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Nonlinearities in a second order ODE ∗

Pablo Amster

Abstract

In this paper we study the semilinear second order ordinary differential
equation

u′′ + r(t)u′ + g(t, u) = f(t) .

Under a growth condition on g, we prove the existence and uniqueness for
the Dirichlet problem and establish conditions for the existence of periodic
solutions.

1 Introduction

The two-point boundary-value problem for a semilinear second order ODE

u′′ + ru′ + g(t, u) = 0, u(0) = u0, u(T ) = uT

has been studied by many authors. In his pioneering work, Picard [7] proved the
existence of a solution by an application of the well known method of successive
approximations under a Lipschitz condition on g and a smallness condition on
T . Sharper results were obtained by Hamel [2] in the special case of a forced
pendulum equation (see also [4], [5]). The existence of periodic solutions for this
equation was first considered by Duffing [1] in 1918. In the absence of friction
(i.e. r = 0), variational methods have been applied by Lichtenstein [3], who
considered the functional

I(u) =

∫ T
0

(u′)2

2
−G(t, u(t))dt,

where G(t, x) =
∫ x
0 g(t, s)ds. Finally, we want to mention the topological ap-

proach introduced in 1905 by Severini [8] who used a shooting method. He also
presented and gave a survey of results obtained using Leray-Schauder techniques
and degree theory. For further results, see [6].
In this work, we prove the existence and uniqueness of a solution to the

Dirichlet problem under a growth condition on g. Then, we apply this result
for finding periodic solutions.
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14 Nonlinearities in a second order ODE

Let S : H2(0, T )→ L2(0, T ) be the semilinear operator given by

Su = u′′ + ru′ + g(t, u) .

Assume that the function g satisfies the growth condition

g(t, u)− g(t, v)

u− v
≤

cp

p(t)
for t ∈ [0, T ] and u, v ∈ R (u 6= v) , (1.1)

where p ∈ C1([0, T ]) is strictly positive, r0 := pr − p′ ∈ H1(0, T ) is non-
decreasing, and cp < λp with λp the first eigenvalue of the problem

−(pu′)′ = λpu, u(0) = u(T ) = 0 .

To state a general existence and uniqueness result for the Dirichlet problem
associated to our equation, we need the following apriori bounds.

Lemma 1.1 Assume that g satisfies (1.1) and let u, v ∈ H2(0, T ) with Tr(u) =
Tr(v). Then

‖p(Su− Sv)‖2 ≥ (λp − cp)‖u− v‖2

and

‖p(Su− Sv)‖2 ≥
λp − cp√

λp

( ∫ T
0

p(u′ − v′)2
)1/2

Proof. A simple computation shows that

‖p(Su− Sv)‖2‖u− v‖2 ≥

∫ T
0

p(u′ − v′)2 −

∫ T
0

r0(u− v)(u
′ − v′)− cp‖u− v‖

2
2

and because −
∫ T
0
r0(u − v)(u′ − v′) =

1
2

∫ T
0
r′0(u − v)

2 ≥ 0, the result follows

since ‖u− v‖22 ≤
1
λp

∫ T
0
p(u′ − v′)2. ♦

Remarks i) For simplicity and by the previous lemma, we may denote by k1
the best constant such that ‖u − v‖1,2 ≤ k1‖p(Su − Sv)‖2 for u, v ∈ H2(0, T )
with Tr(u) = Tr(v).
ii) In particular, if r ∈ H1(0, T ) is non-decreasing, the result holds for p ≡ 1

and c1 < λ1 =
(
π
T

)2
.

Theorem 1.2 Let g satisfy (1.1). Then the Dirichlet problem

Su = f(t) in (0, T )

u(0) = u0, u(T ) = uT
(1.2)

is uniquely solvable in H2(0, T ) for any f ∈ L2(0, T ) and arbitrary boundary
data.
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Proof. Without loss of generality, we may suppose that p ≡ 1. For 0 ≤ σ ≤ 1
we consider the operator Sσ given by Sσu := u′′ + ru′ + σg(t, u). We remark
that if kσ is the constant of lemma 1.1 for Sσ, then kσ ≤ k1.
From the theory of linear operators, for fixed u ∈ H1(0, T ) we may define

u = Ku as the unique solution of the problem

S0u = f(t)− g(t, u) in (0, T )

u(0) = u0, u(T ) = uT .

Continuity of K : H1(0, T )→ H1(0, T ) follows immediately from the inequality

‖Ku−Kv‖1,2 ≤ k1‖S0(Ku)− S0(Kv)‖2 = k1‖g(·, u)− g(·, v)‖2

and the fact that ‖g(·, u) − g(·, v)‖2 → 0 for u → v in H1(0, T ) ↪→ C([0, T ]).
Moreover, if ϕ(t) = uT−u0

T t+ u0 we have that

‖Ku− ϕ‖1,2 ≤ k1‖f − g(·, u)− S0ϕ‖2 ≤ C

for some constant C = C(R). Moreover, as

‖(Ku)′′‖2 = ‖f − g(·, u)− r(Ku)
′‖2

it follows that K(BR) is H
2-bounded. Thus, by the compactness of the imbed-

ding H2(0, T ) ↪→ H1(0, T ) we conclude that K is compact.

Let us assume that u = σKu for some σ ∈ (0, 1]. Then u′′+ ru′+σg(t, u) =
σf , and

‖u− σϕ‖1,2 ≤ k1‖Sσu− Sσ(σϕ)‖2 = k1‖σf − Sσ(σϕ)‖2

This proves that the set {u : u = σKu} is uniformly bounded, and by Leray-
Schauder theorem K has a fixed point. Uniqueness of the solution follows from
lemma 1.1. ♦

As a simple consequence, we have an existence result for the general Dirichlet
problem

Su = f(t, u, u′) in (0, T )

u(0) = u0, u(T ) = uT
(1.3)

Corollary 1.3 Let f be continuous and g satisfy (1.1). Assume that the grow-
ing condition

|f(t, u, x)| ≤ c|(u, x)|+ d (1.4)

holds for some constant c < 1
k1‖p‖∞

. Then (1.3) is solvable in H2(0, T ).
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Proof. By (1.4) and the previous theorem, the operator K : H1(0, T ) →
H1(0, T ) given by Ku = u, with u the unique solution of

Su = f(t, u, u′) in (0, T )

u(0) = u0, u(T ) = uT

is well defined and compact. Moreover, as

‖Ku− ϕ‖1,2 ≤ k1‖p(S(Ku)− Sϕ)‖2 ≤ k1‖p‖∞ (‖Sϕ)‖2 + c‖u‖1,2 + d)

then K(BR) ⊂ BR for R large and the result follows from Schauder Theorem.

2 Solutions to the periodic problem

In this section we’ll apply the previous results to the periodic problem

Su = f(t) in (0, T )

u(0) = u(T ), u′(0) = u′(T )
(2.1)

It is well known that the forced pendulum equation u′′ + b sin(u) = f admits
periodic solutions for constant b if f is periodic and orthogonal to constants.
We’ll show in the general case that in the presence of friction this orthogonality
condition can be reinterpreted in terms of a certain p1 > 0. More precisely, we’ll
show that in some cases -including the generalized pendulum equation- (2.1) is
not solvable for any f such that

〈
p1, f

〉
is large enough.

Lemma 2.1 For any c ∈ R there exists a unique pc such that pc(0) = pc(T ) = c
and p′c − rpc is constant. Furthermore, pc = cp1, and p1 is strictly positive.

Proof. From the equation p′c − rpc = kc we obtain that

pc =

(
c+ kc

∫ t
0

e−
∫ s
0
rds

)
e
∫ t
0
r

and from the condition pc(0) = pc(T ) = c we conclude that

kc = c
1− e

∫ T
0
r∫ T

0
e
∫ T
s
rds
= ck1

Thus, pc = cp1. Moreover, if k1 ≥ 0 it’s immediate that p1 > 0, and if k1 < 0,
assuming that p1 vanishes there exists t0 ∈ (0, T ) such that p1(t0) = 0 ≤ p′1(t0).
Then k1 = p

′
1(t0) ≥ 0, a contradiction. ♦

Using the preceding lemma we’ll see that periodic solutions of Su = f satisfy
an orthogonality condition. Indeed, from

u′′ + ru′ + g(t, u) = f
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we obtain
(p1u

′)′ − k1u
′ + p1g(t, u) = p1f .

By the equality p1u
′
∣∣∣T
0
= u
∣∣∣T
0
= 0 we have

∫ T
0

p1g(t, u) =

∫ T
0

p1f .

Corollary 2.2 With the previous notation, let us assume that g(t, u) ≤ gmax
for any t ∈ [0, T ], u ∈ R and some constant gmax ∈ R (respectively, g(t, u) ≥
gmin for any t ∈ [0, T ], u ∈ R and some constant gmin ∈ R). Then (2.1) is not
solvable for any f ∈ L2(0, T ) such that

〈
p1, f
〉
> gmax‖p1‖1 (resp.

〈
p1, f
〉
<

gmin‖p1‖1).

Now we’ll give some existence results for (2.1), assuming that g satisfies
(1.1). Our method is based in the existence and uniqueness result given by
Theorem 1.2: indeed, for fixed s ∈ R we may define us as the unique solution
of the problem

Su = f(t) in (0, T )

u(0) = u(T ) = s

Lemma 2.3 The mapping s→ us is continuous for the H
1-norm.

Proof. For s→ s0 and ws = us − us0 we have

0 =

∫ T
0

p(Sus − Sus0)ws

≤ pw′sws

∣∣∣T
0
−

∫ T
0

p(w′s)
2 +

r0w
2
s

2

∣∣∣T
0
−

∫ T
0

r′0
w2s
2
+ cp

∫ T
0

w2s

Because
∫ T
0
r′0
w2s
2 ≥ 0, we conclude that

0 ≤ (1−
cp

λp
)

∫ T
0

p(w′s)
2 ≤ pw′sws

∣∣∣T
0
+ r0

w2s
2

∣∣∣T
0
.

Since ws(0) = ws(T ) = s− s0 → 0 it suffices to prove that ‖ws‖1,∞ is bounded.
As ‖us−s‖1,2 ≤ k1‖p(f−g(·, s))‖2, we deduce that ws isH1-bounded. Moreover,
from the equality u′′s = f − ru′s − g(t, us) we obtain that ‖ws‖2,2 is bounded,
and from the imbedding H2(0, T ) ↪→ C1([0, T ]) the proof is complete. ♦

From the previous remarks, the solvability of (2.1) is equivalent to the

solvability of the equation ψ(s) =
∫ T
0
p1f , where ψ : R → R is given by

ψ(s) =
∫ T
0
p1g(t, us). Continuity of ψ follows immediately from the previous

lemma, and hence (2.1) will admit a solution if and only if there exist s± such
that

ψ(s+) ≥
〈
p1, f

〉
≥ ψ(s−)
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Remark. Writing us(t)− s =
∫ t
0
p−1/2p1/2u′s we obtain that

‖us − s‖∞ ≤ δp‖p(f − g(·, s))‖2

for δp =
(∫ T
0
1
p

)1/2 √λp
λp−cp

.

Thus, if we consider the condition

‖pg(·, s)‖2 ≤ c|s|+ d with cδp < 1 (2.2)

then us(t) ∈ J εs for any t ∈ [0, T ], where J
ε
s is the interval centered in s with

radius δp(c|s| + d) + ε, ε = δp‖pf‖2. As a simple consequence we have the
following

Theorem 2.4 Let g satisfy (1.1)-(2.2), and assume that there exist s± such
that

g|[0,T ]×J ε
s+
≥

∫ T
0
p1f

‖p1‖1
≥ g|[0,T ]×J ε

s−

for ε = δp‖pf‖2. Then (2.1) admits a solution us for some s between s− and
s+.
In particular, if there exist s± such that

g|[0,T ]×J ε
s+
≥ 0 ≥ g|[0,T ]×J ε

s−

then (2.1) admits a solution us for some s between s
− and s+ for any f ⊥ p1

such that δp‖pf‖2 ≤ ε.

Proof. As u±s ([0, T ]) ⊂ J
ε
s± , we obtain:∫ T

0

p1g(t, us+) ≥

∫ T
0

p1f ≥

∫ T
0

p1g(t, us−)

and the result holds. ♦

Using the fact that |s|−δp(c|s|+d)→ +∞ we deduce the following existence
results:

Corollary 2.5 Let g satisfy (1.1)-(2.2), and assume, for some M > 0 that

g(t, x)sg(x) ≥ 0 for |x| ≥M

or
g(t, x)sg(x) ≤ 0 for |x| ≥M

Then (2.1) is solvable for any f ⊥ p1.

Corollary 2.6 Let g satisfy (1.1)-(2.2), and assume that

lim
|x|→+∞

g(t, x)sg(x) = +∞ or lim
|x|→+∞

g(t, x)sg(x) = −∞

uniformly on t. Then (2.1) is solvable for any f .
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Proof. Under the first assumption, there exists M such that

g(t, x)sg(x) ≥
|
∫ T
0
p1f |

‖p1‖1
for |x| ≥M

Hence, taking s > 0 such that s− δp(cs+ d+ ‖pf‖2) ≥M we have

∫ T
0

p1g(t, us) ≥ |

∫ T
0

p1f | ≥

∫ T
0

p1f .

In the same way, for s < 0 with s + δp(−cs + d + ‖pf‖2) ≤ −M we obtain∫ T
0 p1g(t, us) ≤

∫ T
0 p1f and the proof is complete. The case g(t, x)sg(x)→ −∞

is analogous. ♦

Remark. In the previous corollaries (2.5)-(2.6), we also have that all the so-
lutions belong to a compact arc of H1(0, T ), namely {us : −S ≤ s ≤ S} with

S =
M + δp(d+ ‖pf‖2|)

1− δpc
.

We may also apply theorem (2.4) to the forced pendulum equation with
friction

u′′ + ru′ + b sin(u) = f . (2.3)

We first remark that in this case condition (1.1) reads

|b(t)| ≤
cp

p(t)
for any t ∈ [0, T ] (2.4)

for some p > 0 with pr − p′ nondecreasing and cp < λp.

Theorem 2.7 With the previous notation, let us assume that
i) b satisfies (2.4) and does not vanish in (0, T ).
ii) ‖p(f ± b)‖2 ≤

c
δp
for some c < π

2 .

iii) |
∫ T
0 p1f | ≤ cos(c)‖p1b‖1

Then there exist s1 ∈ [−
π
2 ,
π
2 ], s2 ∈ [

π
2 ,
3
2π] such that usi + 2kπ is a periodic

solution of (2.3) for any integer k.

Proof. From the previous computations for s = π
2 + kπ we obtain that

‖us − s‖∞ ≤ δp‖p(f − (−1)
kb‖2 ≤ c <

π

2

As sinus = (−1)k cos(us − s), taking k such that (−1)kb > 0 we conclude that

∫ T
0

p1b sinus =

∫ T
0

p1|b| cos(us − s) ≥ cos(c)‖p1b‖1 ≥

∫ T
0

p1f
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In the same way, for s = π
2 + (k ± 1)π

∫ T
0

p1b sinus = −

∫ T
0

p1|b| cos(us − s) ≤ −cos(c)‖p1b‖1 ≤

∫ T
0

p1f

and the result holds. ♦

Remark. In particular, condition iii) is fulfilled if f is orthogonal to p1.

If we assume that ‖pf‖2 ≤
π
2δp
we also obtain existence under slightly dif-

ferent conditions.

Theorem 2.8 With the previous notation, let us assume that
i) b satisfies (2.4) and does not vanish in (0, T )
ii) ‖pf‖2 ≤

π
2δp
, ‖p(f − |b|)‖2 <

c
δp
for some c < π

2 .

iii) sin(δp‖pf‖2) ≤
∫ T
0
p1f

‖p1b‖1
≤ cos(δp‖p(f − |b|)‖2).

Then, if b > 0 (resp. b < 0) there exist s1 ∈ [0,
π
2 ], s2 ∈ [

π
2 , π] (resp. s1 ∈

[−π2 , 0], s2 ∈ [π,
3
2π]) such that usi + 2kπ is a periodic solution of (2.3) for any

integer k.
Moreover, if we replace ii) and iii) by
ii’) ‖pf‖2 ≤

π
2δp
, ‖p(f + |b|)‖2 <

c
δp
for some c < π

2 .

iii’) sin(δp‖pf‖2) ≤
−
∫
T
0
p1f

‖p1b‖1
≤ cos(δp‖p(f + |b|)‖2)

then if b < 0 (resp. b > 0) there exist s1 ∈ [0,
π
2 ], s2 ∈ [

π
2 , π] (resp. s1 ∈ [−

π
2 , 0],

s2 ∈ [π,
3
2π]) such that usi + 2kπ is a periodic solution of (2.3) for any integer

k.

Proof. It follows like in the previous theorem, using the fact that if s = kπ
then ‖us − s‖∞ ≤ δp‖pf‖2, and

|

∫ T
0

p1b sinus| ≤ ‖p1b‖1 sin(δp‖pf‖2) .
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