USA-Chile Workshop on Nonlinear Analysis, Electron. J. Diff. Eqns., Conf. 06, 2001, pp. 13–21 http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu or ejde.math.unt.edu (login: ftp)

Nonlinearities in a second order ODE *

Pablo Amster

Abstract

In this paper we study the semilinear second order ordinary differential equation

$$u'' + r(t)u' + g(t, u) = f(t)$$

Under a growth condition on g, we prove the existence and uniqueness for the Dirichlet problem and establish conditions for the existence of periodic solutions.

1 Introduction

The two-point boundary-value problem for a semilinear second order ODE

$$u'' + ru' + g(t, u) = 0, \quad u(0) = u_0, \quad u(T) = u_T$$

has been studied by many authors. In his pioneering work, Picard [7] proved the existence of a solution by an application of the well known method of successive approximations under a Lipschitz condition on g and a smallness condition on T. Sharper results were obtained by Hamel [2] in the special case of a forced pendulum equation (see also [4], [5]). The existence of periodic solutions for this equation was first considered by Duffing [1] in 1918. In the absence of friction (i.e. r = 0), variational methods have been applied by Lichtenstein [3], who considered the functional

$$I(u) = \int_0^T \frac{(u')^2}{2} - G(t, u(t))dt,$$

where $G(t,x) = \int_0^x g(t,s)ds$. Finally, we want to mention the topological approach introduced in 1905 by Severini [8] who used a shooting method. He also presented and gave a survey of results obtained using Leray-Schauder techniques and degree theory. For further results, see [6].

In this work, we prove the existence and uniqueness of a solution to the Dirichlet problem under a growth condition on g. Then, we apply this result for finding periodic solutions.

^{*} Mathematics Subject Classifications: 34G20.

Key words: Second order ODE, Dirichlet and Periodic Problems.

 $[\]textcircled{O}2001$ Southwest Texas State University.

Published January 8, 2001.

Let $S: H^2(0,T) \to L^2(0,T)$ be the semilinear operator given by

$$Su = u'' + ru' + g(t, u).$$

Assume that the function g satisfies the growth condition

$$\frac{g(t,u) - g(t,v)}{u - v} \le \frac{c_p}{p(t)} \quad \text{for } t \in [0,T] \text{ and } u, v \in \mathbb{R} \quad (u \neq v),$$
(1.1)

where $p \in C^1([0,T])$ is strictly positive, $r_0 := pr - p' \in H^1(0,T)$ is nondecreasing, and $c_p < \lambda_p$ with λ_p the first eigenvalue of the problem

$$-(pu')' = \lambda_p u, \quad u(0) = u(T) = 0$$

To state a general existence and uniqueness result for the Dirichlet problem associated to our equation, we need the following apriori bounds.

Lemma 1.1 Assume that g satisfies (1.1) and let $u, v \in H^2(0,T)$ with Tr(u) = Tr(v). Then

$$||p(Su - Sv)||_2 \ge (\lambda_p - c_p)||u - v||_2$$

and

$$\|p(Su - Sv)\|_2 \ge \frac{\lambda_p - c_p}{\sqrt{\lambda_p}} \left(\int_0^T p(u' - v')^2\right)^{1/2}$$

Proof. A simple computation shows that

$$\|p(Su - Sv)\|_2 \|u - v\|_2 \ge \int_0^T p(u' - v')^2 - \int_0^T r_0(u - v)(u' - v') - c_p \|u - v\|_2^2$$

and because $-\int_0^T r_0(u-v)(u'-v') = \frac{1}{2}\int_0^T r'_0(u-v)^2 \ge 0$, the result follows since $||u-v||_2^2 \le \frac{1}{\lambda_p}\int_0^T p(u'-v')^2$.

Remarks i) For simplicity and by the previous lemma, we may denote by k_1 the best constant such that $||u - v||_{1,2} \le k_1 ||p(Su - Sv)||_2$ for $u, v \in H^2(0,T)$ with $\operatorname{Tr}(u) = \operatorname{Tr}(v)$.

ii) In particular, if $r \in H^1(0,T)$ is non-decreasing, the result holds for $p \equiv 1$ and $c_1 < \lambda_1 = \left(\frac{\pi}{T}\right)^2$.

Theorem 1.2 Let g satisfy (1.1). Then the Dirichlet problem

$$Su = f(t)$$
 in $(0,T)$
 $u(0) = u_0, \quad u(T) = u_T$ (1.2)

is uniquely solvable in $H^2(0,T)$ for any $f \in L^2(0,T)$ and arbitrary boundary data.

Pablo Amster

Proof. Without loss of generality, we may suppose that $p \equiv 1$. For $0 \leq \sigma \leq 1$ we consider the operator S_{σ} given by $S_{\sigma}u := u'' + ru' + \sigma g(t, u)$. We remark that if k_{σ} is the constant of lemma 1.1 for S_{σ} , then $k_{\sigma} \leq k_1$.

From the theory of linear operators, for fixed $\overline{u} \in H^1(0,T)$ we may define $u = K\overline{u}$ as the unique solution of the problem

$$S_0 u = f(t) - g(t, \overline{u}) \quad \text{in } (0, T)$$
$$u(0) = u_0, \quad u(T) = u_T.$$

Continuity of $K: H^1(0,T) \to H^1(0,T)$ follows immediately from the inequality

$$\|K\overline{u} - K\overline{v}\|_{1,2} \le k_1 \|S_0(K\overline{u}) - S_0(K\overline{v})\|_2 = k_1 \|g(\cdot,\overline{u}) - g(\cdot,\overline{v})\|_2$$

and the fact that $\|g(\cdot, \overline{u}) - g(\cdot, \overline{v})\|_2 \to 0$ for $\overline{u} \to \overline{v}$ in $H^1(0, T) \hookrightarrow C([0, T])$. Moreover, if $\varphi(t) = \frac{u_T - u_0}{T}t + u_0$ we have that

$$||K\overline{u} - \varphi||_{1,2} \le k_1 ||f - g(\cdot, \overline{u}) - S_0\varphi||_2 \le C$$

for some constant C = C(R). Moreover, as

$$\|(K\overline{u})''\|_2 = \|f - g(\cdot,\overline{u}) - r(K\overline{u})'\|_2$$

it follows that $K(B_R)$ is H^2 -bounded. Thus, by the compactness of the imbedding $H^2(0,T) \hookrightarrow H^1(0,T)$ we conclude that K is compact.

Let us assume that $u = \sigma K u$ for some $\sigma \in (0, 1]$. Then $u'' + ru' + \sigma g(t, u) = \sigma f$, and

$$\|u - \sigma\varphi\|_{1,2} \le k_1 \|S_{\sigma}u - S_{\sigma}(\sigma\varphi)\|_2 = k_1 \|\sigma f - S_{\sigma}(\sigma\varphi)\|_2$$

This proves that the set $\{u : u = \sigma Ku\}$ is uniformly bounded, and by Leray-Schauder theorem K has a fixed point. Uniqueness of the solution follows from lemma 1.1. \diamondsuit

As a simple consequence, we have an existence result for the general Dirichlet problem

$$Su = f(t, u, u') \quad \text{in } (0, T)$$

$$u(0) = u_0, \quad u(T) = u_T$$
(1.3)

Corollary 1.3 Let f be continuous and g satisfy (1.1). Assume that the growing condition

$$|f(t, u, x)| \le c|(u, x)| + d \tag{1.4}$$

holds for some constant $c < \frac{1}{k_1 \|p\|_{\infty}}$. Then (1.3) is solvable in $H^2(0,T)$.

Proof. By (1.4) and the previous theorem, the operator $K : H^1(0,T) \to H^1(0,T)$ given by $K\overline{u} = u$, with u the unique solution of

$$Su = f(t, \overline{u}, \overline{u}') \quad \text{in } (0, T)$$
$$u(0) = u_0, \quad u(T) = u_T$$

is well defined and compact. Moreover, as

$$\|K\overline{u} - \varphi\|_{1,2} \le k_1 \|p(S(K\overline{u}) - S\varphi)\|_2 \le k_1 \|p\|_{\infty} (\|S\varphi)\|_2 + c\|\overline{u}\|_{1,2} + d)$$

then $K(B_R) \subset B_R$ for R large and the result follows from Schauder Theorem.

2 Solutions to the periodic problem

In this section we'll apply the previous results to the periodic problem

$$Su = f(t) \quad \text{in } (0,T) u(0) = u(T), \quad u'(0) = u'(T)$$
(2.1)

It is well known that the forced pendulum equation $u'' + b\sin(u) = f$ admits periodic solutions for constant b if f is periodic and orthogonal to constants. We'll show in the general case that in the presence of friction this orthogonality condition can be reinterpreted in terms of a certain $p_1 > 0$. More precisely, we'll show that in some cases -including the generalized pendulum equation- (2.1) is not solvable for any f such that $\langle p_1, f \rangle$ is large enough.

Lemma 2.1 For any $c \in \mathbb{R}$ there exists a unique p_c such that $p_c(0) = p_c(T) = c$ and $p'_c - rp_c$ is constant. Furthermore, $p_c = cp_1$, and p_1 is strictly positive.

Proof. From the equation $p'_c - rp_c = k_c$ we obtain that

$$p_c = \left(c + k_c \int_0^t e^{-\int_0^s r} ds\right) e^{\int_0^t r}$$

and from the condition $p_c(0) = p_c(T) = c$ we conclude that

$$k_{c} = c \frac{1 - e^{\int_{0}^{T} r}}{\int_{0}^{T} e^{\int_{s}^{T} r} ds} = ck_{1}$$

Thus, $p_c = cp_1$. Moreover, if $k_1 \ge 0$ it's immediate that $p_1 > 0$, and if $k_1 < 0$, assuming that p_1 vanishes there exists $t_0 \in (0,T)$ such that $p_1(t_0) = 0 \le p'_1(t_0)$. Then $k_1 = p'_1(t_0) \ge 0$, a contradiction.

Using the preceding lemma we'll see that periodic solutions of Su = f satisfy an orthogonality condition. Indeed, from

$$u'' + ru' + g(t, u) = f$$

Pablo Amster

we obtain

$$(p_1u')' - k_1u' + p_1g(t, u) = p_1f$$

By the equality $p_1u'\Big|_0^T = u\Big|_0^T = 0$ we have
$$\int_0^T p_1g(t, u) = \int_0^T p_1f.$$

Corollary 2.2 With the previous notation, let us assume that $g(t, u) \leq g_{max}$ for any $t \in [0, T]$, $u \in \mathbb{R}$ and some constant $g_{max} \in \mathbb{R}$ (respectively, $g(t, u) \geq g_{min}$ for any $t \in [0, T]$, $u \in \mathbb{R}$ and some constant $g_{min} \in \mathbb{R}$). Then (2.1) is not solvable for any $f \in L^2(0, T)$ such that $\langle p_1, f \rangle > g_{max} || p_1 ||_1$ (resp. $\langle p_1, f \rangle < g_{min} || p_1 ||_1$).

Now we'll give some existence results for (2.1), assuming that g satisfies (1.1). Our method is based in the existence and uniqueness result given by Theorem 1.2: indeed, for fixed $s \in \mathbb{R}$ we may define u_s as the unique solution of the problem

$$Su = f(t) \quad \text{in } (0,T)$$
$$u(0) = u(T) = s$$

Lemma 2.3 The mapping $s \to u_s$ is continuous for the H^1 -norm.

Proof. For $s \to s_0$ and $w_s = u_s - u_{s_0}$ we have

$$\begin{array}{lll} 0 & = & \int_0^T p(Su_s - Su_{s_0})w_s \\ & \leq & pw_s'w_s\Big|_0^T - \int_0^T p(w_s')^2 + \frac{r_0w_s^2}{2}\Big|_0^T - \int_0^T r_0'\frac{w_s^2}{2} + c_p \int_0^T w_s^2 \end{array}$$

Because $\int_0^T r'_0 \frac{w_s^2}{2} \ge 0$, we conclude that

$$0 \le (1 - rac{c_p}{\lambda_p}) \int_0^T p(w'_s)^2 \le p w'_s w_s \Big|_0^T + r_0 rac{w_s^2}{2} \Big|_0^T$$

Since $w_s(0) = w_s(T) = s - s_0 \to 0$ it suffices to prove that $||w_s||_{1,\infty}$ is bounded. As $||u_s - s||_{1,2} \leq k_1 ||p(f - g(\cdot, s))||_2$, we deduce that w_s is H^1 -bounded. Moreover, from the equality $u''_s = f - ru'_s - g(t, u_s)$ we obtain that $||w_s||_{2,2}$ is bounded, and from the imbedding $H^2(0, T) \hookrightarrow C^1([0, T])$ the proof is complete.

From the previous remarks, the solvability of (2.1) is equivalent to the solvability of the equation $\psi(s) = \int_0^T p_1 f$, where $\psi : \mathbb{R} \to \mathbb{R}$ is given by $\psi(s) = \int_0^T p_1 g(t, u_s)$. Continuity of ψ follows immediately from the previous lemma, and hence (2.1) will admit a solution if and only if there exist s^{\pm} such that

$$\psi(s^+) \ge \langle p_1, f \rangle \ge \psi(s^-)$$

Remark. Writing $u_s(t) - s = \int_0^t p^{-1/2} p^{1/2} u'_s$ we obtain that

$$\|u_s - s\|_{\infty} \le \delta_p \|p(f - g(\cdot, s))\|_2$$

for $\delta_p = \left(\int_0^T \frac{1}{p}\right)^{1/2} \frac{\sqrt{\lambda_p}}{\lambda_p - c_p}$. Thus, if we consider the condition

$$\|pg(\cdot, s)\|_2 \le c|s| + d \quad \text{with } c\delta_p < 1 \tag{2.2}$$

then $u_s(t) \in \mathcal{J}_s^{\varepsilon}$ for any $t \in [0,T]$, where $\mathcal{J}_s^{\varepsilon}$ is the interval centered in s with radius $\delta_p(c|s|+d) + \varepsilon$, $\varepsilon = \delta_p \|pf\|_2$. As a simple consequence we have the following

Theorem 2.4 Let g satisfy (1.1)-(2.2), and assume that there exist s^{\pm} such that

$$g|_{[0,T]\times \mathcal{J}_{s^+}^{\varepsilon}} \geq \frac{\int_0^T p_1 f}{\|p_1\|_1} \geq g|_{[0,T]\times \mathcal{J}_{s^-}^{\varepsilon}}$$

for $\varepsilon = \delta_p \|pf\|_2$. Then (2.1) admits a solution u_s for some s between s^- and s^+ .

In particular, if there exist s^{\pm} such that

$$g|_{[0,T] \times \mathcal{J}_{s^+}^{\varepsilon}} \ge 0 \ge g|_{[0,T] \times \mathcal{J}_{s^-}^{\varepsilon}}$$

then (2.1) admits a solution u_s for some s between s^- and s^+ for any $f \perp p_1$ such that $\delta_p \|pf\|_2 \leq \varepsilon$.

Proof. As $u_s^{\pm}([0,T]) \subset \mathcal{J}_{s^{\pm}}^{\varepsilon}$, we obtain:

$$\int_0^T p_1 g(t, u_{s^+}) \ge \int_0^T p_1 f \ge \int_0^T p_1 g(t, u_{s^-})$$

and the result holds.

Using the fact that $|s| - \delta_p(c|s| + d) \to +\infty$ we deduce the following existence results:

Corollary 2.5 Let g satisfy (1.1)-(2.2), and assume, for some M > 0 that

$$g(t, x)sg(x) \ge 0$$
 for $|x| \ge M$

or

$$g(t, x)sg(x) \le 0$$
 for $|x| \ge M$

Then (2.1) is solvable for any $f \perp p_1$.

Corollary 2.6 Let g satisfy (1.1)-(2.2), and assume that

$$\lim_{|x|\to+\infty} g(t,x)sg(x) = +\infty \quad or \quad \lim_{|x|\to+\infty} g(t,x)sg(x) = -\infty$$

uniformly on t. Then (2.1) is solvable for any f.

$$\Diamond$$

Pablo Amster

Proof. Under the first assumption, there exists M such that

$$g(t,x)sg(x) \ge \frac{|\int_0^T p_1 f|}{\|p_1\|_1} \quad \text{for } |x| \ge M$$

Hence, taking s > 0 such that $s - \delta_p(cs + d + \|pf\|_2) \ge M$ we have

$$\int_0^T p_1 g(t, u_s) \ge |\int_0^T p_1 f| \ge \int_0^T p_1 f.$$

In the same way, for s < 0 with $s + \delta_p(-cs + d + \|pf\|_2) \leq -M$ we obtain $\int_0^T p_1 g(t, u_s) \leq \int_0^T p_1 f$ and the proof is complete. The case $g(t, x) sg(x) \to -\infty$ is analogous. \diamondsuit

Remark. In the previous corollaries (2.5)-(2.6), we also have that all the solutions belong to a compact arc of $H^1(0,T)$, namely $\{u_s : -S \le s \le S\}$ with

$$S = \frac{M + \delta_p(d + \|pf\|_2|)}{1 - \delta_p c} \,.$$

We may also apply theorem (2.4) to the forced pendulum equation with friction

$$u'' + ru' + b\sin(u) = f.$$
(2.3)

We first remark that in this case condition (1.1) reads

$$|b(t)| \le \frac{c_p}{p(t)} \quad \text{for any } t \in [0, T]$$
(2.4)

for some p > 0 with pr - p' nondecreasing and $c_p < \lambda_p$.

Theorem 2.7 With the previous notation, let us assume that i) b satisfies (2.4) and does not vanish in (0,T). ii) $\|p(f \pm b)\|_2 \leq \frac{c}{\delta_p}$ for some $c < \frac{\pi}{2}$. iii) $|\int_0^T p_1 f| \leq \cos(c) \|p_1 b\|_1$ Then there exist $s_1 \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, $s_2 \in [\frac{\pi}{2}, \frac{3}{2}\pi]$ such that $u_{s_i} + 2k\pi$ is a periodic solution of (2.3) for any integer k.

Proof. From the previous computations for $s = \frac{\pi}{2} + k\pi$ we obtain that

$$||u_s - s||_{\infty} \le \delta_p ||p(f - (-1)^k b)||_2 \le c < \frac{\pi}{2}$$

As $\sin u_s = (-1)^k \cos(u_s - s)$, taking k such that $(-1)^k b > 0$ we conclude that

$$\int_0^T p_1 b \sin u_s = \int_0^T p_1 |b| \cos(u_s - s) \ge \cos(c) ||p_1 b||_1 \ge \int_0^T p_1 f$$

In the same way, for $s = \frac{\pi}{2} + (k \pm 1)\pi$

$$\int_0^T p_1 b \sin u_s = -\int_0^T p_1 |b| \cos(u_s - s) \le -\cos(c) \|p_1 b\|_1 \le \int_0^T p_1 f$$

he result holds. \diamondsuit

and the result holds.

Remark. In particular, condition iii) is fulfilled if f is orthogonal to p_1 .

If we assume that $\|pf\|_2 \leq \frac{\pi}{2\delta_p}$ we also obtain existence under slightly different conditions.

Theorem 2.8 With the previous notation, let us assume that i) b satisfies (2.4) and does not vanish in (0,T)ii) $\|pf\|_2 \leq \frac{\pi}{2\delta_n}$, $\|p(f-|b|)\|_2 < \frac{c}{\delta_n}$ for some $c < \frac{\pi}{2}$. iii) $\sin(\delta_p \|pf\|_2) \leq \frac{\int_0^T p_1 f}{\|p_1b\|_1} \leq \cos(\delta_p \|p(f-|b|)\|_2).$ Then, if b > 0 (resp. b < 0) there exist $s_1 \in [0, \frac{\pi}{2}]$, $s_2 \in [\frac{\pi}{2}, \pi]$ (resp. $s_1 \in [-\frac{\pi}{2}, 0]$, $s_2 \in [\pi, \frac{3}{2}\pi]$) such that $u_{s_i} + 2k\pi$ is a periodic solution of (2.3) for any integer k. Moreover, if we replace ii) and iii) by Moreover, if we replace if) and iff) by iii') $\|pf\|_{2} \leq \frac{\pi}{2\delta_{p}}, \|p(f+|b|)\|_{2} < \frac{c}{\delta_{p}} \text{ for some } c < \frac{\pi}{2}.$ iii') $\sin(\delta_{p}\|pf\|_{2}) \leq \frac{-\int_{0}^{T} p_{1}f}{\|p_{1}b\|_{1}} \leq \cos(\delta_{p}\|p(f+|b|)\|_{2})$ then if b < 0 (resp. b > 0) there exist $s_{1} \in [0, \frac{\pi}{2}], s_{2} \in [\frac{\pi}{2}, \pi]$ (resp. $s_{1} \in [-\frac{\pi}{2}, 0], s_{2} \in [\pi, \frac{3}{2}\pi]$) such that $u_{s_{i}} + 2k\pi$ is a periodic solution of (2.3) for any integer

Proof. It follows like in the previous theorem, using the fact that if $s = k\pi$ then $||u_s - s||_{\infty} \leq \delta_p ||pf||_2$, and

$$|\int_0^T p_1 b \sin u_s| \le ||p_1 b||_1 \sin(\delta_p ||pf||_2).$$

References

k.

- [1] Duffing, G., Erzwungene Schwingungen bei veränderlicher Eigenfrequenz, Vieweg. Braunschweig, 1918.
- [2] Hamel, G., Über erzwungene Schwingungen bei endlichen Amplituden. Math. Ann., 86 (1922), 1-13.
- [3] Lichtenstein, L., Über einige Existenzprobleme der Variationsrechnung. Methode der unendlichvielen Variabeln, J.Reine Angew. Math. 145 (1915), 24 - 85.
- [4] Mawhin, J., Periodic oscillations of forced pendulum-like equations. Lecture Notes in Math., Springer, 964 (1982), 458-76.

- [5] Mawhin, J., The forced pendulum: A paradigm for nonlinear analysis and dynamical systems. Expo. Math., 6 (1988), 271-87.
- [6] Mawhin, J., Boudary value problems for nonlinear ordinary differential equations: from successive approximations to topology.
- [7] Picard, E., Sur l'application des méthodes d'approximations succesives à l'étude de certaines équations différentielles ordinaires, J.Math. Pures Appl. 9 (1893), 217-271.
- [8] Severini, C., Sopra gli integrali delle equazione differenziali del secondo ordine con valori prestabiliti in due punti dati, Atti R. Acc. Torino 40 (1904-5), 1035-40.

PABLO AMSTER Depto. de Matemática, CONICET Facultad de Cs. Exactas y Naturales Universidad de Buenos Aires Ciudad Universitaria, Pab. I - (1428) Buenos Aires, Argentina e-mail: pamster@dm.uba.ar