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Asymptotic behaviour of the solvability set for

pendulum-type equations with linear damping

and homogeneous Dirichlet conditions ∗

A. Cañada & A. J. Ureña

Abstract

We show some results on the asymptotic behavior of the solvability
set for a nonlinear resonance boundary-value problem, with linear damp-
ing, periodic nonlinearity and homogeneous Dirichlet boundary condi-
tions. Our treatment of the problem depends on a multi-dimensional
generalization of the Riemann-Lebesgue lemma.

1 Introduction

Solvability of the nonlinear boundary-value problem

−u′′(x)− αu′(x) − λ1(α)u(x) + g(u(x)) = h(x), x ∈ [0, π],

u(0) = u(π) = 0 ,
(1.1)

has been studied by several authors under the following set of hypotheses.

[H] α is a given real number, λ1(α) = 1 + α
2/4 is the first eigenvalue of the

eigenvalue problem

−u′′(x)− αu′(x) = λu(x), x ∈ [0, π]

u(0) = u(π) = 0 ,
(1.2)

g : R→ R is a continuous and T -periodic function with zero mean value,
and h ∈ L1[0, π] .

The case α = 0 can be found in [1, 4, 9, 10], while the case α 6= 0 has been
recently treated in [2]. These type of problems, with periodic nonlinearity,
are important in applications and (1.1) models, for example, the motion of a
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56 Asymptotic behaviour of the solvability set

pendulum clock ([6, 8]). If g is not identically zero and ψ(x) = exp(αx/2) sin(x)
is the principal positive eigenfunction of the adjoint problem to (1.2) for λ =
λ1(α), it was proven in ([2]) that for a given h̃ ∈ L1[0, π], with

∫ π
0
h̃(x)ψ(x) dx =

0, there exist real numbers a1(h̃) < 0 < a2(h̃), such that (1.1), with h given by
h(x) = aψ(x) + h̃(x), (a ∈ R), has solution if, and only if, a ∈ [a1(h̃), a2(h̃)].
However, very little is known on the behavior of the functionals a1 and a2. In
this paper we deal with their asymptotic behavior. More precisely, we shall
show that if

L̃1[0, π] =
{
h ∈ L1[0, π] :

∫ π
0

h(x)ψ(x) dx = 0
}
,

then there exist a subset F ⊂ L̃1[0, π], (which will be explicitly described) of
first category in L̃1[0, π] in the sense of Baire, such that for each h̃ ∈ L̃1[0, π]\F ,

lim
|λ|→∞

a1(λh̃) = lim
|λ|→∞

a2(λh̃) = 0 . (1.3)

As a trivial consequence, the set of functions h̃ ∈ L̃1[0, π] for which (1.3) is
true, is a dense and second category subset of L̃1[0, π]. In the final remarks
we briefly comment why this result cannot be strengthened very much, since,
under hypotheses [H], it may happens that (1.3) does not occur also for a dense
subset of L̃1[0, π] (see [3]).
Let us point out that related results for the case of periodic boundary con-

ditions and α = 0 can be found in [7]. However, to the best of our knowledge,
properties like (1.3) for the problem (1.1) and periodic nonlinearity g, have
not been previously treated in the literature, even for the case α = 0. In
the proofs we use the Liapunov-Schmidt reduction, The Baire’s category the-
orem, some notions on measure theory and the multi-dimensional version of
the Riemann-Lebesgue lemma developed in Lemma 3.1 (see [4, 7, 11] for the
classical one-dimensional version).
Through this paper, 〈·, ·〉 will stand for the Euclidean inner product in RN ,

while for any x ∈ RN , ‖x‖ :=
√
〈x, x〉 will denote its associated norm and

x1, . . . , xN its components. We will write as ‖ · ‖1 and ‖ · ‖∞ the usual norms in
L1[0, π] and L∞[0, π] respectively. A function h ∈ L1[0, π] will be called a step
function if there exists a partition 0 = x0 < x1 < . . . < xm−1 < xm = π of the
interval [0, π], and constants ci, 1 ≤ i ≤ m such that h|(xi−1,xi) ≡ ci, 1 ≤ i ≤ m.
If, furthermore, all constants ci, i : 1, . . . ,m, are not zero, h will be called a
non-vanishing step function. Finally, for every measurable set I ⊂ [0, π], we
will denote by χI its characteristic function, and by meas I its one-dimensional
Lebesgue measure.

2 Liapunov-Schmidt reduction

Let any h ∈ L1[0, π] be written in the form h(x) = aψ(x) + h̃(x), a ∈ R,∫ π
0
h̃(x)ψ(x) dx = 0. Let W 2,1

0 [0, π] = {u ∈ W
2,1[0, π], u(0) = u(π) = 0} be the

usual Sobolev space with the usual W 2,1
0 [0, π] norm, and define the operators
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L :W 2,1
0 [0, π]→ L1[0, π], Lu = −u′′ − αu′ − λ1(α)u,

N :W 2,1
0 [0, π]→ L1[0, π], (Nu)(x) = aψ(x) + h̃(x) − g(u(x)) .

Then (1.1) is equivalent to the operator equation

Lu = Nu . (2.1)

Let ϕ(x) = exp(−α2 x) sin(x) be the principal eigenfunction associated with

λ = λ1(α) of the eigenvalue problem (1.2). Each u ∈ W
2,1
0 [0, π] can be written

in the form u(x) = cϕ(x) + ũ(x), c ∈ R,
∫ π
0 ũ(x)ϕ(x) dx = 0. Consider the

linear, continuous projections

P : W 2,1
0 [0, π]→W 2,1

0 [0, π], cϕ+ ũ 7→ cϕ,

Q : L1[0, π]→ L1[0, π], aψ + h̃ 7→ aψ .

(so that imP = kerL, imL = kerQ = L̃1[0, π]), and let K : kerQ → kerP
be the inverse of the mapping L : kerP → kerQ. With this notation, (2.1) is
equivalent to the system

ũ = K(I −Q)N(cϕ+ ũ) (2.2)

a =
1∫ π

0 (ψ(x))
2 dx

∫ π
0

g(cϕ(x) + ũ(x))ψ(x) dx (2.3)

(auxiliary and bifurcation equation, respectively). Since the natural embedding
ofW 2,1

0 [0, π] into C[0, π] is compact, we get that for any fixed c ∈ R, there exists
at least one solution ũ ∈ kerP of (2.2) ([4], [5]). Denote by Σ the solution set
of equation (2.2), i.e.,

Σ = {(c, ũ) ∈ R× kerP : ũ = K(I −Q)N(cϕ+ ũ)}

and let Γ : Σ→ R, be defined by

Γ(c, ũ) =
1∫ π

0 (ψ(x))
2 dx

∫ π
0

g(cϕ(x) + ũ(x))ψ(x) dx (2.4)

Hence, for a given h̃, BVP (1.1), with h(x) = aψ(x) + h̃(x) has solution, if
and only if, a belongs to the set Γ(Σ). The next Theorem, which describes the
solvability of (1.1) may be seen in [2].

Theorem 2.1 Let us assume the hypotheses [H] with g not identically zero.
Then for each h̃ ∈ L̃1[0, π], there exist real numbers a1(h̃) < 0 < a2(h̃) such that
(1.1) with h(x) = aψ(x) + h̃(x) has a solution if, and only if, a ∈ [a1(h̃), a2(h̃)].

In the next section we deal with the asymptotic behavior of the functionals
a1 and a2 as h̃ becomes ‘large’.
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3 Asymptotic behavior of the solvability set

In what follows, choose one of the functionals a1, a2, and denote it simply by
a. Let h̃ ∈ L̃1[0, π] be given. Taking into account the results of the previous
section, we obtain that, for each λ ∈ R, there is (cλ, uλ) ∈ R× kerP such that

uλ = K(I −Q)Nλ(cλϕ+ uλ) (3.1)

a(λh̃) =
1∫ π

0 (ψ(x))
2 dx

∫ π
0

g(cλϕ(x) + uλ(x))ψ(x) dx (3.2)

where Nλu(x) = aψ(x)+λh̃(x)−g(u(x)) = λh̃(x)+N0u(x). Therefore, equation
(3.2) becomes

a(λh̃)
∫ π
0
(ψ(x))2 dx =∫ π

0
g(cλϕ(x) + λKh̃+K(I −Q)N0(cλϕ+ uλ))ψ(x) dx

(3.3)

Since K(I−Q)N0(cλϕ+uλ) = K(I−Q)(−g(cλϕ(.)+uλ(.)), there is a constant
M > 0 independent of λ ∈ R, such that

|K(I −Q)N0(cλϕ+ uλ)(x)| ≤M, ∀ x ∈ [0, π],

|(K(I −Q)N0(cλϕ+ uλ))′(x)| ≤M, ∀ x ∈ [0, π]
(3.4)

Previous discussion motivates the next multidimensional generalization of
the Riemann-Lebesgue lemma.

Lemma 3.1 Let g : R → R be a continuous and T -periodic function with zero
mean value and let u1, . . . , uN ∈ C1[0, π] be given functions satisfying the fol-
lowing property:

[P] If ρ1, . . . , ρN are real numbers such that

meas
{
x ∈ [0, π] :

N∑
i=1

ρiu
′
i(x) = 0

}
> 0 ,

then ρ1 = . . . = ρN = 0.

Let B ⊂ C1[0, π] be such that the set {b′, b ∈ B} is uniformly bounded in C[0, π].
Then, for any given function r ∈ L1[0, π], we have

lim
‖ρ‖→∞

∫ π
0

g

(
N∑
i=1

ρiui(x) + b(x)

)
r(x) dx = 0 (3.5)

uniformly with respect to b ∈ B.
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Proof. Let r ∈ L1[0, π] be a given function and let {ρn, n ∈ N} ⊂ RN

and {bn, n ∈ N} ⊂ B be given sequences with ‖ρn‖ → ∞. If we define
µn = ρn/‖ρn‖, we have, at least for a subsequence, that µn → µ for some
µ ∈ RN with µ21 + . . . + µ2N = 1. If u = (u1, . . . , uN), then by hypothesis,
meas(Z) = 0, where Z = {x ∈ [0, π] : 〈µ, u′(x)〉 = 0}. This implies that the
linear span of the set

S = {〈µ, u′〉χI : I is any compact subinterval of [0, π], I ∩ Z = ∅} (3.6)

is a dense set in L1[0, π]. To see this, let us define

S1 = {χI : I is any compact subinterval of [0, π], I ∩ Z = ∅} (3.7)

Then, for any open subset A ⊂ [0, π] (in particular, for any open subinterval
of [0, π]), meas(A \ Z) = meas(A). Since A \ Z is also open, there exists an at
most countable collection {Ii, i ∈ N} of pairwise disjoint open intervals such
that A \ Z = ∪i∈N Ii and meas(A \ Z) =

∑
i∈Nmeas(Ii). Consequently, the

linear span of the set S1 is a dense set in the set of step functions and therefore
in L1[0, π].
Now, let χI be a given element of S1. Write w = 〈µ, u′〉 and m = infI |w|

(m > 0). Finally, fix ε > 0. Choose a partition of I = [a, b], a = a0 < a1 <
. . . < am−1 < am = b such that if x, y ∈ Ji = [ai−1, ai], 1 ≤ i ≤ m, then
|w(x) − w(y)| ≤ ε. Then, for any x ∈ I, there is some i, 1 ≤ i ≤ m, such that
x ∈ Ji and ∣∣∣∣∣χI(x) −

m∑
i=1

wχJi(x)

w(ai)

∣∣∣∣∣ =
∣∣∣∣w(ai)− w(x)w(ai)

∣∣∣∣ ≤ ε/m,
so that ∥∥∥χI − m∑

i=1

wχJi
w(ai)

∥∥∥
1
≤ επ/m .

Consequently, we deduce that the linear span of S is dense in S1 and therefore
in L1[0, π].
On the other hand, if l∞ denotes the space of bounded sequences of real

numbers with the usual norm, the linear operator T : L1[0, π] → l∞, s →
{(Ts)n, n ∈ N}, defined by

(Ts)n =

∫ π
0

g(〈ρn, u(x)〉+ bn(x))s(x) dx, ∀ s ∈ L1[0, π], ∀ n ∈ N,

is trivially continuous. Recall that our purpose is to prove that T (L1[0, π]) ⊂ l0,
the closed subspace of l∞ of all sequences which converge to zero. Since T is
continuous and l0 is closed, to prove the lemma it is sufficient to demonstrate
that T (S) ⊂ l0, i.e.,

lim
n→∞

∫
I

g(〈ρn, u(x)〉+ bn(x))(〈µ, u′(x)〉) dx = 0, (3.8)
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for any compact subinterval I of [0, π] such that I
⋂
Z = ∅. But, if vn, v : I → R

are defined as
vn(x) = 〈µn, u(x)〉+ bn(x)/‖ρn‖,

v(x) = 〈µ, u(x)〉, ∀ x ∈ [0, π],

we trivially have

lim
n→∞

∫
I

g(‖ρn‖vn(x))(v′(x) − (vn)′(x)) dx = 0 (3.9)

and

lim
n→∞

∫
I

g(‖ρn‖vn(x))(vn)′(x)) dx (3.10)

= lim
n→∞

G(‖ρn‖vn(max I))−G(‖ρn‖vn(min I))

‖ρn‖
= 0

where G is any primitive function of function g. Now, (3.9) and (3.10) imply
(3.8).

Remark. It is clear that both the conclusion and the proof of the previous
lemma are still true under more general hypotheses on the function g. It is
sufficient that g be a continuous and bounded function with bounded primitive
G.
Next, we apply the previous lemma to the specific problem of the asymptotic

behavior of the functional a whose expression was given in (3.3).

Corollary 3.2 Let h̃ ∈ L̃1[0, π] be a given function and suppose that the func-
tions Kh̃ and ϕ satisfy the following property

[P1] If ρ1, ρ2 are real numbers such that

meas{x ∈ [0, π] : ρ1(Kh̃)
′(x) + ρ2ϕ

′(x) = 0} > 0,

then ρ1 = ρ2 = 0.

Let B ⊂ L̃1[0, π] be any bounded subset. Then

lim
|λ|→∞

a(λh̃+ b) = 0, (3.11)

uniformly with respect to b ∈ B.

Proof. For each λ ∈ R and each b ∈ B, there is (cλ,b, ũλ,b) ∈ Σλ,b such that

a(λh̃+ b)

∫ π
0

(ψ(x))2 dx =

∫ π
0

g(cλ,bϕ(x) + λKh̃(x) +Kb(x) (3.12)

+K(I −Q)N0(cλ,bϕ+ ũλ,b)(x))ψ(x) dx
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where Σλ,b is the corresponding solution set of the auxiliary equation for λh̃+b.
Since the set

{Kb+K(I −Q)N0(cλ,bϕ+ ũλ,b), λ ∈ R, b ∈ B}

is bounded in C1[0, π] (see (3.4)), the conclusion follows from the previous
lemma.
The following equivalent version of previous corollary will be very useful for

our purposes.

Corollary 3.3 Let h̃ ∈ L̃1[0, π] be a given function and suppose that, for every
ρ ∈ R,

meas{x ∈ [0, π] : (Kh̃)′(x) = ρϕ′(x)} = 0.

Let B ⊂ L̃1[0, π] be any bounded subset. Then

lim
|λ|→∞

a(λh̃+ b) = 0, (3.13)

uniformly with respect to b ∈ B.

Now, we state and prove our main result.

Theorem 3.4 There exists a subset F ⊂ L̃1[0, π], of first category in L̃1[0, π],
such that for any given h̃ ∈ L̃1[0, π] \ F , and each given bounded subset B ⊂
L̃1[0, π], one obtains

lim
|λ|→∞

a(λh̃+ b) = 0 (3.14)

uniformly with respect to b ∈ B.

Proof. Let

F =
{
h̃ ∈ L̃1[0, π] : ∃ ρ ∈ R s.t. meas {x ∈ [0, π] : (Kh̃)′(x) = ρϕ′(x)} > 0

}
Then F = ∪n∈N Fn, where

Fn =
{
h̃ ∈ L̃1[0, π] : ∃ ρ ∈ R s.t. meas{x ∈ [0, π] : (Kh̃)′(x) = ρϕ′(x)} ≥ 1/n

}
Let us prove that each subset Fn is closed and has an empty interior. To see
this, let us fix Fn. Then, since K : kerQ→ kerP is a topological isomorphism,
Fn is a closed subset of kerQ if and only if K(Fn) ≡ Gn is a closed subset of
kerP . Now, it is clear that Gn is the set of functions

{u ∈ kerP : ∃ρ ∈ R s.t. meas{x ∈ [0, π] : u′(x) = ρϕ′(x)} ≥ 1/n}

Let {um, m ∈ N} ⊂ Gn be a sequence such that {um} → u in kerP . Then, for
any m ∈ N, we can find ρm ∈ R such that

meas{x ∈ [0, π] : u′m(x) = ρmϕ
′(x)} ≥ 1/n
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Since
meas{x ∈ [0, π] : ϕ′(x) = 0} = 0,

the sequence {ρm} must be bounded and, after possibly passing to a subse-
quence, we can suppose, without loss of generality, that {ρm} → ρ. Moreover,
if we define

Mm = {x ∈ [0, π] : u
′
m(x) = ρmϕ

′(x)}

then measMm ≥ 1/n, ∀m ∈ N and meas (
⋂∞
m=1 [

⋃∞
s=mMs]) ≥ 1/n. Finally, let

us observe that if x ∈
⋂∞
m=1 [

⋃∞
s=mMs], then u

′(x) = ρϕ′(x), so that meas{x ∈
[0, π] : u′(x) = ρϕ′(x)} ≥ 1/n and consequently u ∈ Gn.
Next, we prove that F (and therefore each Fn) has an empty interior. To

see this, let us define the function ϕ1 as the primitive of ϕ with zero mean
value and ϕ2 as the primitive of ϕ1 satisfying ϕ2(0) = ϕ2(π) = 0. Then,
ϕ2 ∈W

2,1
0 [0, π], ϕ

′′
2 = ϕ and for any u ∈W

2,1
0 [0, π], we have∫ π

0

uϕ = −

∫ π
0

u′ϕ1 =

∫ π
0

u′′ϕ2.

As a consequence, the mapping Φ : kerP → L̃1ϕ2 [0, π], u → u′′ is a topological
isomorphism, where

L̃1ϕ2 [0, π] = {h ∈ L
1[0, π] :

∫ π
0

h(x)ϕ2(x) dx = 0}

Therefore, F has an empty interior in L̃1[0, π] provided Φ(K(F )) has an empty
interior in L̃1ϕ2 [0, π]. This last result is an easy consequence of the following
lemma.

Lemma 3.5 Let us denote by A the subset of L1[0, π] given by all the step
functions and by B the subset of L1[0, π] given by all the non-vanishing step
functions. Then,

1. The set A ∩ L̃1ϕ2 [0, π] is dense in L̃
1
ϕ2
[0, π].

2. The set B ∩ L̃1ϕ2 [0, π] is dense in L̃
1
ϕ2 [0, π].

3. B ∩ Φ(K(F )) = ∅

Proof.

1. Let us choose any h ∈ L̃1ϕ2[0, π] and ε > 0. Then, there exists s ∈ A such

that ‖h− s‖1 < min {ε/2π,
‖ϕ2‖1
‖ϕ2‖∞

}. Now, the function s̃ = s+
∫ π
0
sϕ2

‖ϕ2‖1
is

again a step function which belongs to L̃1ϕ2 [0, π] and such that ‖h−s̃‖1 < ε.

2. Let us demonstrate that B ∩ L̃1ϕ2 [0, π] is dense in A ∩ L̃
1
ϕ2[0, π]. To see

this, let us take u ∈ A ∩ L̃1ϕ2 [0, π]. If a, b ∈ R, define the function ua,b =

u+ aχ[0,π/2] + bχ[π/2,π]. The condition for ua,b to belong to L̃
1
ϕ2[0, π] is

a

∫ π/2
0

ϕ2 + b

∫ π
π/2

ϕ2 = 0
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Since
∫ π/2
0 ϕ2 < 0 and

∫ π
π/2 ϕ2 < 0, (think that, by the maximum principle,

ϕ2 < 0 in (0, π)), it is clear that we may choose a and b both different
from zero but as small as we want in absolute value such that ua,b ∈
B ∩ L̃1ϕ2[0, π].

3. If s ∈ B ∩ Φ(K(F )), then there is h̃ ∈ F such that K(h̃) = u, Φ(u) =
u′′ = s. Since h̃ ∈ F , there exists ρ ∈ R such that meas {x ∈ [0, π] :
u′(x) = ρϕ′(x)} > 0. Choose some nontrivial compact interval I ⊂ [0, π]
satisfying s|I ≡ c 6= 0 and such that meas {x ∈ I : u′(x) = ρϕ′(x)} > 0.
This implies that meas {x ∈ I : c = u′′(x) = ρϕ′′(x)} > 0, which is a
contradiction with the form of the function ϕ.

Final Remark. Under the hypotheses [H], it is possible to show that, in many
cases, the set of functions h̃ ∈ L̃1[0, π] for which lim|λ|→∞ a(λh̃) is not zero, is

also dense in L̃1[0, π]. For example, this is true for the oscillating function δg in
the place of g provided that |δ| is small enough. In this case, it may be proved
that the previous limit is not zero if the function u = K(h̃) belongs to the set
of functions in kerP for which there exists a partition 0 = x0 < x1 < . . . <
xp−1 < xp = π and 1 ≤ i0 ≤ p and constants µ 6= 0, c 6= 0, such that

i) u′′[xi−1,xi] is a constant function, for any 1 ≤ i ≤ p, i 6= i0.

ii) u(x) = µϕ(x) + c, ∀ x ∈ [xi0−1, xi0 ].

After this, it may be proved that this set is dense in kerP . The detailed proof
may be found in [3].
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