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Multiple periodic solutions to a suspension bridge

ordinary differential equation ∗

P. J. McKenna & K. S. Moore

Abstract

We present an ordinary differential equation which models the tor-
sional motion of a horizontal cross section of a suspension bridge. We
use Leray-Schauder degree theory to prove that the undamped equation
has multiple periodic weak solutions. We use a numerical continuation
algorithm to demonstrate the existence of three periodic solutions (one of
small amplitude and two of large amplitude) and to examine the bifurca-
tion properties of the periodic solutions.

1 Introduction

In [8], the first author considered a horizontal cross section of the center span
of a suspension bridge and proposed an ordinary differential equation model for
the torsional motion of the cross section. Using physical constants from the
engineers’ reports of the Tacoma Narrows collapse, he investigated this model
numerically. By specifying the initial position and velocity of the cross section
and using the Runge-Kutta method to solve the initial value problem over long
time, he demonstrated that under the same small periodic forcing term, small
or large amplitude periodic motion may result; the ultimate outcome depends
on the initial conditions.
The methodology in the above-mentioned paper was somewhat primitive.

Different initial conditions were prescribed randomly and the eventual behav-
ior of the solution of the initial value problem was observed. Sometimes the
motion converged to a large amplitude solution and sometimes to the small
near-equilibrium solution.
In this paper, we present a more systematic approach to the study of the

equation for the torsional motion of a cross section of the center span. We use
Leray-Schauder degree theory to prove that, under certain physical assump-
tions, the undamped equation has multiple periodic solutions. We demonstrate
numerically that for small forcing, multiple periodic solutions exist and that
whether large or small amplitude motion results depends only on the initial
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Figure 1: A simple model of the center span

conditions. Finally, we use a more sophisticated approach to compute periodic
solutions of the nonlinear differential equation. Using continuation methods, we
examine the bifurcation properties of periodic solutions as the amplitude of the
forcing term varies and we demonstrate that bifurcation from single to multiple
periodic solutions occurs for small forcing.

2 The Equation for the Torsional Motion of the

Cross Section

We treat the center span of the bridge as a beam of length L and width 2l
suspended by cables (see figure 1). To model the motion of a horizontal cross
section of the beam, we treat it as a rod of length 2l and mass m suspended
by cables. Let y(t) denote the downward distance of the center of gravity of
the rod from the unloaded state and let θ(t) denote the angle of the rod from
horizontal at time t (see figure 2).
We assume that the cables do not resist compression, but resist elongation

according to Hooke’s Law with spring constant K; i.e., the force exerted by the
cable is proportional to the elongation in the cable with proportionality constant
K. In figure 2 we see that the extension in the right hand cable is (y − l sin θ),
and hence the force exerted by the right hand cable is

−K(y − l sin θ)+ =

{
−K(y − l sin θ) if y − l sin θ ≥ 0
0 if y − l sin θ < 0

where u+ = max{u, 0}. Similarly, the extension in the left hand cable is (y +
l sin θ) and the force exerted by the left hand cable is −K(y + l sin θ)+.
In [8], the author showed that the torsional and vertical motion satisfy

θ′′ =
3K

ml
cos θ[(y − l sin θ)+ − (y + l sin θ)+]− δ1θ

′ + f(t) (1)

y′′ = −
K

m
[(y − l sin θ)+ + (y + l sin θ)+]− δ2y

′ + g ,

where δ1, δ2 are damping constants, g is the force due to gravity, and f(t) is the
external force at time t.
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Figure 2: A horizontal cross section of the center span
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Assuming that the cables never lose tension, we have y ± l sin θ ≥ 0 and
hence (y ± l sin θ)+ = (y ± l sin θ). Thus, the equations (1) become uncoupled
and the torsional and vertical motion satisfy

θ′′ = −
6K

m
cos θ sin θ − δ1θ

′ + f(t) (2)

y′′ = −
2K

m
y − δ2y

′ + g (3)

respectively.
The equation for the vertical motion, (3), is simply the equation for a

damped, forced, linear harmonic oscillator and the behavior of its solutions is
well known, [2]. We will study the equation for the torsional motion (2), which
is the damped, forced, pendulum equation and is known to possess chaotic so-
lutions, [2].
To choose the physical constants K,m, δ := δ2 and the external forcing term

f(t), we rely on [1], [8], and [12]. From [1], we choosem = 2500 and δ = .01. To
determine K, from [1] we know that the main span would deflect about half a
meter when loaded with 100 kgs per unit length, so we have 100(9.8)−2K(.5) =
0 and we take K = 1000.
For a cross section similar to the Tacoma Narrows bridge, wind tunnel ex-

periments indicate that aerodynamic forces induce approximately sinusoidal os-
cillations of amplitude three degrees [12], so in (2) we choose f(t) = λ sin(µt)
where λ ∈ [0, 0.06] is chosen to produce the appropriate behavior near equilib-
rium and the frequency µ is chosen to match the frequency of the oscillations
observed at Tacoma Narrows on the day of the collapse. The frequency of the
torsional motion was approximately one cycle every 4 or 5 seconds, so we take
µ ∈ [1.2, 1.6].

3 A Multiplicity Theorem

In this section, we prove that undamped equations of the form (2) have multiple
periodic weak solutions. To some extent, this result is inspired by the earlier
results of Castro and Lazer, [3], where they obtained multiple solutions of elliptic
boundary value problems once a critical value, measured by f(0), passes across
key eigenvalues.
Let Ω = (−π, π), H = {u ∈ L2(Ω)|u(t) = −u(−t)} and define Lu = −u′′.

For u ∈ H, let ‖u‖ = ‖u‖L2(Ω) = (
∫
Ω |u|

2dt)
1
2 . Using cosu sinu = 1

2 sin 2u,
removing the damping term, and imposing periodicity conditions, we rewrite
(2) as

Lu = b sin 2u− εh(t) (4)

u(−π) = u(π), u′(−π) = u′(π)

We observe that the eigenvalues and eigenfunctions of L are

λn = n
2 , φn(t) = sinnt (5)

hence L−1 exists, is compact, and ‖L−1‖ = 1.
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Definition We say that u ∈ H is a solution to (4) if

u− L−1(b sin 2u− εh) = 0. (6)

We will prove the existence of multiple solutions u ∈ H to the problem (4).

Theorem 3.1 Let h ∈ H with ‖h‖ ≤ 1 and let b ∈ (12 , 2). Then there exists
ε0 > 0 such that if |ε| < ε0, (4) has at least two solutions.

Proof Let ε < ε0; we will determine the value of ε0 later. Note that by (5)
and our choice of b, 2b is not an eigenvalue of L.
Define T1 : H → H by

T1(u) = u− L
−1(b sin 2u− εh)

and note that, by (6), zeros of T1 correspond to solutions of (4). Denote
the Leray-Schauder degree of the map T1 in the domain U at the point p by
deg(T1, U, p). To prove the theorem, we will show

(D1): there exists R0 > 0 such that for R > R0, deg(T1, BR(0), 0) = 1

(D2): there exists γ ∈ (0, R0) such that deg(T1, Bγ(0), 0) = −1

Then, since deg(T1, Bγ(0), 0) 6= 0, there exists a zero of T1 (i.e., a solution
of (4)) in Bγ(0). Moreover, by the additivity property of degree, we have

deg(T1, BR(0)\Bγ(0), 0) 6= 0 and hence (4) has second solution in the annu-

lus BR(0)\Bγ(0).
To establish (D1), define

Tβu = u− βL
−1(b sin 2u− εh)

for β ∈ [0, 1] and note that this definition of T1 is consistent with our previous
definition. Note also that T0 is simply the identity map, hence for any R > 0
we have deg(T0, BR(0), 0) = 1. The homotopy property of degree ensures that
deg(Tβ , BR(0), 0) is constant provided that 0 /∈ Tβ(∂BR(0)) for all β ∈ [0, 1].
Fix β ∈ [0, 1] and suppose u ∈ H solves Tβu = 0. We will show that u is

bounded above by some R0 > 0 and that this bound is independent of β.
Since Tβu = 0, we have

‖u‖ = β‖L−1(b sin 2u− εh)‖

≤ β[ε0 + b‖ sin 2u‖]

≤ β[ε0 + bm(Ω)
1/2]

≤ [ε0 + bm(Ω)
1/2]

= [ε0 + b
√
2π] < R0

if we choose R0 > ε0 + b
√
2π.
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Thus, for R > R0 we have

deg(T1, BR(0), 0) = deg(T0, BR(0), 0) = 1 (7)

and (D1) above holds.
To establish (D2), define

Tµu = u− (1− µ)L
−1(2bu)− µL−1(b sin 2u− εh)

for µ ∈ [0, 1] and note again that this definition of T1 is consistent with our
previous definitions. We will again apply the homotopy property of degree and
a standard degree calculation to show that for some γ > 0

deg(T1, Bγ(0), 0) = deg(T0, Bγ(0), 0) = −1. (8)

We will show first that for any γ > 0,

deg(T0, Bγ(0), 0) = deg(I − 2bL
−1, Bγ(0), 0) = −1. (9)

Consider the finite dimensional subspaceMN :=span{φn}Nn=1 of H and recall
that, by compactness, 2bL−1 can be approximated in operator norm by the
operators BN :MN →MN given by

BN (u) = 2b

N∑
n=1

cn

λn
φn.

By definition, for N sufficiently large,

deg(T0, Bγ(0), 0) = deg(I −BN , Bγ(0) ∩MN , 0)

=
∑

u∈(I−BN )−1(0)

signJI−BN (u)

where Jφ(u) is the Jacobian determinant of φ at u.
Since I−BN can be identified with an N×N diagonal matrix whose entries

are 1− 2b
λn
, we have

deg(I −BN , Bγ(0) ∩MN , 0) = sign

N∏
n=1

(1−
2b

λn
).

Since b ∈ (12 , 2) and λn = n
2, the only negative value of 1− 2b

λn
occurs at λ1 = 1.

Since the eigenvalues of L are simple, we have

deg(I −BN , Bγ(0) ∩MN , 0) = −1

and (9) holds.
To establish (8), and hence (D2), we must show that for some γ > 0,

deg(T1, Bγ(0), 0) = deg(T0, Bγ(0), 0). (10)
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The homotopy property of degree ensures that deg(Tµ, Bγ(0), 0) is constant
provided 0 /∈ Tµ(∂Bγ(0)) for all µ ∈ [0, 1]. Observe that u = 0 is the only zero
of T0 since 2b is not an eigenvalue of L. Fix µ ∈ (0, 1] and suppose that u 6= 0
solves Tµu = 0. Set ‖u‖ = γ̃µ; we will show that γ̃µ is bounded below by some
γµ > 0.
Set ψ = u

‖u‖ =
u
γ̃µ
. We claim first that there exists a compact set K with

ψ ∈ K. Since u is a zero of Tµ, u satisfies

Lu− 2bu = µ(b sin 2u− 2bu− εh) (11)

and therefore
Lu = µ(b sin 2u− εh) + (1− µ)2bu.

Thus,

‖Lu‖ ≤ ‖b sin 2u− εh‖+ 2b‖u‖

≤ b‖ sin 2u‖+ 2bγ̃µ + ε0

≤ bm(Ω)
1
2 + 2bγ̃µ + ε0 ≤

√
2πb+ 2bγ̃µ + ε0.

It follows that u ∈ L−1(B√2πb+2bγ̃µ+ε0(0)), which is compact since L
−1 is com-

pact, and thus there exists a compact set K with ψ ∈ K.
Since u satisfies (11), we have

‖u− L−12bu‖ = µ‖L−1(b sin 2u− 2bu− εh)‖. (12)

Denote the left and right hand sides of (12) by LHS and RHS respectively.
Since 2b is not an eigenvalue of L, we have Lψ − 2bψ 6= 0 and hence

inf
ψ∈K
‖ψ − L−12bψ‖ = α > 0

and for our u we have

LHS = ‖u− L−12bu‖ ≥ αγ̃µ. (13)

Now considering the right hand side of (12), we have

RHS ≤ µ‖b sin 2u− 2bu− εh‖

≤ µ[ε0 + ‖b sin 2u− 2bu‖]

= µ[ε0 + ‖b sin(2γ̃µψ)− 2bγ̃µψ‖].

We claim that if γ̃µ is sufficiently small, RHS < αγ̃µ, which contradicts (13).
To establish this, we must first prove the following lemma.

Lemma 3.2 Let K,H, b be as above and denote γ̃µ by η. Then there exists a
function δ : (0,∞)→ (0,∞) such that

(L1): ‖b sin(2ηψ)− 2bηψ‖ ≤ ηδ(η)

(L2): δ(η)→ 0 as η → 0

hold for all ψ ∈ K, η > 0
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Proof Define δ : (0,∞)→ (0,∞) by

δ(η) = max
ψ∈K
‖
b

η
sin 2ηψ − 2bψ‖

and note that (L1) above is satisfied.
To show that (L2) holds, we must show that fη(ψ) := ‖

b
η sin 2ηψ−2bψ‖ → 0

uniformly on K as η → 0. To show that fη → 0 uniformly on K, we’ll show
that fη(ψ)→ 0 for each ψ ∈ K and that the family F := {fη} is equicontinuous
on K.
Choose ψ ∈ K, ψ 6= 0 and note that

b

η
sin 2ηψ − 2bψ = b

sin 2ηψ

2ηψ
· 2ψ − 2bψ → 0

as η → 0, hence

|
b

η
sin 2ηψ − 2bψ|2 → 0.

Moreover, since | sinw| ≤ |w| and since w2 is convex, we have

|
b

η
sin 2ηψ − 2bψ|2 = 4|

1

2

b

η
sin 2ηψ +

1

2
(−2bψ)|2

≤ 4[
1

2
|
b

η
sin 2ηψ|2 +

1

2
|2bψ|2]

≤ 2[
b2

η2
|2ηψ|2 + |2bψ|2] = 16b2ψ2 ∈ L1

since ψ ∈ L2. By the Dominated Convergence Theorem, we conclude that
fη(ψ)→ 0 for each ψ ∈ K, as desired.
To see that the family F = {fη} is equicontinuous on K, choose ε̃ > 0 and

ψ, ψ̃ ∈ K. We have that

|fη(ψ)− fη(ψ̃)| = |‖
b

η
sin 2ηψ − 2bψ‖ − ‖

b

η
sin 2ηψ̃ − 2bψ̃‖|

≤ ‖
b

η
(sin 2ηψ − sin 2ηψ̃)− 2b(ψ − ψ̃)‖

≤
b

η
‖ sin 2ηψ − 2ηψ̃‖+ 2b‖ψ − ψ̃‖

≤
b

η
‖2ηψ − 2ηψ̃‖+ 2b‖ψ − ψ̃‖

= 4b‖ψ − ψ̃‖ < ε̃

provided ‖ψ − ψ̃‖ < ε̃
4b .

Since fη are equicontinuous on K and converge pointwise on K, we have
that fη converge uniformly on K and hence (L2) holds. ♦
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Returning now to the proof of the theorem and invoking the lemma above,
we have that

RHS ≤ µ[ε0 + γ̃µδ(γ̃µ)].

Assume now that ε0 <
1
2αγ̃µ. Since δ → 0, there exists γµ > 0 such that if

γ̃µ < γµ, then δ(γ̃µ) <
1
2α and hence

RHS < αγ̃µ.

But this contradicts (13). Therefore γ̃µ is bounded below by γµ > 0. Note also
that because of the factor of µ on the right hand side of the above inequalities,
we can take 0 < γ1 ≤ γµ for µ ∈ (0, 1], and hence we can choose γ ∈ (0, γ1). ♦

4 The Bifurcation Curve of Periodic Solutions

As promised in the introduction, we now begin a more systematic numerical
study of the structure of the solution set of periodic solutions of the torsional
equation in the range of parameter values where the large amplitude periodic
solutions were observed at Tacoma Narrows. Instead of randomly varying the
initial conditions and hoping that multiple periodic solutions show up as long-
term behavior of the solution, we will study the structure of the solutions as we
continuously vary the amplitude of the forcing term.
Recall that the equation for the torsional motion of a horizontal cross section

of the center span of a suspension bridge is given by (2). Using the physical
constants from the engineers’ reports of the Tacoma Narrows failure and the
forcing term described in section 1 yields the ordinary differential equation

θ′′ = −2.4 cosθ sin θ − .01θ′ + λ sinµt. (14)

In [8], the author prescribed the initial position θ(0) and velocity θ′(0) of the
cross section and employed the Runge-Kutta method to solve the initial value
problem over large time. He demonstrated numerically that small or large am-
plitude periodic motion may result, depending only on the initial conditions.
Moreover, the amplitude and frequency of the large amplitude solutions matched
the behavior observed at Tacoma Narrows on the day of its collapse, [1].
As in [8], we compute periodic solutions to (14). Moreover, we describe a

numerical continuation algorithm and we use it to plot the amplitude of periodic
solutions versus the amplitude λ of the external forcing term. We demonstrate
that for small λ, three periodic solutions to (14) exist and that whether large
or small amplitude motion results depends on the initial position and velocity
of the cross section. Moreover, we demonstrate that bifurcation from single to
multiple periodic solutions occurs for small λ.

4.1 The Algorithm

We wish to generate the bifurcation curve for periodic solutions to (14) as the
amplitude λ of the external forcing term varies; i.e., we wish to plot the am-
plitude Aλ of the periodic solution versus λ. Define T = 2π/µ. To compute T
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periodic solutions to (14), we rewrite it as a first order system as follows. Let

U =

[
u
v

]
=

[
θ
θ′

]
. (15)

Then solutions θ of (14) correspond to solutions U of the first order system

u′ = v (16)

v′ = −2.4 cosu sinu− .01v + λ sinµt

We employ a shooting algorithm to find periodic solutions to the above
system. In the shooting algorithm, we search for initial conditions η = [η1, η2]

T

so that the solution to the initial value problem

u′ = v

v′ = −2.4 cosu sinu− .01v + λ sinµt (17)

u(0) = η1, v(0) = η2

is T -periodic, i.e., we search for initial conditions η so that the solution U to
(17) satisfies

U(T ) = U(0) = η.

Define F : R2 → R2 by

F (η) = η − U(T ). (18)

Then searching for initial conditions η which yield a T -periodic solution to (17)
is equivalent to searching for zeros of F ; we employ Newton’s method to search
for these zeros. Specifically, we take a “good guess” at an initial condition
η0 which yield a T -periodic solution to (17). We then solve the initial value
problem (17) for t ∈ [0, T ] and test whether F (η0) = 0. If not, we update η0

via Newton’s method:

η1 = η0 −DF (η0)−1F (η0)

where

DF =

[
∂F1
∂η1

∂F1
∂η2

∂F2
∂η1

∂F2
∂η2

]
(19)

is the Jacobian matrix of F .
To compute this matrix, observe that by our definition of F in (18), we have

DF =

[
∂F1
∂η1

∂F1
∂η2

∂F2
∂η1

∂F2
∂η2

]
=

[
1− ∂u

∂η1
(T ) − ∂u

∂η2
(T )

− ∂v
∂η1
(T ) 1− ∂v

∂η2
(T )

]
. (20)

To compute ∂u
∂ηi

, ∂v
∂ηi

, i = 1, 2, we recall that the solution to the initial value
problem is continuously differentiable with respect to initial conditions and pa-
rameters, [5], and hence we can differentiate (17) with respect to η1. This yields



P. J. McKenna & K. S. Moore 193

the first order system in ∂u
η1
, ∂v
η1(

∂u
∂η1
∂v
∂η1

)′
=

(
∂v
∂η1

−2.4 cos(2u) ∂u∂η1 − .01
∂v
∂η1

)
;

(
∂u
∂η1
∂v
∂η1

)
(0) =

(
1
0

)
(21)

Hence [ ∂u∂η1 ,
∂v
∂η1
]T solves the initial value problem

(
w
z

)′
=

(
z

−2.4 cos(2u)w − .01z

)
;

(
w
z

)
(0) =

(
1
0

)
(22)

where u is the solution to the initial value problem (17).
Similarly, differentiating (17) with respect to η2, we see that [

∂u
∂η2

, ∂v
∂η2
]T

solves the initial value problem(
w
z

)′
=

(
z

−2.4 cos(2u)w − .01z

)
;

(
w
z

)
(0) =

(
0
1

)
. (23)

Therefore, to compute the entries of the Jacobian matrix (20), we must solve
the initial value problems (17), (22), and (23).
The above algorithm (Shooting Algorithm with Newton Update) suggests a

method by which we can plot the amplitude Aλ of periodic solutions to (14)

versus the amplitude λ of the external forcing term. Specifically, fix λ = λ̂, use
the algorithm described above to compute the initial conditions which yield a
T periodic solution to (17), record the amplitude Aλ̂ of the periodic solution,
increment λ, and repeat.
Unfortunately, this algorithm fails at bifurcation points because, under nat-

ural parameterization, the Jacobian matrix (20) is singular at such points. How-
ever, we can remedy this difficulty via pseudoarclength parameterization. We
describe the parameterization briefly below and refer the reader to [4], [7] for
details.
Let (η0, λ0) be a zero of F and set (η0, λ0) = (η(s0), λ(s0)). We will introduce

the pseudoarclength normalization N given by

N(η, λ, s) = ψ
‖η(s)− η(s0)‖2

s− s0
+ (1− ψ)

|λ(s) − λ(s0)|2

s− s0
− (s− s0) (24)

where ψ ∈ (0, 1) and s is a chord-length parameter, [4]. We use an algorithm
similar to the Shooting Algorithm with Newton Update described above to
search for zeros of the map F given by

F(η, λ, s) =

(
F (η, λ)
N(η, λ, s)

)
. (25)

The Jacobian matrix

DF =




∂F1
∂η1

∂F1
∂η2

∂F1
∂λ

∂F2
∂η1

∂F2
∂η2

∂F2
∂λ

∂N
∂η1

∂N
∂η2

∂N
∂λ


 (26)
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is nonsingular even if the matrix DF is singular, [7]. Finally, we observe that
the entries in the third row of DF can be computed directly from the definition
(24) of N and that the computation of ∂Fi

∂λ
is analogous to the computation of

∂Fi
∂ηj
, i, j = 1, 2.

4.2 The Results

In this section we apply the continuation algorithm described in section 4.1 to
the system (17) and examine the bifurcation properties of periodic solutions.
We observe that for µ ∈ [1.0, 1.4], the path of periodic solutions is S-shaped,
thus for fixed λ in some interval (λ, λ), three periodic solutions to (17) exist.
Moreover, we see that bifurcation from single to multiple periodic solutions
occurs at a small value of λ = λ. Finally, we observe that as µ increases, λ
decreases. These results are described in Experiments 1, 2, and 3.
Consider the linearization

θ′′ + .01θ′ + 2.4θ = λ sinµt

of (14) and note that for the undamped equation, resonant solutions occur at
µ∗ ≈ 1.55. In our experiments we find that if µ is smaller than, but close to, µ∗,
we cannot compute large amplitude periodic solutions; the algorithm does not
converge to a periodic solution (see Experiment 4). If µ > µ∗, the amplitude
of periodic solutions increases with λ, but bifurcation from single to multiple
periodic solutions does not occur.

Experiment 1 µ = 1.0; See Figure 3
In this experiment we see that the path of periodic solutions is S-shaped and
that bifurcation from single to multiple periodic solutions occurs at λ ≈ 0.0126.
If λ < λ, (17) has a unique periodic solution of small amplitude, but if λ ∈
(λ, .623), multiple periodic solutions exist. Whether the cross-section oscillates
with small or large amplitude depends only on the initial conditions. This is
consistent with the results in [8]. Moreover, we observe that the amplitude of
the large oscillations is close to one radian, as was observed at Tacoma Narrows
on the day of its collapse, [1].

Experiment 2 µ = 1.2; See Figure 4
Again we see that the path of periodic solutions is S-shaped and that bifurcation
from single to multiple periodic solutions occurs at λ ≈ 0.0117.

Experiment 3 µ = 1.4; See Figure 5
Again we see that the path of periodic solutions is S-shaped and that bifurcation
from single to multiple periodic solutions occurs at λ ≈ 0.0088.

Experiment 4 µ = 1.5; See Figure 6
From the curve in Figure 6, we see that multiple solutions exist for λ ∈ [.0197, .0213].
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Figure 3: Experiment 1
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Figure 4: Experiment 2
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However, because µ = 1.5 is close to the resonant frequency µ∗ ≈ 1.55, the al-
gorithm fails as the amplitude of the solution increases.

Experiment 5 µ = 1.6, µ = 1.7, µ = 2.0, µ = 2.6; See Figure 7
From top to bottom, the curves pictured correspond to µ = 1.6, µ = 1.7, µ = 2.0
and µ = 2.6. We see here that beyond the resonant frequency µ∗, the amplitude
of periodic solutions grows with λ, but that the growth is slower for higher
frequencies. Moreover, for larger µ, the amplitude of the periodic solution grows
nearly linearly with λ.

5 Conclusion

In this paper, we have presented substantial progress on the understanding
of the structure of the periodic solutions for the forced torsional equation in
the parameter ranges where the large-amplitude oscillation was observed at
Tacoma Narrows. The multiple solutions exist over roughly the right interval
of amplitude and period, consistent with the historical evidence.
Nonetheless, some intriguing questions remain.
First, we have not presented any proof that the large amplitude solutions

persist if there is small damping. This is certainly supported by the numerical
evidence but remains open as a mathematical question. Obviously, there must
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be some relationship between the small forcing term and the small damping,
since in the absence of any forcing, all motion must eventually decay.
Second, the original paper [8], contains two other areas which have not been

studied here. One is the observation of subharmonic solutions at integer multi-
ples of the frequency of forcing studied here. More sophisticated continuation
methods may be needed to see exactly where these families of solutions lie on
the big bifurcation picture.
Third, the relationship between the vertical and torsional motions has not

been addressed. Presumably, there are multiplicity theorems for the coupled
ordinary differential equation system. But more importantly, the role of the
loosening of the cables in large vertical motion and the instantaneous transition
to torsional motion, so dramatically portrayed in [8], has not been addressed
here. More light will be shed on this question when the global bifurcation picture
of the coupled system is available. The relationship between the instability of
the vertical large-amplitude solutions and the torsional solutions should prove
to be particularly interesting. Progress in this direction has been made in [6],
[9], and [10].
Fourth, the question of the spatial dependence and nodal structure of the

solutions of a nonlinear beam equation will give more insight into the observed
large-amplitude motions captured on the famous film of the Tacoma Narrows.
This question is studied in [11].
In short, we expect this subject to be a fruitful area of study (and insight

into history) for some time to come.
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