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Long-time asymptotics for the damped

Boussinesq equation in a disk ∗

Vladimir Varlamov

Abstract

For the damped Boussinesq equation the first initial-boundary value
problem is considered in a unit disk. Its strong solution is constructed in
the form of a series in the small parameter present in the initial condi-
tions. The global-in-time solvability follows from the construction. The
first-order long-time asymptotics is calculated with the uniform in space
estimate of the remainder.

1 Introduction

In 1872 J. Boussinesq [2] derived an equation describing the propagation of
small amplitude, long waves on the surface of shallow water. He was the first
to give a scientific explanation of the existence of solitary waves, or solitons,
discovered in 1834 by Scott Russell (see [4]). The classical Boussinesq equation
can be wrtitten as

utt = −αuxxxx + uxx + β(u
2)xx, (1.1)

where u(x, t) is an elevation of the free surface of fluid and the constant coef-
ficients α and β depend on the depth of fluid and the characteristic speed of
long waves. Equation (1.1) with α < 0, as derived by Boussinesq, is called
the “bad” Boussinesq equation, while (1.1) with α > 0 received the name of the
“good” Boussinesq one. The latter is linearly stable and governs small nonlinear
oscillations of an elastic beam.
In spite of the fact that (1.1) was deduced earlier than the Korteweg-de Vries

one, the mathematical theory for it is not as complete as for the latter [1]. Both
of them model nonlinear wave propagation, but the Boussinesq equation is of
the second order in time and desribes waves travelling in both directions.
Equation (1.1) takes into account dispersion and nonlinearity, but in real

processes viscosity also plays an important rôle [1]. Therefore, it is interesting
to consider the equation

utt − 2butxx = −αuxxxx + uxx + β(u
2)xx, (1.2)
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286 Asymptotics for the damped Boussinesq equation

where the second term on the left-hand side is responsible for strong internal
damping [3]. Here α and b are positive constants, and β is constant in R. In
the papers [7, 8] Cauchy and spatially periodic problems have been studied for
Eq. (1.2), and the long-time asymptotics of their global in time solutions have
been obtained. In [9, 10] the method applied has been developed further and
adapted for solving spatially 1-D boundary value problems. In [11] a radially
symmetric boundary value problem for (1.2) in a unit disk has been examined
with “small” initial conditions, homogeneous boundary ones, and periodicity
conditions in the angle. The study of the long-time behavior of its solutions
can be considered a direct continuation of [9], where the first boundary value
problem for (1.2) on an interval has been considered. Passing from an interval
to a circle immediatley leads to the effect of the ”loss of smoothness”, i.e., the
increase of smoothness of the intial data does not lead to the improvement of
the regularity of the solution. This is a result of the combined influence of the
nonlinearity and the circular geometry. The main tool for solving the problem
in a disk is the Fourier-Bessel series, and the major difficulty in its application
consists in comparatively poor convergence of this series. This comparison is
made with the Fourier series used for solving the 1-D problem in [9] .
In the present paper we shall consider the first initial-boundary value prob-

lem for the generalization of (1.2) in a disk in the general spatially 2-D case. We
shall show how the 2-D circular geometry permits one to improve the smooth-
ness of the constructed solution via imposing more periodicity conditions. The
”loss of smoothness” still takes place, but it is only partial.

2 Statement of the problem and auxiliary re-

sults

Using polar coordinates we can pose the problem as follows:

utt − 2b∆ut = −α∆2u+∆u+ β∆(u2), (r, θ) ∈ Ω, t > 0,

u(r, θ, 0) = ε2ϕ(r, θ), ut(r, θ, 0) = ε
2ψ(r, θ), (r, θ) ∈ Ω, (2.1)

u |∂Ω= ∆u |∂Ω= 0, t > 0,

where |u(0, θ, t)| < +∞, u(r, θ, t) is periodic in θ with a period 2π, α, b, ε are
positive constants, β is a constant in R, ϕ(r, θ) and ψ(r, θ) are real-valued func-
tions,

∆ = (1/r)∂r(r∂r) + (1/r
2)∂2θ , and Ω = {(r, θ) : |r| < 1, θ ∈ [−π, π)} .

Denote by L2,r(Ω) the real space L2(Ω) with the weight r endowed with
the scalar product (·, ·)r,0 and the corresponding norm ‖ · ‖r,0. For studying the
problem (2.1) we shall use the expansions in the series of eigenfunctions of the
Laplace operator in Ω. For a function f(r, θ) ∈ L2,r(Ω) this expansion is

f(r, θ) =
∑∞
m=−∞

∑∞
n=1 f̂mnχmn(r, θ), (2.2)

f̂mn =
(f,χmn)r,0
‖χmn‖

2
r,0

, χmn(r, θ) = Jm(λmnr)e
imθ , m ∈ Z, n ∈ N,
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where Jm(z) are Bessel functions of index m, λmn are its positive zeros num-
bered in increasing order, n = 1, 2, ... is the number of the zero.
Denoting by ‖ · ‖r the norm in the weighted space L2,r(0, 1) we can write

that for sufficiently large positive λ [6]

C1

λ
≤ ‖Jm(λr)‖

2
r ≤

C2

λ
. (2.3)

For bounded m large positive zeros of Jm(z) have the following asymptotic
expansion uniform in m (McMahon’s expansion, see [5, p. 247]):

λmn = µmn +O(
1

µmn
)), µmn = (m+ 2n−

1

2
)
π

2
, n→ +∞. (2.4)

In the sequel we shall need the weighted Sobolev spacesHsr (Ω), s ∈ R, which
differ from Hs(Ω) ≡ W s

2 (Ω) in that the weighted space L2,r(Ω) is used instead
of L2(Ω) . It is convenient to introduce the norm in H

s
r (Ω) by the formula

‖f‖2r,s =
∑
m,n

λ2smn|f̂mn|
2‖χmn‖

2
r,0.

We shall also use the Banach space Ck([0,+∞), Hsr (Ω)) equipped with the norm

‖u‖Ck =
k∑
j=0

sup
t≥0
‖∂jtu(t)‖s,r.

Let f(x, ω) be defined on [0, 1]× [a, d], −∞ < a, d < +∞. We shall denote
by V 10 (f(x, ω)) the total variation of the function f(x, ω) in x ∈ [0, 1]. Consider
the integral

Im(λ, ω) =

∫ 1
0

xf(x, ω)Jm(λx)dx, m ≥ 0, λ > 0, ω ∈ [a, d].

The following lemma is the extension of the proposition given in [12, p. 595] to
the case when the integrand depends on a parameter.

Lemma 1 Assume that for each fixed ω ∈ [a, d] the function
√
xf(x, ω) has a

bounded total variation in x ∈ [0, 1] which is absolutely integrable in ω ∈ [a, d],
i.e.,

V 10 (
√
xf(x, ω)) = Vf (ω) ∈ L1(a, d).

Moreover, let
lim
x→0+

√
xf(x, ω) = F (ω) ∈ L1(a, d).

Then for all m ≥ 0, λ > 0, and ω ∈ [a, d]

|Im(λ, ω)| ≤
Cω

λ3/2
,

where Cω is independent of m and λ, and Cω ∈ L1(a, d).



288 Asymptotics for the damped Boussinesq equation

The next proposition gives a tool for increasing the decay of the integral
Im(λ, ω) in λ.

Lemma 2 Suppose that f(x, ω) has partial derivatives in x ∈ (0, 1) through
second order, f(0, ω) = ∂xf(0, ω) = 0 (in case m = 0 only ∂xf(0, ω) = 0),
and f(1, ω) = ∂xf(1, ω) = 0. Moreover, assume that for any fixed ω ∈ [a, d]
the function

√
x∂2xf(x, ω) has a bounded total variation in x ∈ [0, 1] which is

absolutely integrable in ω ∈ [a, d],, i.e.,

V 10 (
√
x∂2xf(x, ω)) = V2(ω) ∈ L1(a, d),

and
lim
x→0+

√
x∂2xf(x, ω) = F2(ω) ∈ L1(a, d).

Then for m ≥ 0 and λ > 0,

|Im(λ, ω)| ≤
Cω(m+ 1)

2

λ7/2
,

where Cω is independent of m and λ and Cω ∈ L1(a, d).

Proof Integrating two times by parts in Im(λ, ω), expanding the integrand
around x0 = 0 by Taylor’s formula, and applying Lemma 1 to the result we
deduce the necessary estimate. ♦

For treating the series expansion coefficients of the nonlinearity (u2)∧mn(t)
we shall need the estimates of the coefficients

amnpqls = gmnpqls/‖Jm(λmnr)‖2r , (2.5)

gmnpqls =
∫ 1
0
rJm(λmnr)Jp(λpqr)Jl(λlsr)dr,

with integers m, p, l ≥ 0; n, q , s ≥ 1.

Lemma 3 The inequalities

|amnpqls| ≤ C
√

λmn
λpqλls

, (2.6)

|amnpqls| ≤
C√
λmn

[√
λpq
λls
+
√
λls
λpq
+m

]
, (2.7)

hold for constants independent of m,n, p, q, l, s.

Proof Using (2.3) and estimating each of the Bessel functions in the integrand
of (2.5) by means of the inequality (see [6, 12])

|Jν(z)| ≤
C
√
z
, z > 0, (2.8)

we establish (2.6). For proving (2.7) we first integrate by parts in (2.5) and then
estimate the Bessel functions by means of (2.8).
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3 The main results

We shall present below the results concerning the global in time solvability of the
problem (2.1), construction of its solutions, and their long-time asymptotic be-
havior. First, we formulate some assumptions on a sufficiently smooth function
f(r, θ) with (r, θ) ∈ Ω.

Assumptions A

• ∂kθ f(r,−π) = ∂
k
θ f(r, π) for k = 0, 1, 2.

• f(r, θ) satisfies the hypotheses of Lemma 2 with m = 0, i.e., ∂rf(0, θ) =
f(1, θ) = ∂rf(1, θ) = 0, limr→0+

√
r∂2rf(r, θ) = F2,0(θ) is in L1(−π, π),

V 10 (
√
r∂2rf(r, θ)) = V2,0(θ) is in L1(−π, π).

• ∂3θf(r, θ) satisfies the hypotheses of Lemma 2 in the general case, i.e.,

∂3θf(0, θ) = ∂r∂
3
θf(0, θ) = ∂

3
θf(1, θ) = ∂r∂

3
θf(1, θ) = 0,

limr→0+
√
r∂2r∂

3
θf(r, θ) = F2,3(θ) is in L1(−π, π), V 10 (

√
r∂2r∂

3
θf(r, θ)) =

V2,3(θ) is in L1(−π, π).

Assumptions B

• f(r,−π) = f(r, π); f(r, θ) and ∂θf(r, θ) satisfy the hypotheses of Lemma
1, i.e., limr→0+

√
rf(r, θ) = Ψ(θ) is in L1(−π, π), V 10 (

√
rf(r, θ)) = V0,0(θ)

is in L1(−π, π), limr→0+
√
r∂θf(r, θ) = F0,1(θ) is in L1(−π, π),

V 10 (
√
r∂θf(r, θ)) = V0,1(θ) is in L1(−π, π).

Theorem 1 If α > b2, ϕ(r, θ) satisfies Assumption A, and ψ(r, θ) satisfies
Assumptions B respectively, then there is ε0 positive such that for 0 < ε ≤ ε0
and s < 5/2, Problem (2.1) has a strong solution in

C2([0,+∞), Hs−4r (Ω)) ∩ C1([0,+∞), Hs−2r (Ω)) ∩C0([0,+∞), Hsr (Ω))

with ∆u ∈ C1([0,+∞), Hs−4r (Ω)) ∩ C0([0,+∞), Hs−2r (Ω)) and ∆(u2), ∆2u ∈
C0([0,+∞), Hs−4r (Ω)). If 1/2 < s < 5/2, then the solution is unique.
Moreover, u and ∇u are continuous and bounded in Ω × [0,+∞), and the

solution can be represented as

u(r, θ, t) =

∞∑
N=0

εN+1u(N)(r, θ, t), (3.1)

where the functions u(N)(r, θ, t) will be defined in the proof (see (4.9) and (4.11))
and a bar over the letter denotes a closed domain. This series converges abso-
lutely and uniformly with respect to (r, θ) ∈ Ω, t ≥ 0, ε ∈ [0, ε0], and ∇u can be
calculated termwise.
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Remark 3.1 When α > b2, there exists an infinite number of damped oscil-
lations. This case is the most interesting one from both the mathematical and
the physical points of view. When 0 < α < b2, the linear stability criteria are
also satisfied, but aperiodic processes play the main rôle.

Remark 3.2 It is not difficult to give an example of the initial functions ϕ(r, θ)
and ψ(r, θ) satisfying Assumptions A and B. Using separation of variables we
obtain

ϕ(r, θ) = R(r)Θ(θ), with R(k)(0) = R(k)(1), k = 0, 1;

lim
r→0+

√
rR′′(r) = c1 <∞, V 10 (

√
rR′′(r)) = c2 <∞;

Θ(k)(−π) = Θ(k)(π), k = 0, 1, 2; Θ′′′(θ) ∈ L1(−π, π);

ψ(r, θ) = R1(r)Θ1(θ), with Θ1(−π) = Θ1(π), Θ′1(θ) ∈ L1(−π, π);

lim
r→0+

√
rR1(r) = c3 <∞ V 10 (

√
rR1(r)) = c4 <∞.

Theorem 2 Under the assumptions of Theorem 1, the following asymptotic
expansion is valid as t→ +∞ :

u(r, θ, t) = exp(−bλ201t){[Aε cos(σ01t)+Bε sin(σ01t)]J0(λ01r)+O(exp(−bλ
2
01t))},
(3.2)

where σ01 = λ01
√
(α− b2)λ201 + 1, the coefficients Aε, Bε ∼ cε2 are defined in

the proof (see (5.1) and (5.2)), and the estimate of the residual term is uniform
with respect to (r, θ) ∈ Ω and ε ∈ [0, ε0].

4 Proof of Theorem 1: global in time solvability
and construction of solutions

To satisfy the boundary conditions we seek a solution of (2.1) in the form

u(r, θ, t) =

∞∑
m=−∞

∞∑
n=1

ûmn(t)χmn(r, θ), ûmn(t) =
(u, χmn)r,0(t)

‖χmn‖2r,0
. (4.1)

Using the fact that ûmn(t) = (−1)mû−m,n(t), m ≥ 0, n ≥ 1, we can rewrite this
expansion as

u(r, θ, t) =

∞∑
n=1

û0n(t)J0(λ0nr) +

∞∑
m,n=1

Jm(λmnr)[ûmn(t)e
imθ + ûmn(t)e

−imθ]

=

∗∑
m,n

ûmn(t)Jm(λmnr)e
imθ. (4.2)

Expanding ∆(u2) as a series of this type and using the formula (∆(u2))∧mn =
−λ2mn(u

2)∧mn, we substitute (4.1) into (2.1) and obtain the following Cauchy
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problem for ûmn(t), m ∈ Z, n ∈ N:

û′′mn(t) + 2bλ
2
mnû

′
mn(t) + (αλ

4
mn + λ

2
mn)ûmn(t) = −βλ

2
mn(u

2)∧mn(t), t > 0,

ûmn(0) = ε
2ϕ̂mn, û

′
mn(0) = ε

2ψ̂mn, (4.3)

where ϕ̂mn and ψ̂mn are the coefficients of the (4.1)-type expansions of ϕ(r, θ)
and ψ(r, θ).

We need to establish the following estimates as m ≥ 0, n ≥ 1:

|ϕ̂mn| ≤
C

λ
5/2
mn(m+ 1)

, (4.4)

|ψ̂mn| ≤
C

λ
1/2
mn(m+ 1)

. (4.5)

For (4.4) with m = 0, we use Lemma 2 with m = 0 and (2.3). To obtain (4.4)
withm ≥ 1 we integrate three times by parts in θ in the integral representation of
ϕ̂mn, use the periodicity conditions for ∂

k
θϕ(r, θ), k = 0, 1, 2, and apply Lemma

2. The estimate (4.5) is derived in an analogous way. The only difference
consists in applying Lemma 1 for deducing (4.5) with m = 0.

Now we should calculate the coefficients (u2)∧mn(t) in the right-hand side of
(4.3). Multiplying the series representations (4.2) and calculating the integrals
in θ we get for m ≥ 0, n ≥ 1

(u2)∧mn(t) =
1

‖χmn‖
2
r,0

(∑
p,q

ûpq(t)χpq ·
∑
l,s

ûls(t)χls, χmn

)
r,0

=
∑

p,l≥0;q,s≥1;p+l=m

amnpqlsûpq(t)ûls(t) (4.6)

+
∑

p,q,l,s≥1;l−p=m

amnpqlsûpq(t)ûls(t)

+
∑

p,q,l,s≥1;p−l=m

amnpqlsûpq(t)ûls(t),

where amnpqls are defined by (2.5).

Setting Φ̂mn = εϕ̂mn, Ψ̂mn = εψ̂mn, (it is convenient to keep ε in these coef-
ficients in order to simplify some estimates) and σmn = λmn

√
(α− b2)λ2mn + 1

we integrate (4.3) in t and get

ûmn(t) = ε exp(−bλ2mnt) (4.7)

×
{
[cos(σmnt) +

bλ2mn
σmn

sin(σmnt)]Φ̂mn +
sin(σmnt)

σmn
Ψ̂mn

}
−
βλ2mn
σmn

∫ t
0

exp[−bλ2mn(t− τ)] sin[σmn(t− τ)](u
2)∧mn(τ)dτ.
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For solving this nonlinear integral equation we shall use the perturbation
theory. Representing ûmn(t) as a formal series in ε

ûmn(t) =

∞∑
N=0

εN+1v̂(N)mn (t) (4.8)

we substitute (4.8) into (4.7), compare the coefficients of equal powers of ε, and
obtain the following recurrence formulas for m ≥ 0, n ≥ 1, N ≥ 0, t > 0

v̂(0)mn(t) = exp(−bλ
2
mnt)

{
[cos(σmnt) +

bλ2mn
σmn

sin(σmnt)]Φ̂mn +
sin(σmnt)

σmn
Ψ̂mn

}
,

(4.9)

v̂(N)mn (t) = −
βλ2mn
σmn

∫ t
0

exp[−bλ2mn(t− τ)] sin[σmn(t− τ)]

×
{ ∑
p,l≥0; q,s≥1;p+l=m

amnpqls

N∑
j=1

v̂(j−1)pq (τ)v̂
(N−j)
ls (τ)

+
∑

p,q,l,s≥1;l−p=m

amnpqls

N∑
j=1

v̂
(j−1)
pq (τ)v̂

(N−j)
ls (τ)

+
∑

p,q,l,s≥1;p−l=m

amnpqls

N∑
j=1

v̂(j−1)pq (τ)v̂
(N−j)
ls (τ)

}
dτ, N ≥ 1 .

The following estimates hold for m ≥ 0, n ≥ 1, N ≥ 0, t > 0 :

|v̂(N)mn (t)| ≤ c
N (N + 1)−2λ−5/2mn (m+ 1)

−1 exp(−bλ201t), (4.10)

where c = c(b, β) = c1|β|/b. These estimates are proved by induction on the
number N with the help of (4.9).
To obtain the representation (3.1) we perform the interchange of summation

in the series (4.2) with the coefficients defined by (4.8) and get

u(r, θ, t) =
∞∑
N=0

εN+1u(N)(r, θ, t), (4.11)

where
u(N)(r, θ, t) =

∑
m,n

∗ v̂(N)mn (t)χmn(r, θ)

This interchange is possible due to the absolute and uniform convergence of the
series in (r, θ) ∈ Ω, t ≥ 0, ε ∈ [0, ε0]. Here ε0 < 1/c.
For proving that the formally constructed function (4.11) is really a solution

of (2.1) in the required functional space we deduce the following estimates for
k = 0, 1, 2; m ≥ 0, n ≥ 1, t > 0 :

|∂kt ûmn(t)| ≤ cλ
2k−5/2
mn (m+ 1)−1 exp(−bλ201t). (4.12)
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Taking into consideration (2.3), (2.4), and (4.10) we conclude that the series

∑
m,n

λ2smn|ûmn(t)|
2‖Jm(λmnr)‖

2
r

converges uniformly with respect to t ≥ 0 for s < 5/2 (we check the con-
vergence of the iterated series

∑∞
m=0

∑∞
n=1 using first (2.4) for fixed m and

then applying Fubini-Tonelli’s theorem). This allows us to establish that u ∈
C0([0,+∞), Hsr (Ω)), s < 5/2. It follows from (4.12) with k = 0 that the series
(4.11) converges absolutely and uniformly with respect to (r, θ) ∈ Ω , t ≥ 0, and
ε ∈ [0, ε0]. Therefore, u(r, θ, t) is continuous and bounded in this domain.
As regards ut and ∆u, their series expansion coefficients have the same

estimates (4.12) with k = 1. Analysing the convergence of the series

‖∆u‖2r,s =
∑
m,n

λ2smn|(∆u)
∧
mn(t)|

2‖Jm(λmnr)‖
2
r

by means of (2.3), (2.4) we conclude that ut, ∆u ∈ C0([0,+∞), Hs−2r (Ω)), s <
5/2. The series expansion coefficients of utt, ∆ut, ∆

2u, and ∆(u2) have the
same estimates (4.12)with k = 2, therefore all these functions belong to the
space C0([0,+∞), Hs−4r (Ω)) with s < 5/2.

Uniqueness of solutions We argue by contradiction. Assume that there
exist two solutions u(1) and u(2) of the problem (2.1) from the class stated in
the theorem. Setting w = u(1) − u(2) we expand w into the series of the type of
(4.2) and get

w(r, θ, t) =
∑
m,n

∗ ŵmn(t)χmn(r, θ),

where the coefficients ŵmn(t) satisfy the integral equation

ŵmn(t) = −
βλ2mn
σmn

∫ t
0

exp[−bλ2mn(t− τ)] sin[σmn(t− τ)]

×{[(u(1))2]∧mn(τ) − [(u
(2))2]∧mn(τ)}dτ. (4.13)

The difference of squares in the integrand can be represented as∑
p,q,l,s

amnpqls[û
(1)
pq (t)û

(1)
ls (t)− û

(2)
pq (t)û

(2)
ls (t)]

=
∑
p,q,l,s

amnpqls[û
(1)
pq (t)ŵls(t) + û

(2)
ls (t)ŵpq(t)].

In fact, we have convolutions with respect to the “angular” indeces in the above
written sum (see (4.11)). We estimate only the sum with the additional condi-
tion p+ l = m. The other terms can be treated analogously. Fixing some small
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δ > 0 and κ > δ > 0 and using (2.4), (4.3), and the Cauchy-Schwartz inequality
we can write that∣∣ ∑
p,q,l,s;p+l=m

amnpqlsû
(1)
pq (t)ŵls(t)

∣∣

≤ C
√
λmn

∑
q,l,s

|û(1)m−l,q(t)|

λ
1/2
m−l,q

|ŵls(t)|

λ
1/2
ls

≤ C
√
λmn

∑
q,l,s

q(1+δ)/2

λκlsλ
2
m−l,q

·
|ŵls(t)|λκls

q(1+δ)/2λ
1/2
ls

≤ C
√
λmn
(∑
q,l,s

q1+δ

λ4m−l,qλ
2κ
ls

)1/2(∑
q

1

q1+δ

∑
l,s

λ2κls |ŵls(t)|
2‖Jl(λlsr)‖

2
r

)1/2
≤ C

√
λmn‖w(t)‖r,κ.

Here the convergence of the triple series takes place for κ > 1/2. The sum

containing û
(2)
ls (t) can be estimated in an analogous way.

Estimating both sides of (4.13) we obtain

|ŵmn(t)|
2 ≤ Cλmn(

∫ t
0

exp[−bλ2mn(t− τ)]‖w(τ)‖κdτ)
2.

Multiplying both sides of the last inequality by λ2κmn‖χmn‖
2, summing in m,n,

and using (2.3) we deduce that for some h > 0 and t ∈ [0, h]

‖w(t)‖2κ ≤ CΞ(t)( sup
t∈[0,h]

‖w(t)‖2κ),

where

Ξ(t) =
∑
m,n

λ2κmn‖χmn‖
2
κ(

∫ t
0

exp[−bλ2mn(t− τ)]dτ)
2

=
∑
m,n

λ2κmn‖χmn‖
2
κ

[
1− exp(−bλ2mnt)

bλ2mn

]2
.

For κ < 1 this series converges absolutely and uniformly with respect to t ≥
0. Thus, Ξ(t) is a nondecreasing continuous function on [0, h] and Ξ(0) = 0.
Therefore,

(
sup
t∈[0,h]

‖w(t)‖2κ
)2
≤ CΞ(t)

(
sup
t∈[0,h]

‖w(t)‖2κ
)2
≤ C(h)

(
sup
t∈[0,h]

‖w(t)‖2κ
)2
,

where C(h) = CΞ(h). We can make the constant C(h) less than one by the
appropriate choice of h. This contradiction allows one to obtain uniqueness for
t ∈ [0, h].



Vladimir Varlamov 295

Then we continue this process on the intervals [T1, T2], [T2, T3], . . . , [Tk, Tk+1],
. . . . with Tk = kh and k →∞. Since∫ t

Tk

exp[−bλ2mn(t− τ)]dτ =
1− exp[−bλ2mn(t− Tk)]

λ2mn

we deduce that for t ∈ [Tk, Tk+1](
sup t ∈ [Tk, Tk+1]‖w(t)‖

2
κ

)2
≤ CΞ(t− Tk)

(
sup t ∈ [Tk, Tk+1]‖w(t)‖

2
κ

)2
.

Setting t = Tk + η, η ∈ [0, h], so that Ξ(t − Tk) = Ξ(η), and observing that the
condition CΞ(η) has been already satisfied, we establish the uniqueness for all
t ≥ 0 and 1/2 < κ < 1. We note that ‖w(t)‖r,κ1 ≤ c‖w(t)‖r,κ2 for κ1 ≤ κ2 and
all t ≥ 0. Consequently, w(t) ∈ Hκ2r (Ω) ⊆ Hκ1r (Ω) for t ≥ 0. Therefore, the
uniqueness takes place for 1/2 < κ < 5/2, where the solution still exists. This
completes the proof of Theorem 1.

5 Proof of Theorem 2: long-time asymptotics

To obtain the asymptotic expansion of the solution, we single out the term
û01(t)J0(λ01r) in (4.2) and obtain a subtle asymptotic estimate of û01(t). Then
we estimate the remaining seriesR1(r, t) =

∑∞
n=2 û0n(t)J0(λ0nr) andR2(r, θ, t) =∑∞

m,n=1 Jm(λmnr)[ûmn(t)e
imθ + ûmn(t)e

−imθ].
According to (4.8), (4.9) we have

û01(t) =

∞∑
N=0

εN+1v̂
(N)
01 (t).

Adding and subtracting the integrals from t to∞ in the integral representations

of v̂
(N)
01 (t), N ≥ 1, we write

v̂
(0)
01 (t) = exp(−bλ

2
01t)[A

(0)
ε cos(σ01t) +B

(0)
ε sin(σ01t),

v̂
(N)
01 (t) = exp(−bλ

2
01t){[A

(N)
ε +R

(N)
A (t)] cos(σ01t) + [B

(N)
ε +R

(N)
B (t)] sin(σ01t)},

A
(0)
ε = εϕ̂01, B

(0)
ε =

ε
σ01
(bλ201ϕ̂01 + ψ̂01),

A
(N)
ε =

βλ201
σ01

∫∞
0 exp(bλ

2
01τ) sin(σ01τ)Q

(N)
01 (v̂(τ))dτ, (5.1)

B
(N)
ε = −βλ

2
01

σ01

∫∞
0
exp(bλ201τ) cos(σ01τ)Q

(N)
01 (v̂(τ))dτ,

R
(N)
A (t) =

βλ201
σ01

∫∞
t
exp(bλ201τ) sin(σ01τ)Q

(N)
01 (v̂(τ))dτ,

R
(N)
B (t) = −

βλ201
σ01

∫∞
t
exp(bλ201τ) cos(σ01τ)Q

(N)
01 (v̂(τ))dτ,

Q
(N)
01 (v̂(t)) =

∞∑
q,s=1

a010q0s

N∑
j=1

v̂
(j−1)
0q (t)v̂

(N−j)
0q (t)
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+

∞∑
q,l,s=1

a01lqls

N∑
j=1

v̂
(j−1)
0q (t)v̂

(N−j)
ls (t)

+

∞∑
q,l,s=1

a01lqls

N∑
j=1

v̂
(j−1)
lq (t)v̂

(N−j)
ls (t),

where v̂
(s)
mn(t) and 0 ≤ s ≤ N − 1 are defined by (4.9). Using (2.7) we deduce

that for t > 0, N ≥ 1

|R(N)A,B(t)| ≤ c
N exp(−bλ201t).

Thus, we obtain

û01(t) = exp(−bλ201t){[Aε cos(σ01t) +Bε sin(σ01t)] +O(exp(−bλ
2
01t))},

Aε =
∑∞
N=0 ε

N+1A
(N)
ε , Bε =

∑∞
N=0 ε

N+1B
(N)
ε , (5.2)

where A
(N)
ε and B

(N)
ε are defined by (5.1) and the series converges absolutely

and uniformly with respect to ε ∈ [0, ε0].
Finally, we can represent the solution as

u(r, θ, t) = û01(t)J0(λ01r) +R1(r, t) +R2(r, θ, t), (5.3)

where R1,2 have the following estimates:

|R1,2| ≤ c exp(−2bλ
2
01t). (5.4)

Combining (5.2)-(5.4) we deduce (3.3).

6 Conclusion

In the radially symmetric case considered in [11] we have encountered the effect
of the “loss of smoothness”. In the general spatially 2-D case studied above
this is no longer true. Indeed, the sums in (4.6) include the convolutions with
respect to the “angular” indeces. The “purely radial part”

<n(t) =
∞∑
q,s=1

a0n0q0sû0q(t)û0s(t)

which formed the Fourier-Bessel coefficients of the expansion of u2 in the radially
symmetric case of [11] is also present in the series expansion coefficient of (u2)∧0n
in (4.6), namely:

(u2)∧0n(t) = <n(t) +
∞∑

q,l,s=1

a0nlqls[ûlq(t)ûls(t) + ûlq(t)ûls(t)],
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but the convergence of the series (4.2) is mainly determined by the decay of
(u2)∧mn for largem and n. It explains the possibility of improving the smoothness
of the solution through the “angular” index m, i.e., by means of imposing more
periodicity conditions on the initial data. However, there are no convolutions
with respect to the “radial” indeces in (4.6), therefore, some “loss of smoothness”
still takes place.
In conclusion, we would like to trace the influence of geometry comparing the

three boundary value problems, namely: (i) spatially 1-D case on an interval [9],
(ii) spatially 2-D radially symmetric problem in a disk [11], and (iii) the general
spatially 2-D problem studied above. No “loss of smoothness” takes place in (i),
complete “loss of smoothness” occurs in (ii), and “partial loss of smoothness”
can be observed in (iii). The major term of the long-time asymptotics in the
case (iii) coincides with that of (ii). In order to see the difference it is necessary
to calculate the following terms. We would like to emphasize that the above
mentioned effects occur as a result of the combined influence of the geometry
and the nonlinearity of the equation.
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