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Bounds for nonlinear eigenvalue problems ∗

Rafael D. Benguria & M. Cristina Depassier

Abstract

We develop a technique for obtaining bounds on bifurcation curves
of nonlinear boundary-value problems defined through nonlinear elliptic
partial differential equations.

1 Introduction

Recently, we have obtained a variational characterization for the principal so-
lution of a two point boundary-value problem in the line [1]. In particular, we
proved the following result.

Theorem 1.1 Let the pair (λ, u) be the principal solution (i.e., with u(x) ≥ 0)
of the two point boundary-value problem

d2u

dx2
+ λu = N(u) (1.1)

subject to u′(0) = u(1) = 0. Let um = u(0), the sup-norm of the solution. Here
N(u) is a general nonlinear term, which is continuous in (0, um). Then,

λ[um] = max
g∈D

(∫ um
0

N(u)g(u) du+
1

2

(∫ um
0

g′(u)1/3 du

)3)
/

∫ um
0

ug(u) du,

(1.2)
where D = {g

∣∣ g ∈ C1(0, um), g′ > 0, g(0) = 0}. Moreover, the maximum is
attained at some ĝ ∈ D, which is unique up to a multiplicative constant.

This theorem cannot be extended, as such, to higher dimensional boundary-
value problems since the methods used in the proof depend heavily on the one
dimensional character of (1.1). Nevertheless, at least for one particular three
dimensional boundary-value problem (namely, the Thomas–Fermi equation) we
were able to obtain a, suitably modified, variational characterization of the
principal solution [2]. Thus, there are hopes that at least for some boundary-
value problems defined through partial differential equations one can obtain a
variational characterization of the principal solution. The purpose of this article
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is to illustrate how the methods used in [1, 2] can be extended to find bounds
for the principal solution of boundary value problems defined through elliptic
partial differential equations. Unfortunately, in general we fall short of obtaining
a variational characterization. We will proceed through a well known example,
since we believe the methods are well illustrated by it, and it is clear how to
extend them to more general situations.

2 Nonlinear eigenvalue problem defined through
a semilinear elliptic equation

Consider the boundary-value problem

−∆u+ u3 = λu in Ω ⊂ R3, (2.1)

with
u = 0 in ∂Ω. (2.2)

Here Ω is a bounded, smooth, domain in R3. Then we have,

Theorem 2.1 Let the pair (λ, u) be the principal solution (i.e., with u(x) ≥ 0)
of the boundary-value problem (2.1), (2.2), then

4πu(x) ≤
2

3
√
3
lim
ε→0

∫
Ω\Bε(x)

(∆g + λg)3/2

g1/2
dy, (2.3)

where Bε(x) ⊂ Ω is a ball of radius ε centered at x. Here the function g satisfies,

g ∈ C2(Ω \Bε(x)) ∩ C
0(Ω \Bε(x)), (2.4)

g = 0 in ∂Ω, (2.5)

g(y) ≈
1

|x− y|
in the neighborhood of x, (2.6)

(i.e., g(y) behaves like the fundamental solution around x),

g(y) > 0 and ∆g + λg > 0 in Ω \Bε(x), (2.7)

but is otherwise arbitrary.

Proof: Pick any function g satisfying (2.4), (2.5), (2.6) and (2.7). If we multiply
(2.1) by g, and integrate over Ω \Bε(x) we obtain,

−

∫
Ω\Bε(x)

g∆u dy +

∫
Ω\Bε(x)

g u3 dy = λ

∫
Ω\Bε(x)

g u dy. (2.8)

Using Green’s formula and the boundary conditions (2.2) and (2.5) satisfied by
u and g repectively, we have∫

Ω\Bε(x)
(g∆u− u∆g) dy = −

∫
∂Bε(x)

(g∇u− u∇g) · n̂ dS, (2.9)
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where n̂ is the exterior normal to the surface of the ball Bε(x) and dS its surface
element. Since u ∈ C2(Ω), it follows from (2.6) that the limit of the right side
of (2.9) as ε goes to zero is given by −4πu(x). Thus,

lim
ε→0

∫
Ω\Bε(x)

(g∆u− u∆g) dy = −4πu(x). (2.10)

Hence, using (2.8), (2.9), and (2.10) we have

4πu(x) = lim
ε→0

∫
Ω\Bε(x)

(
(∆g + λg)u− gu3

)
dy. (2.11)

Let us denote h ≡ ∆g + λg, which is positive by assumption (2.7). For fixed y,
consider the integrand of (2.11) as a function of u. Maximizing the integrand
with respect to u we get

hu− u3 g ≤
2

3
√
3

h3/2

g1/2
(2.12)

and (2.7) follows from here.

Remark. For general facts about bifurcation problems defined through or-
dinary differential equations see [5]. For general bifurcation problems see [6].

As an application, consider Ω to be the unit ball in R3. We will use Theorem
2.1 to find an estimate for the principal branch (λ, um) (with u(x) ≥ 0) of the
nonlinear eigenvalue problem (2.1), (2.2), in this case. Here um denotes the
sup–norm of the solution, which occurs at zero (the center of the ball). In fact,
for any balanced, smooth domain Ω, the sup–norm of the positive solution of
(2.1), (2.2), is attained at the center of balance, in this case the origin of the
ball.
For our purpose, take g(x) = cos(πr/2)/r, with r = |x|. Clearly, this g

satisfies the hypothesis (2.4), (2.5), and (2.6). An elementary computation
shows that

∆g = −
π2

4
g, for r 6= 0. (2.13)

Thus, the corresponding h will be nonnegative as long as λ ≥ π2/4. It turns out
that this is not a restriction, since the nonlinear eigenvalue problem (2.1), (2.2)
has a nontrivial positive solution if and only if λ is larger than the first Dirichlet
eigenvalue of Ω, which for the case of the unit ball is π2. Setting x = 0, and
using the function g picked above, we conclude from (2.3)

um ≡ u(0) ≤
4
√
3

9π
(1 −

2

π
)

(
λ−
π2

4

)3/2
, (2.14)

which gives the following lower bound for the nonlinear eigenvalue λ,

λ ≥
π2

4
+

[
3
√
3

4
π

um

(1− 2/π)

]2/3
=
π2

4
+ cu2/3m , (2.15)
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with c ≈ 5.015. A better multiplicative constant can be obtained in (2.15) using
a different trial function g. In fact take

g(x) =
1

r
(1− r), (2.16)

where r = |x|, as before. This function g satisfies (2.4), (2.5), and (2.6). More-
over, ∆g = 0 for r > 0, and g > 0 for 0 < r < 1. Hence, from (2.3) we get,
um ≡ u(0) ≤ λ3/2/(9

√
3), i.e.,

λ ≥ 35/3u2/3m ≈ 6.240u2/3m , (2.17)

which is better than (2.15) for large values of um.
The bound embodied in (2.3) is a local upper bound on the principal so-

lution of the boundary-value problem (2.1), (2.2). To end with this example,
we will consider a function g(y) depending parametrically on x to produce an
x dependent bound in (2.3). What we will use as a trial g will be the funda-
mental solution of the Laplacian in a ball of radius 1. For the ball of radius R,
the fundamental solution can be constructed using the method of images. It is
given explicitly by

Gx(y) =
1

|y − x|
−
R

|x|

1

|y −R2x/|x|2|
(2.18)

(see, e.g., [3], pp. 19–20). Clearly this particular function satisfies all the
hypothesis. Moreover, ∆Gx(y) = 0 for y 6= x. Thus, using g(y) = Gx(y),
with R = 1 in (2.3), together with Newton’s theorem (i.e.,

∫
dΩy(1/|y − x|) =

4π/max(|x|, |y|), where the integral is over the sphere of radius |y| and dΩy is
the invariant measure on the sphere), we get at once

u(x) ≤
λ3/2

3
√
3
(1− |x|2). (2.19)

The bound (2.19), with a better constant, can be obtained using comparison
theorems. In fact, using the comparison function 1 − |x|2, and the maximum
principle (see e.g., [7, 4]), one can show that

u(x) ≤
λ3/2

9
√
3
(1− |x|2). (2.20)

Notice that at x = 0 the bound (2.20) is precisely the bound (2.17) obtained
above.
If instead of (2.1), (2.2), one considers a more general boundary-value prob-

lem

−∆u+ f(u) = λu in Ω ⊂ R3, (2.21)

with

u = 0 in ∂Ω, (2.22)
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where Ω, as before, is a bounded, smooth, domain in R3, and f is a positive,
continuous, increasing function, with f(u)/u→∞ as u→∞, then theorem 2.1
holds with (2.3) replaced by

4πu(x) ≤ lim
ε→0

∫
Ω\Bε(x)

fL(
h

g
) g dy. (2.23)

Here, fL denotes the Legendre transform of the function f , and h ≡ ∆g + λg
as before.
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