Three solutions for quasilinear equations in \mathbb{R}^{n} near resonance *

Pablo De Nápoli \& María Cristina Mariani

Abstract

We use minimax methods to prove the existence of at least three solutions for a quasilinear elliptic equation in \mathbb{R}^{n} near resonance.

1 Introduction

J. Mawhin and K. Smichtt [7], proved the existence of at least three solutions for the two-point boundary value problem

$$
\begin{gathered}
-u^{\prime \prime}-u+\varepsilon u=f(x, u)+h(x) \\
u(0)=u(\pi)=0
\end{gathered}
$$

for $\varepsilon>0$ small enough, h orthogonal to $\sin x$ and f bounded satisfying the sign condition $u f(x, u)>0$. In [9], To Fu Ma and L. Sanchez considered the problem

$$
\begin{equation*}
-\Delta_{p} u-\lambda_{1}|u|^{p-2} u+\varepsilon|u|^{p-2} u=f(x, u)+h(x) \tag{1.1}
\end{equation*}
$$

in $W_{0}^{1, p}(\Omega)$ with $\Omega \subset \mathbb{R}^{n}$ a bounded domain, and λ_{1} the first eigenvalue of

$$
\begin{align*}
-\Delta_{p} u & =\lambda|u|^{p-2} u \quad \text { in } \Omega \tag{1.2}\\
u & =0 \quad \text { on } \partial \Omega
\end{align*}
$$

They proved the following result.
Theorem 1.1 Suppose that $p \geq 2$ and that the following two conditions hold:
(H1) $f: \bar{\Omega} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a continuous function and there exist $\theta>\frac{1}{p}$ such that $\theta s f(x, s)-F(x, s) \rightarrow-\infty$ as $|s| \rightarrow \infty$
(H2) There exists $R>0$ such that $s f(x, s)>0$ for all $x \in \Omega,|s| \geq R$
Then for every $h \in L^{p^{\prime}}(\Omega)$ with $\int_{\Omega} h(x) \varphi_{1}(x) d x=0$, where φ_{1} is the first eigenfunction of (1.2), the equation (1.1) has at least three solutions for $\varepsilon>0$ small enough.

[^0]We recall that the assumptions on f imply the growth condition

$$
|f(x, s)| \leq c_{1}+c_{2}|s|^{\sigma}
$$

with $\sigma=\frac{1}{\theta}<p$.
These problems have been studied for several authors, see $[3,4,5,8]$.

The functional setting

Our aim is to extend this result to equations in \mathbb{R}^{n}. As $W^{1, p}\left(\mathbb{R}^{n}\right)$ is no longer compactly imbedded into $L^{p}\left(\mathbb{R}^{n}\right)$, we shall work in the space $D^{1, p}$, the closure of $C_{0}^{1}\left(\mathbb{R}^{n}\right)$ with the norm

$$
\|u\|_{1, p}=\left(\int_{\mathbb{R}^{n}}|\nabla u(x)|^{p} d x\right)^{1 / p}
$$

By the Sobolev inequality we have: $D^{1, p} \subset L^{p^{*}}\left(\mathbb{R}^{n}\right)$ with $p^{*}=\frac{N p}{N-p}$, this imbedding is not compact, however in proposition 2.1 we prove that the imbedding $D^{1, p} \subset L_{g}^{p}\left(\mathbb{R}^{n}\right)$ is compact for $g \in L^{N / p} \cap L_{\text {loc }}^{N / p+\varepsilon}$.

Simplicity of the first eigenvalue

We recall the simplicity of the first eigenvalue of the p-laplacian that is proved in [4]. They studied the problem:

$$
\begin{gather*}
-\Delta_{p} u=g(x)|u|^{p-2} u \quad x \in \mathbb{R}^{n} \tag{1.3}\\
0<u \quad \text { in } \mathbb{R}^{n}, \quad \lim _{|x| \rightarrow+\infty} u(x)=0
\end{gather*}
$$

where $1<p<n$. They proved the theorem below, assuming the following conditions:
$(G) g$ is a smooth function, at least $C_{l o c}^{0, \gamma}\left(\mathbb{R}^{n}\right)$ for some $\gamma \in(0,1)$, such that $g \in L^{N / p}\left(\mathbb{R}^{n}\right) \cap L^{\infty}\left(\mathbb{R}^{n}\right)$ and $g(x)>0$ in Ω^{+}with $\left|\Omega^{+}\right|>0$. Also g satisfies one the following two conditions

$$
\left(G^{+}\right) g(x) \geq 0 \text { a.e. in } \mathbb{R}^{n}
$$

$\left(G^{-}\right) g(x)<0$ for $x \in \Omega^{-}$, with $\left|\Omega^{-}\right|>0$.
Theorem 1.2 1. Let g satisfy (G) and $\left(G^{+}\right)$. Then equation (1.3) admits a positive first eigenvalue,

$$
\begin{equation*}
\lambda_{1}=\inf _{B(u)=1}\|u\|_{D^{1, p}}^{p} \tag{1.4}
\end{equation*}
$$

with $B(u)=\int_{\mathbb{R}^{n}}|u(x)|^{p} g(x) d x$.
2. Let g satisfy (G) and $\left(G^{-}\right)$. Then problem (1.3) admits two first eigenvalues of opposite sign:

$$
\lambda_{1}^{+}=\inf _{B(u)=1}\|u\|_{D^{1, p}}^{p} \quad \lambda_{1}^{-}=-\inf _{B(u)=-1}\|u\|_{D^{1, p}}^{p}
$$

In both cases the associated eigenfunctions $\varphi_{1}^{+}, \varphi_{1}^{-}$belong to $D^{1, p} \cap L^{\infty}$.
3. The set of eigenvectors corresponding to λ_{1} is a one dimensional subspace.

Remark 1.3 The first eigenfunction φ_{1} does not change its sign in Ω, so we may assume $\varphi_{1} \geq 0$.

Proof. Taking φ^{-}as a test function in (1.3) with $\lambda=\lambda_{1}$ we see that

$$
\int_{\mathbb{R}^{n}}\left|\nabla\left(\varphi^{-}\right)\right|^{p}=\lambda_{1} \int_{\mathbb{R}^{n}}\left|\varphi_{1}^{-}\right|^{p} g(x) d x
$$

It follows that $\varphi^{-}=0$ (and $\varphi \geq 0$), or φ_{1}^{-}is also a solution of the minimization problem (1.4). In the last case, from the simplicity of the first eigenvalue $\varphi_{1}^{-}=c \varphi_{1}$. It follows that $\varphi^{-}=-\varphi_{1}$, so $\varphi_{1} \leq 0$.

Existence of multiple solutions

In this paper we study quasilinear elliptic equation

$$
\begin{equation*}
-\Delta_{p} u=\left(\lambda_{1}-\varepsilon\right) g(x)|u|^{p-2} u+f(x, u)+h(x) \tag{1.5}
\end{equation*}
$$

in \mathbb{R}^{n}. We assume the following:

1. $1<p<n$ and $\varepsilon>0$
2. On the weight g we make the assumptions (G) and $\left(G^{+}\right)$of [4]
3. $h \in L^{p^{* \prime}}$ and $\int_{\mathbb{R}^{n}} h \varphi_{1} d x=0$
4. We assume that the non linearity $f: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous and satisfies
(H0) Growth condition.

$$
|f(x, s)| \leq c_{1}(x)+c_{2}(x)|s|^{\sigma-1}
$$

with $\sigma<p$ and $c_{1} \in L^{\left(p^{*}\right)^{\prime}}, c_{2} \in L^{\left(p^{*} / \sigma\right)^{\prime}} \cap L_{l o c}^{(p / \sigma)^{\prime}+\eta}$ for some $\eta>0$. (H1) If $F(x, s)=\int_{0}^{s} f(x, t) d t$ then $\frac{1}{p} s f(x, s)-F(x, s) \rightarrow-\infty$ as $|s| \rightarrow \infty$. (H2) Sign condition. There exists $R>0$ such that: $s f(x, s)>0$ for all $x \in \mathbb{R}^{n},|s| \geq R$.

For example we may take $f(x, s)=c_{2}(x)|s|^{\sigma-1} s \cdot \operatorname{sgn}$ s where $c_{2}(x)$ satisfies the conditions above, $c_{2}(x)>0$, and $\sigma<p$.

Note that integrating on condition (H0) we get

$$
F(x, s) \leq c_{1}(x)|s|+c_{2}(x) \frac{|s|^{\sigma}}{\sigma}
$$

In the next section we will see that for the functional $C(u)=\int_{\mathbb{R}^{n}} F(x, u) d x$ to be of class $C^{1}\left(D^{1, p}\left(\mathbb{R}^{n}\right)\right)$, condition (H0) is the natural choice.

Our main result is the following theorem:
Theorem 1.4 Under the assumptions above, problem (1.5) has at least three solutions for $\varepsilon>0$ small enough.

2 Technical Lemmas

For the proof of theorem 1.4 we will need the following results:

A compactness result in weighted L^{p} spaces

If $u \in D^{1, p}, 1 \leq q \leq p^{*}, \frac{1}{r}+\frac{q}{p^{*}}=1$ and $g \in L^{r}, g \geq 0$, then from Hölder and Sobolev inequalities, we have that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|u|^{q} g \leq C \int_{\mathbb{R}^{n}}|\nabla u|^{p} \tag{2.1}
\end{equation*}
$$

and it follows that $D^{1, p} \subset L_{g}^{q}$. The following result proves that under appropriate conditions, this imbedding is also compact. (Other previous results can be found in [6]).

Proposition 2.1 Let $1 \leq q<p^{*}, \frac{1}{r}+\frac{q}{p^{*}}=1, g \in L^{r} \cap L_{\text {loc }}^{r+\varepsilon}$ for some $\varepsilon>0$. Then the imbedding

$$
D^{1, p} \subset L_{g}^{q}\left(\mathbb{R}^{n}\right)
$$

is compact.

Proof. Let $\left(u_{n}\right) \subset D^{1, p}$ be a bounded sequence:

$$
\left\|u_{n}\right\|_{1, p} \leq C
$$

Then, as $D^{1, p}$ is reflexive, we may extract a weakly convergent subsequence $\left(u_{n_{k}}\right)$. For simplicity we assume that $u_{n} \rightharpoonup u$. We want to prove that in fact $u_{n} \rightarrow u$ strongly. From Hölder and Sobolev inequalities we have:
$\int_{|x|>R} g\left|u-u_{n}\right|^{q} \leq\left(\int_{|x|>R}|g|^{r}\right)^{1 / r}\left(\int_{|x|>R}\left|u_{n}-u\right|^{p^{*}}\right)^{p / p^{*}} \leq C\left(\int_{|x|>R}|g|^{r}\right)^{1 / r}$
Given $\varepsilon>0$, as $g \in L^{r}$ we can choose $R>0$ verifying

$$
\int_{|x|>R} g\left|u-u_{n}\right|^{q} \leq \frac{\varepsilon}{2}
$$

Now $D^{1, p}\left(\mathbb{R}^{n}\right) \subset W_{l o c}^{1, p}\left(\mathbb{R}^{n}\right)$ continously and by the Rellich-Kondrachov theorem

$$
u_{n} \rightarrow u \text { strongly in } L^{t}\left(B_{R}\right)
$$

if $1 \leq t<p^{*}$. We choose $s>1$ such that $s^{\prime}=r+\varepsilon$, then $s<\frac{p^{*}}{q}$, and

$$
\int_{|x| \leq R} g\left|u_{n}-u\right|^{q} \leq\left(\int_{|x| \leq R}|g|^{s^{\prime}}\right)^{1 / s^{\prime}}\left(\int_{|x|<R}\left|u-u_{n}\right|^{q s}\right)^{1 / s} \leq \frac{\varepsilon}{2}
$$

if $n \geq n_{0}(\varepsilon)$. So $u_{n} \rightarrow u$ in $L_{g}^{p}\left(\mathbb{R}^{n}\right)$.

Some results about the Associated Functional

Under the same assumptions of theorem 1.4, we have the following results:
Lemma 2.2 Let $C: D^{1, p}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}$ given by $C(u)=\int_{\mathbb{R}^{n}} F(x, u) d x$. Then $C \in C^{1}\left(D^{1, p}\left(\mathbb{R}^{n}\right)\right)$ and $C^{\prime}(u)(h)=\int_{\mathbb{R}^{n}} f(x, u) h$

Proof. From the Hölder inequality we have that

$$
|C(u)| \leq \int_{\mathbb{R}^{n}} c_{1}(x)|u|+c_{2}(x) \frac{|u|^{\sigma}}{\sigma} d x \leq\left\|c_{1}\right\|_{\left(p^{*}\right)^{\prime}}\|u\|_{p^{*}}+\frac{1}{\sigma}\left\|c_{2}\right\|_{\left(p^{*} / \sigma\right)^{\prime}}\|u\|_{p^{*}}^{\sigma}
$$

From the imbedding $D^{1, p} \subset L^{p^{*}}$ we conclude that $C(u)$ is well defined. In a similar way,

$$
\begin{aligned}
\left|\int_{\mathbb{R}^{n}} f(x, u) h\right| & \leq \int_{\mathbb{R}^{n}} c_{1}(x)|h|+c_{2}|u|^{\sigma-1}|h| \\
& \leq\left\|c_{1}\right\|_{\left(p^{*}\right)^{\prime}}\|h\|_{p^{*}}+\left\|c_{2}\right\|_{\left(p^{*} / \sigma\right)^{\prime}}\|u\|_{p^{*}}^{\sigma-1}\|h\|_{p^{*}}
\end{aligned}
$$

and we have that $\int_{\mathbb{R}^{n}} f(x, u) h$ is also well defined. Using a similar argument as in [8], we conclude the proof.
Lemma 2.3 Assume that $f(x, y)$ is a Caratheodory function, verifying that

$$
|f(x, u)| \leq c_{1}(x)+c_{2}(x)|u|^{\sigma-1}
$$

where $1 \leq \sigma<p^{*}$, $c_{1} \in L^{s_{1}}\left(\mathbb{R}^{n}\right)$ with $s_{1}=p^{* \prime}$, and $c_{2} \in L^{s_{2}} \cap L_{\text {loc }}^{s_{2}+\varepsilon}$ with $s_{2}=\frac{p^{*}}{p^{*}-\sigma}$. Then the Nemitski operator $N_{f}: D^{1, p}\left(\mathbb{R}^{n}\right) \rightarrow L^{p^{*^{\prime}}}\left(\mathbb{R}^{n}\right)$ given by $N_{f}(u)=f(x, u)$ is compact.

Proof. Let $\left(u_{n}\right)$ be a sequence in $D^{1, p}$ such that $u_{n} \rightharpoonup u$ weakly in $D^{1, p}$. We may assume, passing to a subsequence, that $u_{n} \rightarrow u$ a.e..

As $\sigma<p^{*}$, we apply proposition 2.1 with $q=(\sigma-1) s_{1}<p^{*}, g=c_{2}^{s_{1}}$. We note that $g \in L^{r} \cap L_{\text {loc }}^{r+\varepsilon^{\prime}}$ with $r=\frac{p^{*}-1}{p^{*}-\sigma}$. We get, passing to a subsequence, that $u_{n} \rightarrow u$ in L_{g}^{q}.

From theorem IV. 9 in [2], we obtain, after passing again to a subsequence, a function $m \in L_{g}^{q}\left(\mathbb{R}^{n}\right)$ such that

$$
\left|u_{n}(x)\right| \leq m(x)
$$

a.e. with respect to the measure $g(x) d x$. Then, from condition $(H 0)$ we deduce that

$$
\begin{aligned}
\left|f(x, u)-f\left(x, u_{n}\right)\right|^{s_{1}} & \leq 2^{s_{1}}\left[|f(x, u)|^{s_{1}}+\left|f\left(x, u_{n}\right)\right|^{s_{2}}\right] \\
& \leq 2^{s_{1}+1}\left[c_{1}(x)^{s_{1}}+c_{2}(x)^{s_{1}}|m|^{(\sigma-1) s_{1}}\right]
\end{aligned}
$$

Applying the bounded convergence theorem to $\int_{\mathbb{R}^{n}}\left|f(x, u)-f\left(x, u_{n}\right)\right|^{s_{1}} d x$ we obtain that $f\left(x, u_{n}\right) \rightarrow f(x, u)$ in $L^{s_{1}}\left(\mathbb{R}^{n}\right)$.

Remark 2.4 The weak solutions of equation (1.5) are the critical points in $D_{0}^{1, p}$ of the functional

$$
J_{\epsilon}(u)=\frac{1}{p} \int_{\mathbb{R}^{n}}|\nabla u|^{p} d x-\frac{\lambda_{1}-\varepsilon}{p} \int_{\mathbb{R}^{n}}|u|^{p} g(x) d x-\int_{\mathbb{R}^{n}}(F(x, u)+h(x) u)
$$

Under the previous assumptions it is easy to check that $J_{\varepsilon} \in C^{1}\left(D^{1, p}\right)$.
Let

$$
W=\left\{w \in D^{1, p}: \int_{\mathbb{R}^{n}} g(x)\left|\varphi_{1}\right|^{p-2} \varphi_{1} w=0\right\}
$$

We recall that as a consequence of proposition 2.1 W is a weakly closed linear subspace.

Lemma 2.5 If $\varepsilon<\lambda_{1}, J_{\epsilon}$ is coercive in $D^{1, p}$, and there exist $m>0$ such that $\inf _{u \in W} J_{\epsilon}(u) \geq-m$.

Proof. We suppose $0<\varepsilon<\lambda_{1}$, then

$$
J_{\varepsilon}(u) \geq \frac{1}{p}\left(1-\frac{\lambda_{1}-\epsilon}{\lambda_{1}}\right) \int_{\mathbb{R}^{n}}|\nabla u|^{p}-\int_{\mathbb{R}^{n}}(F(x, u)+h u)
$$

and

$$
J_{\varepsilon}(u) \geq \frac{\epsilon}{p \lambda_{1}}\|u\|_{1, p}^{p}-C_{1}-C_{2}\|u\|_{1, p}^{\sigma}-\|h\|_{\left(p^{*}\right)^{\prime}}\|u\|_{p^{*}}
$$

As $\sigma<p$, it follows that J_{ε} is coercive.
We define

$$
\lambda_{W}=\inf \left\{\int_{\mathbb{R}^{n}}|\nabla w|^{2}: w \in W, \int_{\mathbb{R}^{n}} g(x)|w(x)|^{p}=1\right\}
$$

We claim that $\lambda_{W}>\lambda_{1}$. In fact if $\lambda_{1}=\lambda_{W}$ then we would have $w \in W$ verifying

$$
\int_{\mathbb{R}^{n}}|w|^{p}=\lambda_{1}, \int_{\mathbb{R}^{n}}|w|^{p} g(x) d x=1
$$

So by the simplicity of the first eigenvalue, $w=c \varphi_{1}$ but this contradicts the definition of W.

Then, for $u \in W$ we have

$$
J_{\varepsilon}(u) \geq \frac{\lambda_{W}-\lambda_{1}}{p \lambda_{W}}\|u\|_{1, p}^{p}-C_{1}-C_{2}\|u\|_{1, p}^{\sigma}-\|h\|_{\left(p^{*}\right)^{\prime}}\|u\|_{p^{*}}
$$

Then J_{ε} is uniformly coercive in W respect to ε, and in particular is uniformly bounded from below.

For stating the next result we need the two open sets:

$$
\begin{aligned}
& O^{+}=\left\{w \in D^{1, p}: \int_{\mathbb{R}^{n}} g(x)\left|\varphi_{1}\right|^{p-2} \varphi_{1} w>0\right\} \\
& O^{-}=\left\{w \in D^{1, p}: \int_{\mathbb{R}^{n}} g(x)\left|\varphi_{1}\right|^{p-2} \varphi_{1} w<0\right\}
\end{aligned}
$$

The next condition is a variant of the Palais-Smale condition (PS).
We will say that a functional $\phi: D^{1, p} \rightarrow \mathbb{R}$ verifies the $(P S)_{O^{ \pm}, c}$ condition if any sequence $\left(u_{n}\right)$ in O^{+}(respectively in O^{-}) with $\phi\left(u_{n}\right) \rightarrow c, \phi^{\prime}\left(u_{n}\right) \rightarrow 0$, has a subsequence $\left(u_{n_{k}}\right) \rightarrow u \in O^{+}$.
Proposition 2.6 The operator $-\Delta_{p}: D^{1, p} \rightarrow\left(D^{1, p}\right)^{*}$ satisfies the $\left(S_{+}\right)$condition: if $u_{n} \rightharpoonup u\left(\right.$ weakly in $\left.D^{1, p}\left(\mathbb{R}^{n}\right)\right)$ and $\lim \sup _{n \rightarrow \infty}\left\langle-\Delta_{p} u_{n}, u_{n}-u\right\rangle \leq 0$, then $u_{n} \rightarrow u\left(\right.$ strongly in $\left.D^{1, p}\right)$

Proof. This follows from the uniform convexity of $D^{1, p}\left(\mathbb{R}^{n}\right)$ (see [3])
Lemma 2.7 J_{ϵ} satisfies the $(P S)$ condition, and it verifies $(P S)_{O^{ \pm}, c}$ if $c<$ $-m$.

Proof. Let $\left(u_{n}\right) \subset D^{1, p}$ be a $(P S)$ sequence such that

$$
J_{\varepsilon}\left(u_{n}\right) \rightarrow c, J_{\varepsilon}^{\prime}\left(u_{n}\right) \rightarrow 0
$$

Since J_{ε} is coercive, it follows that $\left(u_{n}\right)$ is bounded in $D^{1, p}$, which is reflexive, so (after passing to a subsequence) we may assume that $u_{n} \rightarrow u$ weakly. We want to show that in fact, $u_{n} \rightarrow u$ strongly. We have that

$$
\begin{aligned}
J_{\varepsilon}^{\prime}\left(u_{n}\right)\left(u_{n}-u\right)= & \int\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \cdot \nabla\left(u_{n}-u\right) \\
& -\left(\lambda_{1}-\varepsilon\right) \int\left|u_{n}\right|^{p-2} u_{n}\left(u_{n}-u\right) g(x) d x \\
& -\int h\left(u_{n}-u\right)-\int f\left(x, u_{n}\right)\left(u_{n}-u\right)
\end{aligned}
$$

Clearly $\int h\left(u_{n}-u\right) \rightarrow 0$ since $u_{n} \rightharpoonup u$ weakly. Then $u_{n} \rightarrow u$ strongly in $L_{g}^{p}\left(\mathbb{R}^{n}\right)$ since the imbedding $D^{1, p} \subset L_{g}^{p}$ is compact. It follows that: $\int\left|u_{n}\right|^{p-2} u_{n}\left(u_{n}-\right.$ $u) g(x) d x \rightarrow 0$

From proposition 2.3 and the Hölder inequality
$\int f\left(x, u_{n}\right)\left(u_{n}-u\right) d x=\int\left[f(x, u)-f\left(x, u_{n}\right)\right]\left(u_{n}-u\right) d x+\int f(x, u)\left(u_{n}-u\right) \rightarrow 0$.
Since $J_{\varepsilon}^{\prime}\left(u_{n}\right)\left(u_{n}-u\right) \rightarrow 0$, it follows that

$$
\int\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \cdot \nabla\left(u_{n}-u\right) d x \rightarrow 0
$$

or equivalently, $\left\langle-\Delta_{p} u_{n}, u_{n}-u\right\rangle \rightarrow 0$. By the S_{+}condition, this implies that $u_{n} \rightarrow u$ strongly in $D^{1, p}$.

To prove that J_{ϵ} satisfies $(P S)_{O^{ \pm}, c}$ for $c<-m$, consider $\left(u_{n}\right) \subset O^{ \pm}$be a $(P S)_{c}$ sequence. There exists a convergent subsequence: $u_{n_{k}} \rightarrow u$, and it is enough to prove that $u \in O^{ \pm}$, but if $u \in \partial O^{ \pm}=W$, then $c=J(u) \geq-m$, a contradiction.
Lemma 2.8 If $\varepsilon>0$ is small enough, there exists two numbers, $t^{-}<0<t^{+}$, such that $J_{\varepsilon}\left(t^{ \pm} \varphi_{1}\right)<-m$.

Proof. From $\int h(x) \varphi_{1}(x) d x=0$, we have that

$$
J_{\varepsilon}\left(t \varphi_{1}\right)=\frac{1}{p} \int_{\mathbb{R}^{n}} 94 \varepsilon t^{p} \varphi_{1}^{p} g(x)-\int_{\mathbb{R}^{n}} F\left(x, t \varphi_{1}(x)\right) d x .
$$

Since $\varphi_{1} \in L^{\infty}$, we can assume that $0 \leq \varphi_{1}(x) \leq 1$ for all $x \in \mathbb{R}^{n}$.
First, since $\varphi_{1}^{p} g \in L^{1}$, we can choose ρ big enough, such that:

$$
\frac{1}{p} \int_{|x|>\rho} \varphi_{1}^{p} g d x<\frac{m}{2}
$$

and we split the integral J_{ε} in two parts: $J_{\varepsilon}=J_{\varepsilon}^{1}+J_{\varepsilon}^{2}$, where J_{ε}^{1} is the integral over $|x| \leq \rho$, and J_{ε}^{2} is the integral over $|x|>\rho$.

We define

$$
\begin{aligned}
& A(t)=\left\{x:|x| \leq \rho: \varphi_{1}(x)>R / t\right\} \\
& B(t)=\left\{x:|x| \leq \rho: \varphi_{1}(x) \leq R / t\right\}
\end{aligned}
$$

Then

$$
\int_{B(t)}\left[\frac{\varepsilon}{\varepsilon} t^{p} \varphi_{1}^{p}-F\left(x, t \varphi_{1}(x)\right)\right] d x
$$

is uniformly bounded in ε and t for $\varepsilon \leq \varepsilon_{0}$. Let

$$
\begin{aligned}
M_{\varepsilon}(t)= & \int_{A(t)}\left(\frac{1}{p} t \varphi_{1}(x) f\left(x, t \varphi_{1}(x)\right)-F\left(x, t \varphi_{1}(x)\right)\right) \\
& +\int_{B(t)}\left[\frac{\varepsilon}{p} t^{p} \varphi_{1}^{p}-F\left(x, t \varphi_{1}(x)\right)\right] d x
\end{aligned}
$$

Then, from (H1) and Fatou lemma, $M_{\varepsilon}(t)<-2 m$ for t big enough, and $\varepsilon \leq \varepsilon_{0}$.
By (H2) there exists $0<\varepsilon_{t} \leq \varepsilon_{0}$ such that

$$
\varepsilon_{t} u^{p-1} g(x)<f(x, u) \text { in } \overline{B_{\rho}} \times[R, t]
$$

Then if $\varphi_{1}(x)>R / t$ and $|x| \leq \rho$ we have:

$$
\varepsilon_{t} t^{p-1} \varphi_{1}(x)^{p-1} g(x)<f\left(x, t \varphi_{1}\right)
$$

and

$$
J_{\varepsilon}^{1}\left(t \varphi_{1}\right) \leq M_{\varepsilon}(t)<-2 m .
$$

From (H2), since $F\left(x, t \varphi_{1}\right) \geq 0$, if we choose ε_{t} satisfying $\varepsilon_{t}<\frac{1}{t^{p}}$ then,

$$
J_{\varepsilon_{t}}^{2}\left(t \varphi_{1}\right) \leq \frac{1}{p} \int_{|x|>\rho} \varepsilon_{t} t^{p} \varphi_{1}^{p} d x<\frac{m}{2}
$$

and we conclude that $J_{\varepsilon_{t}}\left(t \varphi_{1}\right)<-m$ for any $\varepsilon_{t} \leq \varepsilon_{0}$. In a similar way, choosing first t big enough, and then ε_{t} small, we can prove that $J_{\varepsilon_{t}}\left(-t \varphi_{1}\right)<-m \diamond$

Proof of theorem 1.4

For $\varepsilon>0$ small enough, from lemmas 2.7 and 2.8 we have that

$$
-\infty<\inf _{O^{ \pm}} J_{\varepsilon}<-m
$$

and since $(P S)_{c, O^{ \pm}}$holds for all $c<-m$, it follows from the deformation lemma that the above infima are attained, say at $u^{-} \in O^{-}$and $u^{+} \in O^{+}$. Since $O^{ \pm}$ are both open in $D^{1, p}$ we have found two critical points of J_{ε}. Let

$$
c=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} J_{\varepsilon}(\gamma(t))
$$

with

$$
\Gamma=\left\{\gamma \in C\left([0,1], D^{1, p}\left(\mathbb{R}^{n}\right): \gamma(0)=u^{-}, \gamma(1)=u^{+}\right\}\right.
$$

We observe that $\gamma([0,1]) \cap W \neq 0$ for any $\gamma \in \Gamma$, so we conclude that

$$
c=\inf _{W} J_{\varepsilon} \geq-m
$$

J_{ε} verifies $(P S)$, and from Ambrossetti-Rabinowitz's Mountain Pass Theorem [1] we conclude that c is a third critical value of J_{ε}, and since $J_{\varepsilon}\left(u^{ \pm}\right)<-m$, the corresponding critical point is different from u^{+}, u^{-}.

References

[1] A. Ambrosetti \& P. H. Rabinowitz, Dual Variational Methods in Critical Point Theory and Applications, Jounal Functional Analysis 14 (1973) pp.349-381
[2] H. Brezis, Analyse fonctionnelle, Masson, Paris 1983
[3] G. Dinca, P. Jebelean, \& J. Mawhin, Variational and Topological Methods for Dirichlet Problems with p-Laplacian- Recherches de mathmatique (1998) Inst. de Math. Pure et. Aplique, Univ. Cath. de Louvain.
[4] J. Fleckinger, R.F. Manásevich, N.M. Stavrakakis, \& F. De Thlin, Principal Eigenvalues for Some Quasilinear Elliptic Equations on \mathbb{R}^{n}, Advances in Differential Equations - Vol. 2, Number 6, November 1997 ,pp. 981-1003
[5] J.-P. Gossez, Some Remarks on the Antimaximum Principle, Revista de la Unión Matemática Argentina- vol. 41, 1 (1998) pp. 79-84
[6] I. Kuziw \& S. Pohozaev, Entire Solutions of Semilinear Elliptic Equations, Progress in Nonlinear Differential Equations and Their Applications - Vol 33. - Birkhauser
[7] Mawhin J. \& Schmitt K., Nonlinear eigenvalue problems with the parameter near resonance, Ann. Polonici Math. LI (1990) pp. 241-248
[8] João Marcos B. do Ó, Solutions to perturbed eigenvalue problems of the p-Laplacian in \mathbb{R}^{n}, Electronic Journal of Diff. Eqns., Vol. 1997(1997), No. 1, pp. 1-15
[9] To Fu Ma \& L. Sanchez, Three solutions of a Quasilinear Elliptic Problem Near Resonance, Universidade de Lisboa CAUL/CAMAF-21/95

Pablo L. De Nápoli (e-mail: pdenapo@dm.uba.ar)
M. Cristina Mariani (e-mail: mcmarian@dm.uba.ar)

Universidad de Buenos Aires
FCEyN - Departamento de Matemática
Ciudad Universitaria, Pabellón I
Buenos Aires, Argentina

[^0]: *Mathematics Subject Classifications: 35J20, 35J60.
 Key words: p-Laplacian, resonance, nonlinear eigenvalue problem.
 (C) 2001 Southwest Texas State University.

 Published January 8, 2001.

