) ,
(5.2)

is a regular metasolution of order one of (1.5), with λ = σ1, supported in Ω1.

The following result characterizes the range of values of the parameter λ for
which (1.5) admits a regular metasolution of order k supported in Ωk, 1 ≤ k ≤ m.
Thanks to Theorem 2.2 those metasolutions are the candidates to describe the
limiting behaviour of the population as time passes by for any λ ≥ σ1.

Theorem 5.3. Suppose (Ha1-3), (Hf) and (Hfb), and assume in addition that
(3.7) is satisfied for any compact subset K of Ω+ and β > 0. Fix k ∈ {1, . . . ,m}. If
k < m, then (1.5) possesses a regular metasolution of order k supported in Ωk if, and
only if, λ < σk+1. If k = m, then (1.5) possesses a regular metasolution of order m
supported in Ωm for each λ ∈ R. Moreover, if the problem possesses a metasolution
of order k supported in Ωk, then it also possesses a minimal metasolution of order
k supported in Ωk, 1 ≤ k ≤ m.

Proof. Suppose k < m and (5.1) possesses a large solution u. Then,

λ ≤ σΩk [−∆+ af(·, u)] < σΩ
k+1
0,1 = σk+1 .

Suppose k < m and λ < σk+1. To prove the existence of a metasolution of order k
supported in Ωk it suffices to show that (5.1) has a large regular solution. As a(x)
vanishes on ∂Ωk \ ∂Ω, Theorem 3.5 can not be applied straight away to prove this,
but this trouble may be overcome arguing as follows.
Fix M > 0 and consider the problem

−∆u = λu − a(x)uf(x, u) in Ωk ,

u =M on ∂Ωk ∩ Ω ,

u = 0 on ∂Ωk ∩ ∂Ω .

(5.3)

This problem does not fit into the setting of Theorem 3.1, since a(x) = 0 on
∂Ωk \ ∂Ω, but we can slightly modify Ωk so that the corresponding problem does
it. For each δ > 0 consider the open neighborhoods

Ωi,δ0,j := {x ∈ Ω : dist(x,Ω
i
0,j) < δ} , 1 ≤ i ≤ k , 1 ≤ j ≤ ni .

By (Ha1-3) there exists δ0 > 0 such that for each δ ∈ (0, δ0)

Ω̄i,δ0,j ∩ Ω̄
î,δ

0,ĵ
= ∅

if (i, j) 6= (̂i, ĵ). Now, consider the open set

Ωδk := Ω \ ∪
k
i=1 ∪

ni
j=1 Ω̄

i,δ
0,j .
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By definition,
Ωδk ⊂ Ω \ ∪

k
i=1 ∪

ni
j=1 Ω̄

i
0,j = Ωk ,

and
lim
δ↓0
Ωδk = Ωk ,

in the sense of [Lo96]. Moreover, any component of ∂Ωi,δ0,j \ ∂Ω, 1 ≤ i ≤ k, 1 ≤ j ≤

ni, lies within Ω+. Note that any component of ∂Ω
δ
k either it is entirely contained

in Ω+, or it is a component of ∂Ω. Now, consider the modified problem

−∆u = λu − a(x)uf(x, u) in Ωδk ,

u =M on ∂Ωδk ∩ Ω ,

u = 0 on ∂Ωδk ∩ ∂Ω .

(5.4)

Thanks to Theorem 3.1, (5.4) possesses a unique positive solution, say Θ[λ,a,δ,M ].

Let O1 ⊂ O be two open subdomains of Ωk such that Ō1 ⊂ O, Ō ⊂ Ωk. By
construction, there exists δ1 ∈ (0, δ0) such that for any δ ∈ (0, δ1)

Ō ⊂ Ωδ1k ⊂ Ω
δ
k ⊂ Ωk ,

Set
K := ∂Ωδ1k \ ∂Ω .

By construction, for each δ ∈ (0, δ1) K is a compact subset of

{x ∈ Ωδk : a(x) > 0} .

Thus, thanks to Theorem 3.3, there exists a constant M1 > 0 such that for each
δ ∈ (0, δ1)

‖Θ[λ,a,δ,M ]‖C(K) ≤M1 .

Hence, for each 0 < δ < δ1 the function Θ[λ,a,δ,M ] provides us with a positive
subsolution of

−∆u = λu − a(x)uf(x, u) in Ωδ1k ,

u =M1 on ∂Ωδ1k ∩ Ω ,

u = 0 on ∂Ωδ1k ∩ ∂Ω .

(5.5)

Let Θ[λ,a,δ1,M1] denote the unique positive solution of (5.5), whose existence is
guaranteed by Theorem 3.1. Thanks to Remark 3.2(b), for each δ ∈ (0, δ1) we have

Θ[λ,a,δ,M ] ≤ Θ[λ,a,δ1,M1] in Ω
δ1
k ,

and therefore, there exists a constant M2 > 0 such that for each 0 < δ < δ1

‖Θ[λ,a,δ,M ]‖C(Ō) ≤M2 .

By the same bootstrapping argument used in the proof of Theorem 3.5 and Theorem
4.1, there exists a constant M3 > 0 such that for each δ ∈ (0, δ1)

‖Θ[λ,a,δ,M ]‖C2+µ(Ō1) ≤M3 .
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Now, by a standard compactness argument combined with a diagonal procedure it
is clear that we can substract a subsequence δn ↓ 0 such that

lim
n→∞

‖Θ[λ,a,δn,M ] −Θ[λ,a,M]‖C2+µ(Ωk) = 0

for some Θ[λ,a,M] ∈ C
2+µ(Ωk). Necessarily,

lim
x→[∂Ωk\∂Ω]

Θ[λ,a,M](x) =M .

Therefore, Θ[λ,a,M ] provides us with a solution of (5.3). The same argument of
the proof of Theorem 3.1 shows that in fact Θ[λ,a,M] is the unique regular positive
solution of (5.3), and that M → Θ[λ,a,M] is point-wise increasing.
Thanks to Theorem 3.3, there exists a constantM4 > 0 such that for anyM > 0

‖Θ[λ,a,M]‖C(K) ≤M4 .

Hence, for each M > 0 the function Θ[λ,a,M] provides us with a subsolution of

−∆u = λu − a(x)uf(x, u) in Ωδ1k ,

u =M4 on ∂Ωδ1k ∩ Ω ,

u = 0 on ∂Ωδ1k ∩ ∂Ω ,

(5.6)

and so
Θ[λ,a,M] ≤ Θ[λ,a,δ1,M4] in Ω

δ1
k .

Therefore, the point-wise limit

Θ[λ,a,∞](x) := lim
M↑∞

Θ[λ,a,M](x) , x ∈ Ωk ,

is well defined. Finally, the same regularity and compactness argument given before
shows that Θ[λ,a,∞] is a large solution of (5.1). Its minimality follows easily from
the construction itself.
In case k = m, by Remark 3.2(a) we do not have any limitation on the size of

λ in order to apply Theorem 3.1, and therefore the previous procedure provides us
with a minimal large solution of (5.1) for each λ ∈ R. This completes the proof. �
The following result shows the point-wise behavior of the metasolutions of order

k ≤ m− 1 supported in Ωk as λ ↑ σk+1. They stabilize in Ωk+1, whereas they grow
to infinity in

∪
nk+1
j=1 Ω̄

k+1
0,j \ ∂Ω .

Therefore, they provide us with metasolutions of order k + 1 supported in Ωk+1.

Theorem 5.4. Suppose (Ha1-3), (Hf) and (Hfb), and assume in addition that (3.7)
is satisfied for any compact subset K of Ω+ and β > 0. Fix k ∈ {1, . . . ,m− 1} and
consider a sequence

λn ∈ (σk, σk+1) , n ≥ 1 ,

such that
lim
n→∞

λn = σk+1 .
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For each n ≥ 1, let un be a metasolution of order k of (1.5), with λ = λn, supported
in

Ωk = Ω \ ∪
k
i=1 ∪

ni
j=1 Ω̄

i
0,j ,

whose existence is guaranteed by Theorem 5.3. Then,

lim
n→∞

un =∞ uniformly in ∪
nk+1
j=1 Ω̄

k+1
0,j \ ∂Ω . (5.7)

Moreover, for any open subdomain O of Ωk+1 with Ō ⊂ Ωk+1 there exists a subse-
quence of (λn, un), n ≥ 1, relabeled again by n, and a regular solution of

−∆u = σk+1u− auf(·, u)

in O, say uω ∈ C2+µ(Ō), such that

lim
n→∞

‖un − uω‖C2+µ(Ō) = 0 . (5.8)

Furthermore, if uλ stands for the minimal metasolution of order k of (1.5) supported
in Ωk, then the point-wise limit

uω(x) = lim
λ↑σk+1

uλ(x) , x ∈ Ωk+1 ,

is well defined and its extension by ∞ to Ω provides us with a metasolution of order
k + 1 of (1.5) supported in Ωk+1 (for the value of the parameter λ = σk+1).

Proof. By definition, for each n ≥ 1 the function un|Ωk is a large regular solution
of

−∆u = λnu− a(x)uf(x, u) in Ωk ,

u =∞ on ∂Ωk ∩ Ω ,

u = 0 on ∂Ωk ∩ ∂Ω .

In particular, un|Ωk is a positive strict supersolution of

−∆u = λnu− a(x)u
p+1 in Ωk ,

u = 0 on ∂Ωk ,
(5.9)

and hence,
un|Ωk ≥ θ[λn,a,Ωk] , (5.10)

where θ[λn,a,Ωk] � 0 is the unique positive solution of (5.9), whose existence and
uniqueness is guaranteed by Theorem 2.1(i). Note that the lower order refuges of

Ωk are Ω
k+1
0,j , 1 ≤ j ≤ nk+1, and that

λn < σk+1 = σ
Ωk+10,j .

Thanks to Theorem 2.1(iii), we have

lim
n→∞

θ[λn,a,Ωk] =∞ uniformly in ∪
nk+1
j=1 Ω̄

k+1
0,j \ ∂Ωk ,
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and hence we find from (5.10) that

lim
n→∞

un =∞ uniformly in ∪
nk+1
j=1 Ω̄

k+1
0,j \ ∂Ωk . (5.11)

Moreover, un = ∞ in (Ω \ Ω̄k) ∪ (∂Ωk ∩ Ω), since un is a metasolution of order k
supported in Ωk. Thus, (5.11) implies (5.7).
Now, for each δ > 0 sufficiently small consider the open set

D := Ω \ ∪k+1i=1 ∪
ni
j=1 Ω̄

i,δ
0,j ,

where

Ω1,δ0,j := {x ∈ Ω : dist(x,Ω
i
0,j) < δ} , 1 ≤ i ≤ k + 1 , 1 ≤ j ≤ ni .

By definition,

D ⊂ Ω \ ∪k+1i=1 ∪
ni
j=1 Ω̄

i
0,j = Ωk+1 ,

and

lim
δ↓0

D = Ωk+1 ,

in the sense of [Lo96]. Moreover, any component of ∂Ωi,δ0,j \ ∂Ω, 1 ≤ i ≤ k + 1,

1 ≤ j ≤ ni, lies within Ω+. Let Γ
j
+, 1 ≤ j ≤ q, denote all the components of ∂D

contained in Ω+. Note that any component of ∂D either it is entirely contained in
Ω+, or it is a component of ∂Ω. Then,

K := ∪qj=1Γ
j
+

is a compact subset of Ω+. Thanks to Theorem 3.3, there exists a constant M > 0
such that for any n ≥ 1,

‖un‖C(K) ≤M ,

and hence un provides us with a positive subsolution of

−∆u = σk+1u− a(x)uf(x, u) in D ,

u =M on K ,

u = 0 on ∂D \K .

(5.12)

The lower order refuges of (5.12) are Ωk+20,j , 1 ≤ j ≤ nk+2, if k ≤ m− 2, and a(x) is
bounded away from zero if k = m− 1. Moreover, σk+1 < σk+2. Therefore, thanks
to Theorem 3.1 the problem (5.12) possesses a unique regular positive solution. Let
Θ denote it. By Remark 3.2(b) we find that for each n ≥ 1

un ≤ Θ in D . (5.13)

Let O be an open subset of Ωk+1 with Ō ⊂ Ωk+1 and choose δ > 0 sufficiently
small so that

O ⊂ D .
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The same bootstrapping argument of the proof of Theorem 4.1 shows that there
exists a constant M1 > 0 such that

‖un‖C2+µ(Ō) ≤M1 , n ≥ 1 .

Therefore, we can substract a subsequence of (λn, un), again labeled by n, such
that

lim
n→∞

‖un − uω‖C2+µ(Ō) = 0

for some uω ∈ C2+µ(Ō). Necessarily, uω is a solution of

−∆u = σk+1u− auf(·, u)

in O.
The last assertion follows easily from the fact that λ → uλ(x) is nondecreasing

for each x ∈ Ω̄. This completes the proof of the theorem. �

6. The asymptotic behaviour of the population for λ ≥ σ1.

In this section we characterize the asymptotic behaviour of the population as t ↑ ∞
for any value of the parameter λ ≥ σ1.

Theorem 6.1. Suppose (Ha1-3), (Hf) and

∂Ω ∩ ∂Ω+ 6= ∅ .

Let Γj+, 1 ≤ j ≤ q, be q arbitrary components of ∂Ω∩ ∂Ω+, and αj > 0, 1 ≤ j ≤ q,
q arbitrary constants, and consider the evolution problem

∂u

∂t
−∆u = λu− a(x)uf(x, u) in Ω× (0,∞) ,

u
∣∣
Γj+
= αj > 0 , 1 ≤ j ≤ q t > 0

u = 0 on (∂Ω \ ∪qj=1Γ
j
+)× (0,∞) ,

u(·, 0) = u0 , in Ω ,

(6.1)

The following assertions are true:

(i) For each u0 ∈ U0, u0 ≥ 0, the problem (6.1) possesses a unique global regular
solution u[λ,a,Ω,Γ+,α](·, ·;u0) ∈ C

2+µ,1+µ2 (Ω̄× (0,∞)).

(ii) For each u0 ∈ U0, u0 ≥ 0,

lim
t→∞

‖u[λ,a,Ω,Γ+,α](·, t;u0)−Θ[λ,a,Ω,Γ+,α]‖C(Ω̄) = 0 , (6.2)

where Θ[λ,a,Ω,Γ+,α] is the unique regular positive solution of (3.1).

Proof. The existence of a unique regular solution follows from the results of [DK92].
The global existence of these solutions is easily obtained from the estimate

∂u

∂t
−∆u = λu − auf(·, u) ≤ λu .

This completes the proof of Part (i). Adapting the proof of Theorem 2.2 it is easily
seen that for any u0 ∈ U0, u0 ≥ 0, condition (6.2) holds. �
From this result it easily follows the main theorem of this section.
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Theorem 6.2. Suppose (Ha1-3), (Hf) and (Hfb), and assume in addition that (3.7)
is satisfied for any compact subset K of Ω+ and β > 0 and that either 1 ≤ k ≤ m−1
and σk ≤ λ < σk+1, or k = m and λ ≥ σm. Then, for any u0 ∈ U0 there exists
ν > 0 such that for any compact subset K of Ωk the restriction of the orbit

Γ(u0) := {u[λ,a,Ω](·, t;u0) : t ≥ 0}

to K is relatively compact in C2+ν(K). Moreover,

Θmin[λ,a,∞] ≤ lim inf
t↑∞

u[λ,a,Ω](·, t;u0) ≤ lim sup
t↑∞

u[λ,a,Ω](·, t;u0) ≤ Θ
max
[λ,a,Ω] ,

where Θmin[λ,a,∞] and Θ
max
[λ,a,∞] stand for the minimal and maximal large solutions of

problem (5.1), respectively. Thus, if (5.1) possesses a unique large solution, say
Θ[λ,a,Ω], then

lim
t↑∞
‖u[λ,a,Ω](·, t;u0)−Θ[λ,a,Ω]‖C2+ν(K) = 0 (6.3)

for any compact subset K of Ωk, and therefore due to Theorem 2.2(iii) the solution
u[λ,a,Ω](·, t;u0) is point-wise convergent as t ↑ ∞ to the metasolution of order k
supported in Ωk associated with Θ[λ,a,Ω].

Proof. The notations introduced in the proof of Theorem 5.3 will be kept out.
Consider 1 ≤ k ≤ m and λ within its corresponding range of values. Let K ⊂ Ωk
compact and consider δ > 0 sufficiently small so that

K ⊂ Ωδk ⊂ Ωk .

Set
ML := inf

∂Ωδk∩Ω
u[λ,a,Ω](·, 1;u0) , MS := sup

∂Ωδk∩Ω

u[λ,a,Ω](·, 1;u0)

and consider the auxiliary evolution problems

∂u

∂t
−∆u = λu− a(x)uf(x, u) in Ωδk × (0,∞) ,

u =M > 0 , on (∂Ωδk ∩ Ω)× (0,∞) ,

u = 0 on (∂Ωδk ∩ ∂Ω)× (0,∞) ,

u(·, 0) = u1 , in Ω̄δk ,

(6.4)

where
M ∈ {ML,Ms} , u1 := u[λ,a,Ω](·, 1;u0) .

Thanks to the parabolic maximum principle, for each t ≥ 1 we have that

u[λ,a,δ,ML](·, t− 1;u1) ≤ u[λ,a,Ω](·, t;u0) ≤ u[λ,a,δ,MS](·, t− 1;u1) in Ω
δ
k ,

where u[λ,a,δ,M ](·, t − 1;u1) is the unique global regular solution of (6.4), whose
existence is guaranteed by Theorem 6.1(i). Moreover, it follows from Theorem
6.1(ii) that

lim
t↑∞
‖u[λ,a,δ,M ](·, t− 1;u1)− Θ[λ,a,δ,M ]‖C1(Ω̄δk) = 0 , (6.5)
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where Θ[λ,a,δ,M ] is the unique regular positive steady-state of (6.4), whose existence
is guaranteed by Theorem 3.1. In particular, for each δ > 0 we have that

Θ[λ,a,δ,ML] ≤ lim inf
t↑∞

u[λ,a,Ω](·, t;u0) ≤ lim sup
t↑∞

u[λ,a,Ω](·, t;u0) ≤ Θ[λ,a,δ,MS] (6.6)

in Ω̄δk. On the other hand, thanks to Theorem 2.2(iii) and the parabolic estimates
of [Re82] and [Re86] it is easily seen that

lim
δ↓0

ML =∞ .

Thus, thanks to the analysis already done in the proof of Theorem 5.3,

Θmin[λ,a,Ω]≤ lim inf
t↑∞

u[λ,a,Ω](·, t;u0)≤ lim sup
t↑∞

u[λ,a,Ω](·, t;u0)≤ inf
δ>0
Θ[λ,a,δ,∞]=Θ

max
[λ,a,Ω] .

This completes the proof of (6.3). Moreover, it shows that there exists a constant
M > 0 such that

‖u[λ,a,Ω](·, t;u0)‖C(K) ≤M .

Hence, by the results of [Re86], the restriction of Γ(u0) to K, say ΓK(u0), is
relatively compact in C2−(K). Therefore, by the parabolic Schauder estimates,
[LSU68], there exists ν > 0 such that ΓK(u0) is relatively compact in C

2+ν(K).
This completes the proof. �
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eigenvalue problems and unbounded continua of positive solutions of a
semilinear equation, J. Diff. Eqns. 127 (1996), 295-319.



170 Julian López-Gómez
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