Nonlinearities in a second order ODE *

Pablo Amster

Abstract

In this paper we study the semilinear second order ordinary differential equation $$
u^{\prime \prime}+r(t) u^{\prime}+g(t, u)=f(t)
$$

Under a growth condition on g, we prove the existence and uniqueness for the Dirichlet problem and establish conditions for the existence of periodic solutions.

1 Introduction

The two-point boundary-value problem for a semilinear second order ODE

$$
u^{\prime \prime}+r u^{\prime}+g(t, u)=0, \quad u(0)=u_{0}, \quad u(T)=u_{T}
$$

has been studied by many authors. In his pioneering work, Picard [7] proved the existence of a solution by an application of the well known method of successive approximations under a Lipschitz condition on g and a smallness condition on T. Sharper results were obtained by Hamel [2] in the special case of a forced pendulum equation (see also [4], [5]). The existence of periodic solutions for this equation was first considered by Duffing [1] in 1918. In the absence of friction (i.e. $r=0$), variational methods have been applied by Lichtenstein [3], who considered the functional

$$
I(u)=\int_{0}^{T} \frac{\left(u^{\prime}\right)^{2}}{2}-G(t, u(t)) d t
$$

where $G(t, x)=\int_{0}^{x} g(t, s) d s$. Finally, we want to mention the topological approach introduced in 1905 by Severini [8] who used a shooting method. He also presented and gave a survey of results obtained using Leray-Schauder techniques and degree theory. For further results, see [6].

In this work, we prove the existence and uniqueness of a solution to the Dirichlet problem under a growth condition on g. Then, we apply this result for finding periodic solutions.

[^0]Let $S: H^{2}(0, T) \rightarrow L^{2}(0, T)$ be the semilinear operator given by

$$
S u=u^{\prime \prime}+r u^{\prime}+g(t, u) .
$$

Assume that the function g satisfies the growth condition

$$
\begin{equation*}
\frac{g(t, u)-g(t, v)}{u-v} \leq \frac{c_{p}}{p(t)} \quad \text { for } t \in[0, T] \text { and } u, v \in \mathbb{R} \quad(u \neq v) \tag{1.1}
\end{equation*}
$$

where $p \in C^{1}([0, T])$ is strictly positive, $r_{0}:=p r-p^{\prime} \in H^{1}(0, T)$ is nondecreasing, and $c_{p}<\lambda_{p}$ with λ_{p} the first eigenvalue of the problem

$$
-\left(p u^{\prime}\right)^{\prime}=\lambda_{p} u, \quad u(0)=u(T)=0
$$

To state a general existence and uniqueness result for the Dirichlet problem associated to our equation, we need the following apriori bounds.

Lemma 1.1 Assume that g satisfies (1.1) and let $u, v \in H^{2}(0, T)$ with $\operatorname{Tr}(u)=$ $\operatorname{Tr}(v)$. Then

$$
\|p(S u-S v)\|_{2} \geq\left(\lambda_{p}-c_{p}\right)\|u-v\|_{2}
$$

and

$$
\|p(S u-S v)\|_{2} \geq \frac{\lambda_{p}-c_{p}}{\sqrt{\lambda_{p}}}\left(\int_{0}^{T} p\left(u^{\prime}-v^{\prime}\right)^{2}\right)^{1 / 2}
$$

Proof. A simple computation shows that
$\|p(S u-S v)\|_{2}\|u-v\|_{2} \geq \int_{0}^{T} p\left(u^{\prime}-v^{\prime}\right)^{2}-\int_{0}^{T} r_{0}(u-v)\left(u^{\prime}-v^{\prime}\right)-c_{p}\|u-v\|_{2}^{2}$
and because $-\int_{0}^{T} r_{0}(u-v)\left(u^{\prime}-v^{\prime}\right)=\frac{1}{2} \int_{0}^{T} r_{0}^{\prime}(u-v)^{2} \geq 0$, the result follows since $\|u-v\|_{2}^{2} \leq \frac{1}{\lambda_{p}} \int_{0}^{T} p\left(u^{\prime}-v^{\prime}\right)^{2}$.
Remarks i) For simplicity and by the previous lemma, we may denote by k_{1} the best constant such that $\|u-v\|_{1,2} \leq k_{1}\|p(S u-S v)\|_{2}$ for $u, v \in H^{2}(0, T)$ with $\operatorname{Tr}(u)=\operatorname{Tr}(v)$.
ii) In particular, if $r \in H^{1}(0, T)$ is non-decreasing, the result holds for $p \equiv 1$ and $c_{1}<\lambda_{1}=\left(\frac{\pi}{T}\right)^{2}$.

Theorem 1.2 Let g satisfy (1.1). Then the Dirichlet problem

$$
\begin{align*}
S u & =f(t) \quad \text { in }(0, T) \\
u(0) & =u_{0}, \quad u(T)=u_{T} \tag{1.2}
\end{align*}
$$

is uniquely solvable in $H^{2}(0, T)$ for any $f \in L^{2}(0, T)$ and arbitrary boundary data.

Proof. Without loss of generality, we may suppose that $p \equiv 1$. For $0 \leq \sigma \leq 1$ we consider the operator S_{σ} given by $S_{\sigma} u:=u^{\prime \prime}+r u^{\prime}+\sigma g(t, u)$. We remark that if k_{σ} is the constant of lemma 1.1 for S_{σ}, then $k_{\sigma} \leq k_{1}$.

From the theory of linear operators, for fixed $\bar{u} \in H^{1}(0, T)$ we may define $u=K \bar{u}$ as the unique solution of the problem

$$
\begin{gathered}
S_{0} u=f(t)-g(t, \bar{u}) \quad \text { in }(0, T) \\
u(0)=u_{0}, \quad u(T)=u_{T}
\end{gathered}
$$

Continuity of $K: H^{1}(0, T) \rightarrow H^{1}(0, T)$ follows immediately from the inequality

$$
\|K \bar{u}-K \bar{v}\|_{1,2} \leq k_{1}\left\|S_{0}(K \bar{u})-S_{0}(K \bar{v})\right\|_{2}=k_{1}\|g(\cdot, \bar{u})-g(\cdot, \bar{v})\|_{2}
$$

and the fact that $\|g(\cdot, \bar{u})-g(\cdot, \bar{v})\|_{2} \rightarrow 0$ for $\bar{u} \rightarrow \bar{v}$ in $H^{1}(0, T) \hookrightarrow C([0, T])$. Moreover, if $\varphi(t)=\frac{u_{T}-u_{0}}{T} t+u_{0}$ we have that

$$
\|K \bar{u}-\varphi\|_{1,2} \leq k_{1}\left\|f-g(\cdot, \bar{u})-S_{0} \varphi\right\|_{2} \leq C
$$

for some constant $C=C(R)$. Moreover, as

$$
\left\|(K \bar{u})^{\prime \prime}\right\|_{2}=\left\|f-g(\cdot, \bar{u})-r(K \bar{u})^{\prime}\right\|_{2}
$$

it follows that $K\left(B_{R}\right)$ is H^{2}-bounded. Thus, by the compactness of the imbedding $H^{2}(0, T) \hookrightarrow H^{1}(0, T)$ we conclude that K is compact.

Let us assume that $u=\sigma K u$ for some $\sigma \in(0,1]$. Then $u^{\prime \prime}+r u^{\prime}+\sigma g(t, u)=$ σf, and

$$
\|u-\sigma \varphi\|_{1,2} \leq k_{1}\left\|S_{\sigma} u-S_{\sigma}(\sigma \varphi)\right\|_{2}=k_{1}\left\|\sigma f-S_{\sigma}(\sigma \varphi)\right\|_{2}
$$

This proves that the set $\{u: u=\sigma K u\}$ is uniformly bounded, and by LeraySchauder theorem K has a fixed point. Uniqueness of the solution follows from lemma 1.1.

As a simple consequence, we have an existence result for the general Dirichlet problem

$$
\begin{gather*}
S u=f\left(t, u, u^{\prime}\right) \quad \text { in }(0, T) \tag{1.3}\\
u(0)=u_{0}, \quad u(T)=u_{T}
\end{gather*}
$$

Corollary 1.3 Let f be continuous and g satisfy (1.1). Assume that the growing condition

$$
\begin{equation*}
|f(t, u, x)| \leq c|(u, x)|+d \tag{1.4}
\end{equation*}
$$

holds for some constant $c<\frac{1}{k_{1}\|p\|_{\infty}}$. Then (1.3) is solvable in $H^{2}(0, T)$.

Proof. By (1.4) and the previous theorem, the operator $K: H^{1}(0, T) \rightarrow$ $H^{1}(0, T)$ given by $K \bar{u}=u$, with u the unique solution of

$$
\begin{gathered}
S u=f\left(t, \bar{u}, \bar{u}^{\prime}\right) \quad \text { in }(0, T) \\
u(0)=u_{0}, \quad u(T)=u_{T}
\end{gathered}
$$

is well defined and compact. Moreover, as

$$
\left.\|K \bar{u}-\varphi\|_{1,2} \leq k_{1}\|p(S(K \bar{u})-S \varphi)\|_{2} \leq k_{1}\|p\|_{\infty}(\| S \varphi)\left\|_{2}+c\right\| \bar{u} \|_{1,2}+d\right)
$$

then $K\left(B_{R}\right) \subset B_{R}$ for R large and the result follows from Schauder Theorem.

2 Solutions to the periodic problem

In this section we'll apply the previous results to the periodic problem

$$
\begin{gather*}
S u=f(t) \quad \text { in }(0, T) \\
u(0)=u(T), \quad u^{\prime}(0)=u^{\prime}(T) \tag{2.1}
\end{gather*}
$$

It is well known that the forced pendulum equation $u^{\prime \prime}+b \sin (u)=f$ admits periodic solutions for constant b if f is periodic and orthogonal to constants. We'll show in the general case that in the presence of friction this orthogonality condition can be reinterpreted in terms of a certain $p_{1}>0$. More precisely, we'll show that in some cases -including the generalized pendulum equation- (2.1) is not solvable for any f such that $\left\langle p_{1}, f\right\rangle$ is large enough.

Lemma 2.1 For any $c \in \mathbb{R}$ there exists a unique p_{c} such that $p_{c}(0)=p_{c}(T)=c$ and $p_{c}^{\prime}-r p_{c}$ is constant. Furthermore, $p_{c}=c p_{1}$, and p_{1} is strictly positive.

Proof. From the equation $p_{c}^{\prime}-r p_{c}=k_{c}$ we obtain that

$$
p_{c}=\left(c+k_{c} \int_{0}^{t} e^{-\int_{0}^{s} r} d s\right) e^{\int_{0}^{t} r}
$$

and from the condition $p_{c}(0)=p_{c}(T)=c$ we conclude that

$$
k_{c}=c \frac{1-e^{\int_{0}^{T} r}}{\int_{0}^{T} e^{\int_{s}^{T} r} d s}=c k_{1}
$$

Thus, $p_{c}=c p_{1}$. Moreover, if $k_{1} \geq 0$ it's immediate that $p_{1}>0$, and if $k_{1}<0$, assuming that p_{1} vanishes there exists $t_{0} \in(0, T)$ such that $p_{1}\left(t_{0}\right)=0 \leq p_{1}^{\prime}\left(t_{0}\right)$. Then $k_{1}=p_{1}^{\prime}\left(t_{0}\right) \geq 0$, a contradiction.

Using the preceding lemma we'll see that periodic solutions of $S u=f$ satisfy an orthogonality condition. Indeed, from

$$
u^{\prime \prime}+r u^{\prime}+g(t, u)=f
$$

we obtain

$$
\left(p_{1} u^{\prime}\right)^{\prime}-k_{1} u^{\prime}+p_{1} g(t, u)=p_{1} f
$$

By the equality $\left.p_{1} u^{\prime}\right|_{0} ^{T}=\left.u\right|_{0} ^{T}=0$ we have

$$
\int_{0}^{T} p_{1} g(t, u)=\int_{0}^{T} p_{1} f
$$

Corollary 2.2 With the previous notation, let us assume that $g(t, u) \leq g_{\max }$ for any $t \in[0, T], u \in \mathbb{R}$ and some constant $g_{\max } \in \mathbb{R}$ (respectively, $g(t, u) \geq$ $g_{\text {min }}$ for any $t \in[0, T], u \in \mathbb{R}$ and some constant $g_{\text {min }} \in \mathbb{R}$). Then (2.1) is not solvable for any $f \in L^{2}(0, T)$ such that $\left\langle p_{1}, f\right\rangle>g_{\max }\left\|p_{1}\right\|_{1} \quad$ (resp. $\left\langle p_{1}, f\right\rangle<$ $\left.g_{\text {min }}\left\|p_{1}\right\|_{1}\right)$.

Now we'll give some existence results for (2.1), assuming that g satisfies (1.1). Our method is based in the existence and uniqueness result given by Theorem 1.2: indeed, for fixed $s \in \mathbb{R}$ we may define u_{s} as the unique solution of the problem

$$
\begin{gathered}
S u=f(t) \quad \text { in }(0, T) \\
u(0)=u(T)=s
\end{gathered}
$$

Lemma 2.3 The mapping $s \rightarrow u_{s}$ is continuous for the H^{1}-norm.
Proof. For $s \rightarrow s_{0}$ and $w_{s}=u_{s}-u_{s_{0}}$ we have

$$
\begin{aligned}
0 & =\int_{0}^{T} p\left(S u_{s}-S u_{s_{0}}\right) w_{s} \\
& \leq\left. p w_{s}^{\prime} w_{s}\right|_{0} ^{T}-\int_{0}^{T} p\left(w_{s}^{\prime}\right)^{2}+\left.\frac{r_{0} w_{s}^{2}}{2}\right|_{0} ^{T}-\int_{0}^{T} r_{0}^{\prime} \frac{w_{s}^{2}}{2}+c_{p} \int_{0}^{T} w_{s}^{2}
\end{aligned}
$$

Because $\int_{0}^{T} r_{0}^{\prime} \frac{w_{s}^{2}}{2} \geq 0$, we conclude that

$$
0 \leq\left(1-\frac{c_{p}}{\lambda_{p}}\right) \int_{0}^{T} p\left(w_{s}^{\prime}\right)^{2} \leq\left. p w_{s}^{\prime} w_{s}\right|_{0} ^{T}+\left.r_{0} \frac{w_{s}^{2}}{2}\right|_{0} ^{T}
$$

Since $w_{s}(0)=w_{s}(T)=s-s_{0} \rightarrow 0$ it suffices to prove that $\left\|w_{s}\right\|_{1, \infty}$ is bounded. As $\left\|u_{s}-s\right\|_{1,2} \leq k_{1}\|p(f-g(\cdot, s))\|_{2}$, we deduce that w_{s} is H^{1}-bounded. Moreover, from the equality $u_{s}^{\prime \prime}=f-r u_{s}^{\prime}-g\left(t, u_{s}\right)$ we obtain that $\left\|w_{s}\right\|_{2,2}$ is bounded, and from the imbedding $H^{2}(0, T) \hookrightarrow C^{1}([0, T])$ the proof is complete.

From the previous remarks, the solvability of (2.1) is equivalent to the solvability of the equation $\psi(s)=\int_{0}^{T} p_{1} f$, where $\psi: \mathbb{R} \rightarrow \mathbb{R}$ is given by $\psi(s)=\int_{0}^{T} p_{1} g\left(t, u_{s}\right)$. Continuity of ψ follows immediately from the previous lemma, and hence (2.1) will admit a solution if and only if there exist $s^{ \pm}$such that

$$
\psi\left(s^{+}\right) \geq\left\langle p_{1}, f\right\rangle \geq \psi\left(s^{-}\right)
$$

Remark. Writing $u_{s}(t)-s=\int_{0}^{t} p^{-1 / 2} p^{1 / 2} u_{s}^{\prime}$ we obtain that

$$
\left\|u_{s}-s\right\|_{\infty} \leq \delta_{p}\|p(f-g(\cdot, s))\|_{2}
$$

for $\delta_{p}=\left(\int_{0}^{T} \frac{1}{p}\right)^{1 / 2} \frac{\sqrt{\lambda_{p}}}{\lambda_{p}-c_{p}}$.
Thus, if we consider the condition

$$
\begin{equation*}
\|p g(\cdot, s)\|_{2} \leq c|s|+d \quad \text { with } c \delta_{p}<1 \tag{2.2}
\end{equation*}
$$

then $u_{s}(t) \in \mathcal{J}_{s}^{\varepsilon}$ for any $t \in[0, T]$, where $\mathcal{J}_{s}^{\varepsilon}$ is the interval centered in s with radius $\delta_{p}(c|s|+d)+\varepsilon, \varepsilon=\delta_{p}\|p f\|_{2}$. As a simple consequence we have the following

Theorem 2.4 Let g satisfy (1.1)-(2.2), and assume that there exist $s^{ \pm}$such that

$$
\left.g\right|_{[0, T] \times \mathcal{J}_{s+}^{\varepsilon}} \geq \frac{\int_{0}^{T} p_{1} f}{\left\|p_{1}\right\|_{1}} \geq\left. g\right|_{[0, T] \times \mathcal{J}_{s^{-}}^{\varepsilon}}
$$

for $\varepsilon=\delta_{p}\|p f\|_{2}$. Then (2.1) admits a solution u_{s} for some s between s^{-}and s^{+}.

In particular, if there exist $s^{ \pm}$such that

$$
\left.g\right|_{[0, T] \times \mathcal{J}_{s+}^{\varepsilon}} \geq 0 \geq\left. g\right|_{[0, T] \times \mathcal{J}_{s^{-}}^{\varepsilon}}
$$

then (2.1) admits a solution u_{s} for some s between s^{-}and s^{+}for any $f \perp p_{1}$ such that $\delta_{p}\|p f\|_{2} \leq \varepsilon$.

Proof. As $u_{s}^{ \pm}([0, T]) \subset \mathcal{J}_{s^{ \pm}}^{\varepsilon}$, we obtain:

$$
\int_{0}^{T} p_{1} g\left(t, u_{s^{+}}\right) \geq \int_{0}^{T} p_{1} f \geq \int_{0}^{T} p_{1} g\left(t, u_{s^{-}}\right)
$$

and the result holds.
Using the fact that $|s|-\delta_{p}(c|s|+d) \rightarrow+\infty$ we deduce the following existence results:

Corollary 2.5 Let g satisfy (1.1)-(2.2), and assume, for some $M>0$ that

$$
g(t, x) \operatorname{sg}(x) \geq 0 \text { for } \quad|x| \geq M
$$

or

$$
g(t, x) \operatorname{sg}(x) \leq 0 \text { for } \quad|x| \geq M
$$

Then (2.1) is solvable for any $f \perp p_{1}$.
Corollary 2.6 Let g satisfy (1.1)-(2.2), and assume that

$$
\lim _{|x| \rightarrow+\infty} g(t, x) \operatorname{sg}(x)=+\infty \quad \text { or } \quad \lim _{|x| \rightarrow+\infty} g(t, x) \operatorname{sg}(x)=-\infty
$$

uniformly on t. Then (2.1) is solvable for any f.

Proof. Under the first assumption, there exists M such that

$$
g(t, x) \operatorname{sg}(x) \geq \frac{\left|\int_{0}^{T} p_{1} f\right|}{\left\|p_{1}\right\|_{1}} \quad \text { for }|x| \geq M
$$

Hence, taking $s>0$ such that $s-\delta_{p}\left(c s+d+\|p f\|_{2}\right) \geq M$ we have

$$
\int_{0}^{T} p_{1} g\left(t, u_{s}\right) \geq\left|\int_{0}^{T} p_{1} f\right| \geq \int_{0}^{T} p_{1} f
$$

In the same way, for $s<0$ with $s+\delta_{p}\left(-c s+d+\|p f\|_{2}\right) \leq-M$ we obtain $\int_{0}^{T} p_{1} g\left(t, u_{s}\right) \leq \int_{0}^{T} p_{1} f$ and the proof is complete. The case $g(t, x) \operatorname{sg}(x) \rightarrow-\infty$ is analogous.

Remark. In the previous corollaries (2.5)-(2.6), we also have that all the solutions belong to a compact arc of $H^{1}(0, T)$, namely $\left\{u_{s}:-S \leq s \leq S\right\}$ with

$$
S=\frac{M+\delta_{p}\left(d+\|p f\|_{2} \mid\right)}{1-\delta_{p} c}
$$

We may also apply theorem (2.4) to the forced pendulum equation with friction

$$
\begin{equation*}
u^{\prime \prime}+r u^{\prime}+b \sin (u)=f \tag{2.3}
\end{equation*}
$$

We first remark that in this case condition (1.1) reads

$$
\begin{equation*}
|b(t)| \leq \frac{c_{p}}{p(t)} \quad \text { for any } t \in[0, T] \tag{2.4}
\end{equation*}
$$

for some $p>0$ with $p r-p^{\prime}$ nondecreasing and $c_{p}<\lambda_{p}$.
Theorem 2.7 With the previous notation, let us assume that i) b satisfies (2.4) and does not vanish in $(0, T)$.
ii) $\|p(f \pm b)\|_{2} \leq \frac{c}{\delta_{p}}$ for some $c<\frac{\pi}{2}$.
iii) $\left|\int_{0}^{T} p_{1} f\right| \leq \cos (c)\left\|p_{1} b\right\|_{1}$

Then there exist $s_{1} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], s_{2} \in\left[\frac{\pi}{2}, \frac{3}{2} \pi\right]$ such that $u_{s_{i}}+2 k \pi$ is a periodic solution of (2.3) for any integer k.

Proof. From the previous computations for $s=\frac{\pi}{2}+k \pi$ we obtain that

$$
\left\|u_{s}-s\right\|_{\infty} \leq \delta_{p} \| p\left(f-(-1)^{k} b \|_{2} \leq c<\frac{\pi}{2}\right.
$$

As $\sin u_{s}=(-1)^{k} \cos \left(u_{s}-s\right)$, taking k such that $(-1)^{k} b>0$ we conclude that

$$
\int_{0}^{T} p_{1} b \sin u_{s}=\int_{0}^{T} p_{1}|b| \cos \left(u_{s}-s\right) \geq \cos (c)\left\|p_{1} b\right\|_{1} \geq \int_{0}^{T} p_{1} f
$$

In the same way, for $s=\frac{\pi}{2}+(k \pm 1) \pi$

$$
\int_{0}^{T} p_{1} b \sin u_{s}=-\int_{0}^{T} p_{1}|b| \cos \left(u_{s}-s\right) \leq-\cos (c)\left\|p_{1} b\right\|_{1} \leq \int_{0}^{T} p_{1} f
$$

and the result holds.

Remark. In particular, condition iii) is fulfilled if f is orthogonal to p_{1}.
If we assume that $\|p f\|_{2} \leq \frac{\pi}{2 \delta_{p}}$ we also obtain existence under slightly different conditions.

Theorem 2.8 With the previous notation, let us assume that i) b satisfies (2.4) and does not vanish in $(0, T)$
ii) $\|p f\|_{2} \leq \frac{\pi}{2 \delta_{p}},\|p(f-|b|)\|_{2}<\frac{c}{\delta_{p}}$ for some $c<\frac{\pi}{2}$.
iii) $\sin \left(\delta_{p}\|p f\|_{2}\right) \leq \frac{\int_{0}^{T} p_{1} f}{\left\|p_{1} b\right\|_{1}} \leq \cos \left(\delta_{p}\|p(f-|b|)\|_{2}\right)$.

Then, if $b>0$ (resp. $b<0$) there exist $s_{1} \in\left[0, \frac{\pi}{2}\right], s_{2} \in\left[\frac{\pi}{2}, \pi\right]$ (resp. $s_{1} \in$ $\left[-\frac{\pi}{2}, 0\right], s_{2} \in\left[\pi, \frac{3}{2} \pi\right]$) such that $u_{s_{i}}+2 k \pi$ is a periodic solution of (2.3) for any integer k.
Moreover, if we replace ii) and iii) by
ii') $\|p f\|_{2} \leq \frac{\pi}{2 \delta_{p}},\|p(f+|b|)\|_{2}<\frac{c}{\delta_{p}}$ for some $c<\frac{\pi}{2}$.
$\left.i i{ }^{\prime}\right) \sin \left(\delta_{p}\|p f\|_{2}\right) \leq \frac{-\int_{0}^{T} p_{1} f}{\left\|p_{1} b\right\|_{1}} \leq \cos \left(\delta_{p}\|p(f+|b|)\|_{2}\right)$
then if $b<0$ (resp. $b>0$) there exist $s_{1} \in\left[0, \frac{\pi}{2}\right], s_{2} \in\left[\frac{\pi}{2}, \pi\right]$ (resp. $s_{1} \in\left[-\frac{\pi}{2}, 0\right]$, $s_{2} \in\left[\pi, \frac{3}{2} \pi\right]$) such that $u_{s_{i}}+2 k \pi$ is a periodic solution of (2.3) for any integer k.

Proof. It follows like in the previous theorem, using the fact that if $s=k \pi$ then $\left\|u_{s}-s\right\|_{\infty} \leq \delta_{p}\|p f\|_{2}$, and

$$
\left|\int_{0}^{T} p_{1} b \sin u_{s}\right| \leq\left\|p_{1} b\right\|_{1} \sin \left(\delta_{p}\|p f\|_{2}\right)
$$

References

[1] Duffing, G., Erzwungene Schwingungen bei veränderlicher Eigenfrequenz, Vieweg. Braunschweig, 1918.
[2] Hamel, G., Über erzwungene Schwingungen bei endlichen Amplituden. Math. Ann., 86 (1922), 1-13.
[3] Lichtenstein, L., Über einige Existenzprobleme der Variationsrechnung. Methode der unendlichvielen Variabeln, J.Reine Angew. Math. 145 (1915), 24-85.
[4] Mawhin, J., Periodic oscillations of forced pendulum-like equations. Lecture Notes in Math., Springer, 964 (1982), 458-76.
[5] Mawhin, J., The forced pendulum: A paradigm for nonlinear analysis and dynamical systems. Expo. Math., 6 (1988), 271-87.
[6] Mawhin, J., Boudary value problems for nonlinear ordinary differential equations: from successive approximations to topology.
[7] Picard, E., Sur l'application des méthodes d'approximations succesives à l'étude de certaines équations différentielles ordinaires, J.Math. Pures Appl. 9 (1893), 217-271.
[8] Severini, C., Sopra gli integrali delle equazione differenziali del secondo ordine con valori prestabiliti in due punti dati, Atti R. Acc. Torino 40 (1904-5), 1035-40.

Pablo Amster
Depto. de Matemática, CONICET
Facultad de Cs. Exactas y Naturales
Universidad de Buenos Aires
Ciudad Universitaria, Pab. I - (1428)
Buenos Aires, Argentina
e-mail: pamster@dm.uba.ar

[^0]: * Mathematics Subject Classifications: 34G20.

 Key words: Second order ODE, Dirichlet and Periodic Problems.
 (C)2001 Southwest Texas State University.

 Published January 8, 2001.

