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A semilinear control problem involving

homogenization ∗

Carlos Conca, Axel Osses, & Jeannine Saint Jean Paulin

Abstract

We consider a control problem involving a semilinear elliptic equation
with a uniformly Lipschitz non-linearity and rapidly oscillating coefficients
in a bounded domain of RN . The control is distributed on a compact
subset interior to the domain. Given an N − 1 dimensional hypersurface
at the interior of the domain not intersecting the control zone, the trace
of the solution on the curve has to be controlled. We prove that there
exists a limit control as the homogenization parameter converges to zero,
which results as the limit of fixed points for controllability problems. We
link this limit control with the corresponding homogenized problem.

1 Introduction

Let Ω be a connected and open subset of RN with smooth boundary Γ. Let
ω ⊂⊂ Ω be a non-empty open subset with indicatrix set 1ω and let S be a N−1
dimensional manifold strictly included in Ω and not intersecting ω. Consider
the following control problem. Given ε > 0, α > 0 and y1 ∈ L2(S)N find a
control function vε with support in ω such that

− div(Aε∇yε) + f(yε) = 1ωv
ε in Ω

yε = 0 on Γ
(1.1)

and

‖yε|S − y1‖0,S ≤ α, (1.2)

where yε|S is the trace of y
ε on S and ‖ ‖0,S denotes the standard L

2-norm
on S. The nonlinear function f is such that

f ∈ C0, f(0) = 0, (1.3)
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110 A semilinear control problem involving homogenization

and uniformly Lipschitz, that is

∃γ > 0 such that ∀s ∈ R \ {0}, 0 ≤
f(s)

s
≤ γ. (1.4)

The coefficients of the symmetric matrix Aε are real and piecewise C1 in Ω. We
assume the condition

∃αm, αM > 0 such that ∀ξ ∈ R
N , |ξ| = 1, αm ≤

N∑
i,j=1

Aεij(x)ξiξj ≤ αM , (1.5)

for a.e. x ∈ Ω. The following result can be established as in [7, 8] using a fixed
point technique introduced in [2].

Theorem 1.1 Assume that each point x0 on S can be connected by an arc
included in Ω to some point in ω without intersecting S \{x0}. Then, under the
hypotheses (1.3), (1.4) and (1.5), there exists a control vε ∈ L2(ω)N satisfying
(1.1) and (1.2).

Moreover a control vε∗ of minimal norm and solution of (1.1)-(1.2) can be con-
structed as follows. Using a density argument, we can assume f ∈ C1. Define
the real function

g(s) =

{
f(s)/s if s 6= 0

f ′(0) if s = 0.

For each z ∈ L2(Ω)N consider the following auxiliary control problem. Given
ε > 0, α > 0 and y1 ∈ L2(S)N find a control function vε supported in ω such
that

− div(Aε∇yε) + g(z)yε = 1ωv
ε in Ω

yε = 0 on Γ
(1.6)

and ∥∥yε(z)|S − y1∥∥0,S ≤ α. (1.7)

For the existence of these controls see [7]. Among the controls satisfying (1.6)
and (1.7) we choose as an optimal the minimizer of the functional (see [4, 5])

Iεz (v) =

{
1
2 ‖v‖

2
0,ω if (1.7) is satisfied

+∞ otherwise.
(1.8)

We denote by vε∗(z) the point of minimum value, which depends on z and ε of
course. Associated to this control we have the solution of (1.6) that we denote
by yε∗(z). Now we define the mapping

Fε : z ∈ L2(Ω)N → yε∗(z) ∈ L
2(Ω)N . (1.9)
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We will show that it has a fixed point zε, that is to say

Fε(zε) = zε. (1.10)

An admissible control for the semilinear control problem (1.1) and (1.2) is simply

vε∗ = v
ε
∗(z
ε). (1.11)

Our main goal is to study the behavior of vε∗ as ε→ 0.

Notation. We will denote by yε (or yε(vε)) the solution of the original prob-
lem (1.1) and by yε(z) (or yε(z, vε)) the solution of the auxiliary problem (1.6).

2 Dual context

For each z ∈ L2(Ω)N , ε > 0, α > 0 and y1 ∈ L2(S)N the optimal control vε∗(z)
minimizing (1.8) and satisfying simultaneously (1.6) and (1.7) can be expressed
in a dual context. Indeed, we have the relationship [7]

vε∗(z) = ϕ
ε
∗(z)|ω , (2.1)

where ϕε∗(z) is the solution of the following dual problem associated to (1.6) (δS
is a Dirac mass concentrated on S)

− div( tAε∇ϕε) + g(z)ϕε = δSϕ1 in Ω

ϕε = 0 on Γ
(2.2)

for

ϕ1 = ϕ
ε
1∗(z), (2.3)

where ϕε1∗(z) is the point of minimum in L
2(S)N of the following dual functional

of (1.8)

Jεz (ϕ1) =
1

2

∫
ω

|ϕε|2 dx+ α ‖ϕ1‖0,S −

∫
S

y1ϕ1 ds (2.4)

in the sense of Fenchel-Rockafellar [1, 5]. Note that in order to evaluate this
dual functional we have to solve the dual problem (2.2) for each ϕ1 ∈ L2(S)N .

Notation. We will denote by ϕε(z) (or ϕε(z, ϕ1)) the solution of the auxiliary
dual problem (2.2).

3 Main result

Our main result can be summarized as follows (the definition of H-convergence
can be found in [6]).
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Theorem 3.1 Assume that Aε H-converges to A0 and that the hypotheses of
Theorem 1.1 are satisfied, then up to a subsequence

vε∗ ⇀ v
0
∗ in L

2(ω)N − weakly and y(vε∗)⇀ y
0
∗ in H

1
0 (Ω)− weakly as ε→ 0,

where v0∗ has minimal norm among all controls v satisfying∥∥y0∗(v)|S − y1∥∥0,S ≤ α.
Moreover y0∗ is solution of the system

− div(A0∇y0∗) + f(y
0
∗) = 1ωϕ

0
∗ in Ω

y0∗ = 0 on ∂Ω

− div( tA0∇ϕ0) + g(y0∗)ϕ
0 = δSϕ1 in Ω

ϕ0 = 0 on ∂Ω

ϕ1∗ = argmin

(
1

2

∫
ω

∣∣ϕ0∣∣2 dx+ α ‖ϕ1‖0,S − ∫
S

y1ϕ1 ds

)
,

(3.1)

where ϕ0∗ is the solution of (3.1c,d) associated to ϕ1∗. In terms of this dual
variable,

v0∗ = ϕ
0
∗|ω
. (3.2)

The proof of this theorem is developed in the rest of the paper and uses the
following Lemma. The proof of this Lemma is similar to the one in [2] (see also
[7]) taking care of the ε dependence in bounds and the regularity of Aε.

Lemma 3.1 Assume that the coefficients of Aε are piecewise C1 in Ω. Then,
under the hypotheses of Theorem 1.1, we have

lim inf
‖ϕ1‖0,S→∞

Jεz (ϕ1)

‖ϕ1‖0,S
≥ α > 0. (3.3)

Proof. We have

Jεz (ϕ1)

‖ϕ1‖0,S
=
1

2

∫
ω

1

‖ϕ1‖0,S
|ϕε|2 dx+ α−

∫
S

y1
ϕ1

‖ϕ1‖0,S
ds.

Let

ϕ̂ε =
ϕε

‖ϕ1‖0,S
and ϕ̂1 =

ϕε1
‖ϕ1‖0,S

.

Then

Jεz (ϕ1)

‖ϕ1‖0,S
=
‖ϕ1‖0,S
2

∫
ω

|ϕ̂ε|2 dx+ α−

∫
S

y1 ϕ̂1 ds . (3.4)
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We write that for a sequence ϕ1,n such that ‖ϕ1,n‖0,S → ∞ as n → ∞. Since

‖ϕ̂1,n‖0,S = 1 it is easy to see using (1.4) and (1.5) that the associated solutions

of (2.2) satisfy
‖ϕ̂εn‖1,Ω ≤ C

where the constant C does not depend on n nor ε and only depends on αm, γ
and the norm of the trace operator from H1(Ω) into L2(S). For a fixed ε up to
a sequence (in n), we have

ϕ̂1,n ⇀ ϕ̃1 in L2(S)− weakly

ϕ̂εn ⇀ ϕ̃
ε in H1(Ω)− weakly.

Then

lim inf
‖ϕ1‖0,S→∞

Jεz (ϕ1)

‖ϕ1‖0,S
= lim inf
n→∞

Jεz (ϕ1,n)

‖ϕ1,n‖0,S
.

We consider two cases. Firstly, if

lim
n

∫
ω

|ϕ̂εn|
2
dx =

∫
ω

|ϕ̃ε|2 dx > 0 ,

then

‖ϕ1,n‖0,S

∫
ω

|ϕ̂εn|
2
dx→ +∞

and since
∫
S
y1ϕ̂1,n →

∫
S
y1ϕ̃1, from (3.4) we obtain (3.3). Secondly, if

lim
n

∫
ω

|ϕ̂εn|
2
dx =

∫
ω

|ϕ̃ε|2 dx = 0

then ϕ̃ε = 0 in ω. Next, our aim is to prove that ϕ̃ε = 0 in the whole of Ω.
The fact that we have supposed the coefficients of Aε piecewise C1, implies that
ϕ̃ε = 0 till S. Indeed, the classical Holmgren’s unique continuation property [3]
shows that ϕ̃ε is zero in the regions intersecting ω where Aε is regular and the
transmission conditions allow to extend ϕ̃ε by zero to the contiguous regions till
S. This gives the desired result if S is an open curve. Conversely, if S is closed,
the geometrical hypothesis on S and ω introduced in Theorem 1.1 implies that
ϕ̃ε is zero in the whole Ω. This implies that ϕ̃1 = 0 on S, therefore

lim inf
n

Jεz (ϕ1,n)

‖ϕ1,n‖0,S
≥ α+ lim inf

n

(
‖ϕ1,n‖0,S

∫
ω

|ϕ̂εn|
2
dx

)
− 0 ≥ α,

which completes the proof of the lemma.

4 Step 1. Fixed point

We will establish that the operator Fε defined in (1.9) has a fixed point using
Schauder’s theorem. We follow the ideas in [2] and [7], taking care of the ε
dependence.
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Let us prove that Fε is continuous and maps L2(Ω)N into a relatively com-
pact subset of L2(Ω)N . Take

zn → z0 in L2(Ω)N

and in order to simplify notations let us set

ϕεn = ϕ
ε(zn)

the solution of (2.2) associated to zn and to a fixed ϕ1 ∈ L2(S)N . Now, taking
ϕεn as a function test in (2.2) the following estimate is easily obtained

‖ϕεn‖1,Ω ≤ C ‖ϕ1‖0,S , (4.1)

where the constant C depends only on the Aε-ellipticity constant αm, and on
trace and Poincaré constants, but is independent on ε (we also use hypothesis
(1.4) about f). Thanks to (4.1) we have up to a subsequence

ϕεn ⇀ ϕ
ε
0 in H10 (Ω)− weakly.

In order to pass to the limit in a variational formulation of (2.2), note that∫
Ω

g(zn)ϕ
ε
nϕdx−

∫
Ω

g(z0)ϕ
ε
0ϕdx

=

∫
Ω

g(zn)(ϕ
ε
n − ϕ

ε
0)ϕdx +

∫
Ω

(g(zn)− g(z0))ϕ
ε
0ϕdx,

but g(zn) is bounded in L
∞(Ω) and since zn converges to z0 a.e. then

g(zn)⇀ g(z0) in L
∞(Ω)− weakly*. (4.2)

Therefore ∫
Ω

g(zn)ϕ
ε
nϕdx→

∫
Ω

g(z0)ϕ
ε
0ϕdx ∀ϕ ∈ H10 (Ω).

Remark 4.1 Convergence (4.2) implies weak but not strong convergence in
H−1(Ω).

Nevertheless, a technical argument allows to obtain the strong convergence in
H−1(Ω). Indeed, for all ϕ ∈ H10 (Ω), we have∣∣∣ ∫

Ω

g(zn)ϕ
ε
nϕdx− g(z0)ϕ

ε
0ϕdx

∣∣∣ ≤
≤
∣∣∣ ∫
Ω

g(zn)(ϕ
ε
n − ϕ

ε
0)ϕdx

∣∣∣+ ∣∣∣ ∫
Ω

(g(zn)− g(z0))ϕ
ε
0ϕdx

∣∣∣ .
On the one hand∣∣∣∣∫

Ω

g(zn)(ϕ
ε
n − ϕ

ε
0)ϕdx

∣∣∣∣ ≤ ‖g(zn)‖Lp1 ‖ϕεn − ϕε0‖Lp2 ‖ϕ‖Lp3 .
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Choosing p1 = N , p2 = p3 =
2N
N−1 if N ≥ 2 otherwise p1 = p3 = 4 and p2 = 2,

thanks to this choice of p2, the injection from H
1(Ω) to Lp2(Ω) is compact and

then
‖ϕεn − ϕ

ε
0‖Lp2 → 0 as n→∞.

Note that g is bounded and

‖g(zn)‖Lp1 ≤ γmeas(Ω)
1/p1 .

Finally, the injection from H10 (Ω) to L
p3(Ω) is continuous so

‖ϕ‖Lp3 ≤ ‖i‖L(H10 (Ω);Lp3(Ω)) ‖ϕ‖1,Ω . (4.3)

On the other hand∥∥∥ ∫
Ω

(g(zn)− g(z0))ϕ
ε
0ϕdx

∥∥∥ ≤ ‖g(zn)− g(z0)‖Lq1 ‖ϕε0‖Lq2 ‖ϕ‖Lq3
with q1 =

N
2 , q2 = q3 =

2N
N−2 for N ≥ 3, otherwise q1 = 2, q2 = q3 = 4. Thanks

to this choice the injection from H1(Ω) into Lq3(Ω) is continuous and a bound
can be obtained as in (4.3). In virtue of dominated convergence theorem and
bounds on g(zn) we have

‖g(zn)− g(z0)‖Lq1 → 0 as n→∞.

From the above convergences we see that

g(zn)ϕ
ε
n → g(z0)ϕ

ε
0 in H10 (Ω)− strongly as n→∞.

Let us continue with our problem. Multiplying (2.2) by φ ∈ H10 (Ω) and inte-
grating by parts we obtain∫

Ω

Aε∇ϕεn · ∇φdx+

∫
Ω

g(zn)ϕ
ε
nφdx =

∫
S

ϕ1φdσ,

for a fixed ε and we take n→∞ to obtain∫
Ω

Aε∇ϕε0 · ∇φdx+

∫
Ω

g(z0)ϕ
ε
0φdx =

∫
S

ϕ1φdσ,

and this shows that ϕε0 = ϕ
ε(z0). Let us now show that

ϕεn → ϕ
ε
0 in H10 (Ω)− strongly. (4.4)

Take ϕεn as a test function in the problem

− div( tAε∇ϕεn) + g(zn)ϕ
ε
n = δSϕ1 in Ω

ϕεn = 0 on Γ .

Passing to the limit, we obtain

lim
n→∞

∫
Ω

tAε∇ϕεn · ∇ϕ
ε
n dx =

∫
S

ϕ1ϕ
ε
0 dσ −

∫
Ω

g(z0)ϕ
ε
0ϕ
ε
0 dx .



116 A semilinear control problem involving homogenization

Now, taking ϕε0 as a test function in

− div( tAε∇ϕε0) + g(z0)ϕ
ε
0 = δSϕ1 in Ω

ϕε0 = 0 on Γ ,

we obtain ∫
Ω

Aε∇ϕε0 · ∇ϕ
ε
0 dx =

∫
S

ϕ1ϕ
ε
0 dσ −

∫
Ω

g(z0)ϕ
ε
0ϕ
ε
0 dx .

By comparison

lim
n→∞

∫
Ω

tAε∇ϕεn · ∇ϕ
ε
n dx =

∫
Ω

tAε∇ϕε0 · ∇ϕ
ε
0 dx.

We conclude (4.4) since
(∫
Ω
tAε∇v · ∇v dx

)1/2
is equivalent to the standard

norm in H10 (Ω).
By a method analogous to the one that yields (4.4) from (4.1), we show that

‖ϕε1∗‖0,S ≤ C (4.5)

with C independent of n and of ε, that is

ϕε1∗(zn)⇀ ξ
ε in L2(S)− weakly

and

ϕε(zn, ϕ
ε
1∗(zn))→ ϕ

ε(z0, ξ
ε) in H10 (Ω)− strongly. (4.6)

Let us show by contradiction that (4.5) holds. Otherwise, there exists a sequence
{ϕε1∗(zn)}n≥0 such that

‖ϕε1∗(zn)‖0,S → +∞ as n→∞, (4.7)

but for each zn, the function ϕ
ε
1∗(zn) minimizes J

ε
zn
and consequently

Jεzn(ϕ
ε
1∗(zn)) ≤ J

ε
zn
(ϕ1) ∀ϕ1 ∈ L

2(S). (4.8)

At the same time, we see that

Jεzn(ϕ1) =
1

2

∫
ω

|ϕε(zn)|
2
dx+ α ‖ϕ1‖0,S −

∫
S

y1ϕ1 dσ

converges as n→∞ to

Jεz0(ϕ1) =
1

2

∫
ω

|ϕε(z0)|
2
dx+ α ‖ϕ1‖0,S −

∫
S

y1ϕ1 dσ.

Therefore from (4.8), for each fixed ϕ1

Jεzn(ϕ
ε
1∗(zn)) ≤ C
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with C independent of n (and of ε). This last upper bound contradicts (4.7)
since

lim inf
‖ϕε1∗(zn)‖0,S→∞

Jεzn(ϕ
ε
1∗(zn))

‖ϕε1∗(zn)‖0,S
≥ α > 0. (4.9)

Proof of (4.9) is similar to the proof of Lemma 3.1 since

‖ϕε∗(zn, ϕ
ε
1∗(zn))‖1,Ω ≤ C ‖ϕ

ε
1∗(zn)‖0,S

with a constant C independent of n (and of ε). Since (4.7) does not hold, we
have up to a subsequence

ϕε1∗(zn)⇀ ξ
ε in L2(S)− weakly as n→∞. (4.10)

It remains to identify the limit. Let us show that ξε minimizes Jεz0 , that is to
say

Jεz0(ξ
ε) ≤ Jεz0(ϕ1) ∀ϕ1 ∈ L

2(S)N . (4.11)

First, note that ϕε1∗(zn) is optimal for J
ε
zn , that is

Jεzn(ϕ
ε
1∗(zn)) ≤ J

ε
zn
(ϕ1) ∀ϕ1 ∈ L

2(S)N

hence

lim inf
n
Jεzn(ϕ

ε
1∗(zn)) ≤ lim inf

n
Jεzn(ϕ1) = J

ε
z0
(ϕ1) ∀ϕ1 ∈ L

2(S)N .

In order to get (4.11) it remains to proof that

Jεz0(ξ
ε) ≤ lim inf

n
Jεzn(ϕ

ε
1∗(zn)). (4.12)

Let us recall that

Jεzn(ϕ
ε
1∗(zn)) =

1

2

∫
ω

|ϕε(zn, ϕ
ε
1∗(zn))|

2
dx+ α ‖ϕε1∗(zn)‖0,S −

∫
S

y1ϕ
ε
1∗(zn) dσ,

so from (4.10) we have

lim inf
n
α ‖ϕε1∗(zn)‖0,S −

∫
S

y1ϕ
ε
1∗(zn) dσ ≥ lim inf

n
α ‖ξε‖0,S −

∫
S

y1ξ
ε dσ

and from (4.6)

lim inf
n

∫
ω

|ϕε(zn, ϕ
ε
1∗(zn))|

2
dx ≥

∫
ω

|ϕε(z0, ξ
ε)|2 dx.

In this way, we obtain (4.12) and consequently (4.11), in other words

ξε = ϕε1∗(z0).
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With this relation, convergence in (4.6) becomes

ϕε(zn, ϕ
ε
1∗(zn))→ ϕ

ε(z0, ϕ
ε
1∗(z0)) in H

1
0 (Ω)− strongly. (4.13)

The rest of the proof is straightforward since

vε∗(zn) = ϕ
ε(zn, ϕ

ε
1∗(zn))|ω

vε∗(z0) = ϕ
ε(z0, ϕ

ε
1∗(z0))|ω

and it is clear from (4.13) that vε∗(zn)→ v
ε
∗(z0) in H

1(ω) - strongly. An analo-
gous proof as for the adjoint problem shows that

yε(zn, v
ε
∗(zn))→ y

ε(z0, v
ε
∗(z0)) in H

1(Ω)− strongly,

proving the continuity of the map Fε for a fixed ε > 0.
Next we show that Fε is compact (uniformly in ε). Let z ∈ L2(Ω)N since

‖g(z)‖∞,Ω ≤ γ

then

‖ϕε(z, ϕ1)‖1,Ω ≤ C ‖ϕ1‖0,S

with C independent of z (and of ε). This implies that |Jεz (ϕ1)| ≤ C(ϕ1), there-
fore

|Jεz (ϕ
ε
1∗(z))| ≤ C(ϕ1).

Using again the coercitivity of Jεz we see that ‖ϕ
ε
1∗‖0,S is bounded independently

of z (and ε). Then ‖ϕε(z, ϕε1∗)‖1,Ω is bounded independently of z (and ε) and
consequently the same is true for vε∗(z) = ϕ

ε(z, ϕε1∗)|ω and y
ε(z, vε∗(z)). ♦

5 Step 2. H-convergence

We first consider the H-convergence in the original problem (1.1) with fixed
control v ∈ L2(ω)N , that is the H-convergence in the problem

− div(Aε∇yε) + f(yε) = 1ωv in Ω

yε = 0 on Γ,
(5.1)

under the hypotheses (1.3) and (1.4) on f . To have a priori estimates, we
multiply (5.1) by yε and we integrate in Ω to obtain∫

Ω

Aε∇yε · ∇yε dx +

∫
Ω

f(yε) yε dx =

∫
ω

v yε dx,

but from (1.3)

f(yε)yε =
f(yε)

yε
|yε|2 ≥ 0
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and it is true also in the case yε(x) = 0. Hence ‖yε‖1,Ω ≤ C ‖v‖0,ω with C
independent of ε. Up to a subsequence

yε ⇀ y0 in H10 (Ω)− weakly.

Now let us see which is the limit of f(yε). Take ϕ ∈ H10 (Ω), then∣∣∣∣∫
Ω

(f(yε)ϕ− f(y0)ϕ) dx

∣∣∣∣ = ∣∣∣∣∫
Ω

(g(yε)yεϕ− g(y0)y0ϕ) dx

∣∣∣∣ ≤ (5.2)

≤

∣∣∣∣∫
Ω

(g(yε)(yε − y0)ϕ) dx

∣∣∣∣+ ∣∣∣∣∫
Ω

((g(yε)− g(y0))y0ϕ) dx

∣∣∣∣ .
Starting from this and reasoning as in Remark 4.1 we can show that

f(yε) = g(yε)yε → g(y0)y0 = f(y0) in H−1(Ω)− strongly.

Thanks to the H-convergence definition, we immediately deduce that

− div(A0∇y0) + f(y0) = 1ωv in Ω

y0 = 0 on Γ,
(5.3)

where A0 is the H-limit of Aε (and Aε∇yε ⇀ A0∇y0 in L2(Ω)N -weakly).
Consider now the H-convergence with the optimal control vε∗ = v

ε
∗(z
ε) sat-

isfying (1.6)-(1.11) where zε is the fixed point of Fε. We have already seen
at the end of the previous section that ‖vε∗(z)‖0,ω is bounded independently of

z ∈ L2(Ω) and ε. In particular

‖vε∗‖0,ω ≤ C

with C independent of ε. Hence there exists v0 ∈ L2(ω)N such that

vε∗ ⇀ v
0 in L2(ω)− weakly

1ωv
ε
∗ → 1ωv

0 in H−1(Ω)− strongly.
(5.4)

The same proof as in the case of a fixed v shows that the solution yε∗ of

− div(Aε∇yε∗) + f(y
ε
∗) = 1ωv

ε
∗ in Ω

yε∗ = 0 on Γ

converges weakly to y0, i.e.,

yε∗ ⇀ y
0 in H10 (Ω)− weakly (5.5)

where y0 is a solution of

− div(A0∇y0) + f(y0) = 1ωv
0 in Ω

y0 = 0 on Γ,
(5.6)

and A0 is the H-limit of Aε.
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Notation. In the following sections v0 stands for the L2-weak limit of the
control in (5.4) and y0 (or y0(v0)) stands for the weak H1-limit of the solution
in (5.5), which is solution of the limit problem (5.6).

6 Step 3. Limit of optimal controls

The objective is now to identify v0. Is it an optimal solution? First at all, note
that ∥∥yε∗(vε∗)|S − y1∥∥0,S ≤ α .
Since weak convergence in (5.5) implies

yε∗|S ⇀ y
0
|S
in H1/2(S)N − weakly (L2(S)N -strongly),

we conclude that v0 satisfies the approximate controllability inequality∥∥y0(v0)|S − y1∥∥0,S ≤ α.
Also from (5.5), since zε is a fixed point (see (1.9), (1.10)), we have

zε = yε∗ ⇀ y
0 in H10 (Ω)− weakly.

Let v0∗ be the minimizer in L
2(ω)N of the functional

I(v) =

{
1
2 ‖v‖

2
0,ω if

∥∥y0(v)|S − y1∥∥0,S ≤ α
+∞ otherwise,

(6.1)

where for each v ∈ L2(S)N , we denote y0(v) the solution of

− div(A0∇y0) + f(y0) = 1ωv in Ω

y0 = 0 on Γ.
(6.2)

We will establish that

v0 = v0∗. (6.3)

In virtue of Fenchel-Rockafellar duality, the minimum v0∗ can be character-
ized as follows. Let us consider the dual problem associated to (6.2), that is, for
each ϕ1 ∈ L2(S), find ϕ0 ∈ L2(Ω)N such that

− div( tA0∇ϕ0) + g(y0)ϕ0 = δSϕ1 in Ω

ϕ0 = 0 on Γ
(6.4)

and let us define the respective dual functional of (6.1) as

J0(ϕ1) =
1

2

∫
ω

∣∣ϕ0∣∣2 dx+ α ‖ϕ1‖0,S − ∫
S

y1ϕ1 ds. (6.5)



C. Conca, A. Osses & J. Saint Jean Paulin 121

If ϕ01∗ is the point of minimum of J
0 in L2(S)N , and if ϕ0∗ is the solution of

(6.4) associated to it, then the duality theory gives the relationship

v0∗ = ϕ
0
∗|ω
. (6.6)

We will pass to the limit in (2.1), (2.2), (2.3), (2.4) with z = zε as ε→ 0. An
argument similar to the one used for obtaining (5.3) shows that if we pass to
the limit in (2.2) with z = zε as ε→ 0 then

ϕε(zε)⇀ ϕ0 in H10 (Ω)− weakly

where ϕ0 is the solution of

− div( tA0∇ϕ0) + g(y0)ϕ0 = δSϕ1 in Ω

ϕ0 = 0 on ∂Ω.
(6.7)

Taking the limit in (2.4) with ϕ1 fixed,

Jεzε(ϕ1)→ J
0(ϕ1).

Let us consider now the sequence ϕε1∗(z
ε). From the uniform coecivity of Jεzε

with respect to ε (an analogous to Lemma 3.1 with z = zε), we deduce that
ϕε1∗(z

ε) is bounded in L2(S)N then, up to a subsequence

ϕε1∗(z
ε)⇀ ϕ01 in L2(S)N − weakly.

Then (see the proof of (4.12)) for each ϕ1 ∈ L2(S)

J0(ϕ01) ≤ lim inf
ε
Jεzε(ϕ

ε
1∗(z

ε)) ≤ lim inf
ε
Jεzε(ϕ1) = J

0(ϕ1).

Therefore ϕ01 = ϕ
0
1∗ and consequently ϕ

0 = ϕ0∗. Finally, passing to the limit as
ε→ 0 in (2.1), we obtain

vε∗ = ϕ
ε
∗|ω
→ ϕ0∗|ω = v

0
∗ in L2(ω)− strongly.

This, together with (5.4), implies (6.3).
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