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An abstract existence result and its applications ∗

Sui Sun Cheng, Bin Liu, & Jian-She Yu

Abstract

By means of Borsuk’s theorem and continuation through an admis-
sible homotopy, we establish an existence theorem for operator equation
with homogeneous nonlinearity. We illustrate our theorem by consider-
ing a perturbed functional differential equation under periodic boundary
conditions.

1 Introduction

Continuation theorems have been used to derive periodic solutions for differ-
ential systems with perturbations. In particular, in [1], existence criteria for
ω-periodic solutions are given for the equation

x′ = g(x) + e(t, x)

by means of ‘continuation’ through an admissible homotopy carrying the given
problem to the equation

x′ = g(x),

which admits only the trivial ω-periodic solution (see [1, pp. 101-103]).
In this note, we are interested in the study of a similar problem for the

perturbed functional differential system

x′ = g(t, xt) + h(t, xt), 0 ≤ t ≤ ω,

with solutions that satisfy the periodic boundary condition

x(0) = x(ω) .

This will be achieved by first proving an abstract existence theorem utilizing
Borsuk’s theorem and continuation through an admissible homotopy carrying
our given problem to the equation

x′ = g(t, xt),

which admits only the trivial periodic solution.
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2 Main Results

Let X,Y be real normed spaces with respective norms ‖·‖X and ‖·‖Y . Let L :
dom(L) ⊆ X → Y be a linear Fredholm mapping of index zero, and let Ω be an
open and bounded subset of X . It is well known [1, Section 2.2] that there exist
projections P : X → X and Q : Y → Y such that ImP = kerL, kerQ = ImL
and X = kerL ⊕ kerP, Y = ImL ⊕ ImQ. Suppose F : dom(L) ∩ Ω → Y has
the form F = L − N where N : Ω → Y is L-compact on Ω and satisfies the
condition 0 /∈ F (dom(L) ∩ ∂Ω). Then a coincidence degree DL(F,Ω) can be
defined which satisfies the properties listed in [1, Section 2.3]. As mentioned
above, we will need the following Borsuk’s Theorem: Suppose Ω is an open,
bounded subset of X which is symmetric with respect to the origin and suppose
further that the function F mentioned above satisfies the additional condition
that F (−x) = −F (x) for every x ∈ dom(L) ∩ ∂Ω, then the coincidence degree
DL(F,Ω) is odd. We remark that there are a number of studies which are
concerned with the existence of periodic solutions of differential equations by
means of coincidence theory, see for examples [2-6].

Lemma 2.1 Let Ω = {x ∈ X | ‖x‖X ≤ 1}. Let N2 : X → Y be a continuous
mapping which maps bounded sets into bounded sets and satisfies

lim
‖x‖X→∞

‖N2x‖Y
‖x‖βX

= 0 (2.1)

for some β ∈ (0, 1]. Suppose H : Ω× [0, 1]→ Y is defined by

H(x, µ) =

{
µβN2(µ

−βx) if µ ∈ (0, 1]

0 if µ = 0 .

Then H is continuous and bounded on Ω× [0, 1].

Proof. To show that H is continuous, it suffices to show that H is continuous
at (x, 0) where x ∈ Ω. For any ε ∈ (0, 1), in view of assumption (2.1), we see
that there exists a constant ρ > 0 such that for arbitrary x ∈ X which satisfies
‖x‖X > ρ, ‖N2x‖Y ≤ ε ‖x‖

β
X . Since N2 maps bounded sets into bounded sets,

hence
M = sup {‖N2x‖Y : ‖x‖X ≤ ρ <∞} > 0.

Let µ0 =
(

ε
M+1

)1/β
. Clearly,

0 < µ0 <

(
1

M + 1

)1/β
.

For every positive µ ≤ µ0 and every x ∈ Ω, we assert that ‖H(x, µ)‖Y < ε. In
fact, if µ−β ‖x‖X > ρ, then

‖H(x, µ)‖Y ≤ µβ
∥∥N2(µ−βx)∥∥Y
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≤ µβε
∥∥µ−βx∥∥β

X

≤ µβεµ−β
2

‖x‖βX

≤ µ
β(1−β)
0 ε

<
( 1

M + 1

)1−β
ε < ε,

and if µ−β ‖x‖X ≤ ρ, then

‖H(x, µ)‖Y ≤ µ
β
∥∥N2(µ−βx)∥∥Y ≤ µβM ≤ ε

M + 1
M < ε.

Thus we have shown that H is continuous at (x, 0) ∈ Ω× [0, 1].
By arguments similar to those just described, we may show by means of the

continuity of H at (x, 0) ∈ Ω × [0, 1] that there exists a constant δ > 0 and
a real number M1 such that for (x, µ) ∈ Ω × [0, δ], ‖H(x, µ)‖Y ≤ M1. Since
N2 maps bounded sets into bounded sets, there exists a number M2 such that
‖H(x, µ)‖Y ≤M2 for (x, µ) ∈ Ω× [δ, 1]. Thus H is bounded on Ω× [0, 1]. The
proof is complete. Let us now consider the operator equation

Lx = N1x+N2x, x ∈ X, (2.2)

where

H1) L is a linear Fredholm mapping of index zero,

H2) N1 : X → Y is a continuous mapping which satisfies N1(λx) = λN(x) for
λ ∈ (−∞,∞) and x ∈ X ,

H3) N2 : X → Y is a continuous mapping which maps bounded sets into
bounded sets and satisfies (2.1) for some β ∈ (0, 1],

H4) N1, N2 are L-completely continuous.

Theorem 2.2 Suppose the conditions H1-H4 hold. Suppose further that

Lx = N1x (2.3)

admits only the trivial solution. Then (2.2) has a nontrivial solution in domL∩
Ω.

Proof. Let Ω = {x ∈ X | ‖x‖X ≤ 1}. Let T : Ω× [0, 1]→ Y be defined by

T (x, µ) =

{
N1x+ µ

βN2(µ
−βx) if µ ∈ (0, 1]

N1x if µ = 0 .
(2.4)

Then
T (x, 1) = N1x+N2x, x ∈ Ω,
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furthermore, in view of Lemma 2.1, T is continuous and bounded on Ω× [0, 1].
Since N1 and N2 are L-completely continuous, it is also easy to see that T is
L-compact on Ω× [0, 1].
Note that, in view of the assumption that (2.3) admits only the trivial solu-

tion, for any x ∈ ∂Ω, (x, 0) cannot be a solution of

Lx = T (x, µ). (2.5)

Note further that if (x, µ) ∈ ∂Ω× (0, 1] is a nontrivial solution of (2.5), then in
view of (2.4) and (H2), µ−βx will be a nontrivial solution of (2.2).
Let F̃ = L − T . Suppose to the contrary that the operator equation (2.2)

does not have any nontrivial solutions, then in view of the above discussions,
0 /∈ F̃ ((dom(L) ∩ ∂Ω) × [0, 1]). Thus the degree DL(F̃ (·, µ),Ω) can be defined
for arbitrary µ ∈ [0, 1], and it takes constant on [0, 1]. But since

F̃ (−x, 0) = −Lx− T (−x, 0) = −Lx−N1(−x)

= −Lx+N1x = −Lx+ T (x, 0) = −F̃ (x, 0)

for all x ∈ X, by Borsuk’s Theorem stated above, we see thatDL(F̃ (·, 0),Ω), and
(hence) DL(F̃ (·, 1),Ω) are odd. But this is contrary to the existence property
of the coincidence degree. The proof is complete.

Let us now turn back to the perturbed functional differential equation

x′ = g(t, xt) + h(t, xt), 0 ≤ t ≤ ω, (2.6)

under the periodic boundary condition

x(0) = x(ω), (2.7)

where x(t) ∈ C(R,Rn), xt ∈ BC (R,Rn) are given by xt(s) = x(t + s), and
g, h : [0, ω]×BC(R,Rn)→ Rn are continuous mappings that take bounded sets
into bounded sets. Here BC(R,Rn) is the linear normed space of all continuous
and bounded functions from R into Rn endowed with the usual supremum norm.

Theorem 2.3 Assume that

g(t, λx) = λg(t, x), λ, t ∈ R;x ∈ BC(R,Rn), (2.8)

and there exists β ∈ (0, 1] such that

lim
‖x‖→∞

|h(t, x)|

‖x‖β
= 0 uniformly in t ∈ [0, ω]. (2.9)

Suppose further that the boundary value problem

x′ = g(t, xt) t ∈ [0, ω]

x(0) = x(ω) (2.10)

x(t) = x(0) t ∈ (−∞, 0] ∪ [ω,∞)

admits only the trivial solution. Then (2.6) has a nontrivial solution x that
satisfies (2.7).
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Proof. Let

X = {x ∈ C(R,Rn)| x(0) = x(ω), x(t) = x(0), t ∈ (−∞, 0] ∪ [ω,∞)} ,

and Y = C ([0, ω], Rn). Then X is a closed subset in BC (R,Rn) , and therefore
it is a Banach space. Let dom(L) = {x ∈ X | x′ is continuous on [0, ω]} , let
L : dom(L)∩X → Y be defined by (Lx)(t) = x′(t) for t ∈ R, and let N : X → Y
be defined by

(Nx)(t) = (N1x)(t) + (N2x)(t), t ∈ R,

where (N1x)(t) = g(t, xt), (N2x)(t) = h(t, xt) for t ∈ R. Then it is easy to show
that the kernel of L is

kerL = {x ∈ X | x = c ∈ Rn} ,

the image of L is

ImL =

{
y ∈ Y |

1

ω

∫ ω
0

y(s)ds = 0

}
,

and dim kerL = codim ImL = n. Furthermore, if we define the projections
P : X → X and Q : Y → Y by

(Px)(t) = x(0), t ∈ R,

and

(Qy)(t) =
1

ω

∫ ω
0

y(s)ds, t ∈ R,

respectively, then kerL = ImP and kerQ = ImL. Thus, L is a Fredholm
operator with index zero, and the generalized inverse KP : ImL → kerP ∩
dom(L) of L is given by

(KP y)(t) =

{ ∫ t
0 y(s)ds if 0 ≤ t ≤ ω

0 if t ∈ (−∞, 0] ∪ [ω,∞) ,

and is compact. Since

(QN)(x) =
1

ω

∫ ω
0

(g(s, xs) + h(s, xs))ds,

we easily see that QN(Ω) is bounded, furthermore, by the Arzela-Ascoli the-
orem, it is also easily seen that KP (I − Q)N : Ω → X is compact. As a
consequence, N is L-compact on Ω.
Note that the conditions (H2) and (H3) follow (2.8) and (2.9) respectively,

and that Lx = N1x admits only the trivial solution. By Theorem 2.2, (2.6) will
have a nontrivial solution which satisfies (2.7). The proof is complete.

As an example, consider the boundary value problem

x′ = p(t)x(t− τ) + p(t)
(
−x1/2(t− τ) + a

)
, 0 ≤ t ≤ ω,

x(0) = x(ω),



106 An abstract existence result

where a, τ, ω are real numbers which satisfy 0 < ω < τ and a ≤ 1/4. The
function p ∈ C(R,R) is bounded and∫ ω

0

p(s)ds 6= 0.

Let β = 3/4. Then

lim
|x|→∞

∣∣p(t) (−x1/2 + a)∣∣
|x|β

≤ lim
|x|→∞

max |p(t)|
(
|x|1/2 + |a|

)
|x|3/4

= 0.

Furthermore, since x(t − τ) = x(0) for 0 ≤ t ≤ ω, x ≡ 0 is the unique solution
of the periodic boundary problem

x′ = p(t)x(t − τ) t ∈ [0, ω]

x(0) = x(ω)

x(t) = x(0) − τ ≤ t ≤ 0

By Theorem 2.3, there will be a nontrivial solution of our boundary value prob-
lem. In fact,

x(t) =
(1 +√1− 4a

2

)1/2
, −τ ≤ t ≤ ω,

is one of its nontrivial solutions.
We remark that similar results can be obtained for boundary-value problems

involving infinite delay, or problems of the form

x(m)(t) = g
(
t, x′t, ..., x

(m−1)
t

)
+ h
(
t, x′t, ..., x

(m−1)
t

)
, 0 ≤ t ≤ T,

x(i)(0) = x(i)(T ), i = 0, 1, ...,m− 1.
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