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Three solutions for quasilinear equations in Rn

near resonance ∗

Pablo De Nápoli & Maŕıa Cristina Mariani

Abstract

We use minimax methods to prove the existence of at least three so-
lutions for a quasilinear elliptic equation in Rn near resonance.

1 Introduction

J. Mawhin and K. Smichtt [7], proved the existence of at least three solutions
for the two-point boundary value problem

−u′′ − u+ εu = f(x, u) + h(x)

u(0) = u(π) = 0

for ε > 0 small enough, h orthogonal to sinx and f bounded satisfying the sign
condition uf(x, u) > 0. In [9], To Fu Ma and L. Sanchez considered the problem

−∆pu− λ1|u|
p−2u+ ε|u|p−2u = f(x, u) + h(x) (1.1)

in W 1,p0 (Ω) with Ω ⊂ R
n a bounded domain, and λ1 the first eigenvalue of

−∆pu = λ|u|p−2u in Ω (1.2)

u = 0 on ∂Ω .

They proved the following result.

Theorem 1.1 Suppose that p ≥ 2 and that the following two conditions hold:

(H1) f : Ω×Rn → Rn is a continuous function and there exist θ > 1
p
such that

θsf(x, s)− F (x, s)→ −∞ as |s| → ∞

(H2) There exists R > 0 such that sf(x, s) > 0 for all x ∈ Ω, |s| ≥ R

Then for every h ∈ Lp
′
(Ω) with

∫
Ω
h(x)ϕ1(x)dx = 0, where ϕ1 is the first

eigenfunction of (1.2), the equation (1.1) has at least three solutions for ε > 0
small enough.
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132 Three solutions for quasilinear equations in near resonance

We recall that the assumptions on f imply the growth condition

|f(x, s)| ≤ c1 + c2|s|
σ

with σ = 1
θ
< p.

These problems have been studied for several authors, see [3, 4, 5, 8].

The functional setting

Our aim is to extend this result to equations in Rn. As W 1,p(Rn) is no longer
compactly imbedded into Lp(Rn), we shall work in the space D1,p, the closure
of C10 (R

n) with the norm

‖u‖1,p =
(∫
Rn

|∇u(x)|pdx
)1/p

By the Sobolev inequality we have: D1,p ⊂ Lp
∗
(Rn) with p∗ = Np

N−p , this imbed-
ding is not compact, however in proposition 2.1 we prove that the imbedding

D1,p ⊂ Lpg(R
n) is compact for g ∈ LN/p ∩ L

N/p+ε
loc .

Simplicity of the first eigenvalue

We recall the simplicity of the first eigenvalue of the p-laplacian that is proved
in [4]. They studied the problem:

−∆pu = g(x)|u|p−2u x ∈ Rn (1.3)

0 < u in Rn, lim|x|→+∞ u(x) = 0 ,

where 1 < p < n. They proved the theorem below, assuming the following
conditions:
(G) g is a smooth function, at least C0,γloc (R

n) for some γ ∈ (0, 1), such that
g ∈ LN/p(Rn)∩L∞(Rn) and g(x) > 0 in Ω+ with |Ω+| > 0. Also g satisfies one
the following two conditions

(G+) g(x) ≥ 0 a.e. in Rn

(G−) g(x) < 0 for x ∈ Ω−, with |Ω−| > 0.

Theorem 1.2 1. Let g satisfy (G) and (G+). Then equation (1.3) admits a
positive first eigenvalue,

λ1 = inf
B(u)=1

‖u‖pD1,p (1.4)

with B(u) =
∫
Rn
|u(x)|pg(x) dx.

2. Let g satisfy (G) and (G−). Then problem (1.3) admits two first eigen-
values of opposite sign:

λ+1 = inf
B(u)=1

‖u‖pD1,p λ−1 = − inf
B(u)=−1

‖u‖pD1,p

In both cases the associated eigenfunctions ϕ+1 , ϕ
−
1 belong to D

1,p ∩ L∞.
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3. The set of eigenvectors corresponding to λ1 is a one dimensional subspace.

Remark 1.3 The first eigenfunction ϕ1 does not change its sign in Ω, so we
may assume ϕ1 ≥ 0.

Proof. Taking ϕ− as a test function in (1.3) with λ = λ1 we see that∫
Rn

|∇(ϕ−)|p = λ1

∫
Rn

|ϕ−1 |
pg(x)dx

It follows that ϕ− = 0 (and ϕ ≥ 0 ), or ϕ−1 is also a solution of the minimiza-
tion problem (1.4). In the last case, from the simplicity of the first eigenvalue
ϕ−1 = cϕ1. It follows that ϕ

− = −ϕ1, so ϕ1 ≤ 0. ♦

Existence of multiple solutions

In this paper we study quasilinear elliptic equation

−∆pu = (λ1 − ε)g(x)|u|
p−2u+ f(x, u) + h(x) (1.5)

in Rn. We assume the following:

1. 1 < p < n and ε > 0

2. On the weight g we make the assumptions (G) and (G+) of [4]

3. h ∈ Lp
∗′
and
∫
Rn
hϕ1dx = 0

4. We assume that the non linearity f : Rn × R → R is continuous and
satisfies

(H0) Growth condition.

|f(x, s)| ≤ c1(x) + c2(x)|s|
σ−1

with σ < p and c1 ∈ L(p
∗)′ , c2 ∈ L(p

∗/σ)′ ∩ L(p/σ)
′+η

loc for some η > 0.

(H1) If F (x, s) =
∫ s
0
f(x, t)dt then 1

p
sf(x, s)−F (x, s)→ −∞ as |s| → ∞.

(H2) Sign condition. There exists R > 0 such that: sf(x, s) > 0 for all
x ∈ Rn, |s| ≥ R.

For example we may take f(x, s) = c2(x)|s|σ−1s · sgn s where c2(x) satisfies
the conditions above, c2(x) > 0, and σ < p.
Note that integrating on condition (H0) we get

F (x, s) ≤ c1(x)|s|+ c2(x)
|s|σ

σ
.

In the next section we will see that for the functional C(u) =
∫
Rn
F (x, u)dx to

be of class C1(D1,p(Rn)), condition (H0) is the natural choice.
Our main result is the following theorem:

Theorem 1.4 Under the assumptions above, problem (1.5) has at least three
solutions for ε > 0 small enough.
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2 Technical Lemmas

For the proof of theorem 1.4 we will need the following results:

A compactness result in weighted Lp spaces

If u ∈ D1,p, 1 ≤ q ≤ p∗, 1r +
q
p∗ = 1 and g ∈ L

r, g ≥ 0, then from Hölder and
Sobolev inequalities, we have that

∫
Rn

|u|qg ≤ C

∫
Rn

|∇u|p (2.1)

and it follows that D1,p ⊂ Lqg. The following result proves that under appropri-
ate conditions, this imbedding is also compact. (Other previous results can be
found in [6]).

Proposition 2.1 Let 1 ≤ q < p∗, 1r +
q
p∗ = 1, g ∈ L

r ∩ Lr+εloc for some ε > 0.
Then the imbedding

D1,p ⊂ Lqg(R
n)

is compact.

Proof. Let (un) ⊂ D1,p be a bounded sequence:

‖un‖1,p ≤ C

Then, as D1,p is reflexive, we may extract a weakly convergent subsequence
(unk). For simplicity we assume that un ⇀ u. We want to prove that in fact
un → u strongly. From Hölder and Sobolev inequalities we have:

∫
|x|>R

g|u−un|
q ≤
(∫
|x|>R

|g|r
)1/r( ∫

|x|>R
|un−u|

p∗
)p/p∗

≤ C
( ∫
|x|>R

|g|r
)1/r

Given ε > 0, as g ∈ Lr we can choose R > 0 verifying
∫
|x|>R

g|u− un|
q ≤
ε

2

Now D1,p(Rn) ⊂W 1,ploc (R
n) continously and by the Rellich-Kondrachov theorem

un → u strongly in L
t(BR)

if 1 ≤ t < p∗. We choose s > 1 such that s′ = r + ε, then s < p∗

q , and

∫
|x|≤R

g|un − u|
q ≤
( ∫
|x|≤R

|g|s
′
)1/s′( ∫

|x|<R
|u− un|

qs
)1/s

≤
ε

2

if n ≥ n0(ε). So un → u in Lpg(R
n). ♦
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Some results about the Associated Functional

Under the same assumptions of theorem 1.4, we have the following results:

Lemma 2.2 Let C : D1,p(Rn) → R given by C(u) =
∫
Rn
F (x, u)dx. Then

C ∈ C1(D1,p(Rn)) and C′(u)(h) =
∫
Rn
f(x, u)h

Proof. From the Hölder inequality we have that

|C(u)| ≤

∫
Rn

c1(x)|u|+ c2(x)
|u|σ

σ
dx ≤ ‖c1‖(p∗)′ ‖u‖p∗ +

1

σ
‖c2‖(p∗/σ)′ ‖u‖

σ
p∗

From the imbedding D1,p ⊂ Lp
∗
we conclude that C(u) is well defined. In a

similar way,

∣∣ ∫
Rn

f(x, u)h
∣∣ ≤

∫
Rn

c1(x)|h| + c2|u|
σ−1|h|

≤ ‖c1‖(p∗)′ ‖h‖p∗ + ‖c2‖(p∗/σ)′ ‖u‖
σ−1
p∗ ‖h‖p∗

and we have that
∫
Rn
f(x, u)h is also well defined. Using a similar argument as

in [8], we conclude the proof. ♦

Lemma 2.3 Assume that f(x, y) is a Caratheodory function, verifying that

|f(x, u)| ≤ c1(x) + c2(x)|u|
σ−1

where 1 ≤ σ < p∗, c1 ∈ Ls1(Rn) with s1 = p∗
′, and c2 ∈ Ls2 ∩ L

s2+ε
loc with

s2 =
p∗

p∗−σ . Then the Nemitski operator Nf : D
1,p(Rn) → Lp

∗′

(Rn) given by

Nf(u) = f(x, u) is compact.

Proof. Let (un) be a sequence in D
1,p such that un ⇀ u weakly in D

1,p. We
may assume, passing to a subsequence, that un → u a.e..
As σ < p∗, we apply proposition 2.1 with q = (σ − 1)s1 < p∗, g = c

s1
2 . We

note that g ∈ Lr ∩Lr+ε
′

loc with r =
p∗−1
p∗−σ . We get, passing to a subsequence, that

un → u in Lqg.
From theorem IV.9 in [2], we obtain, after passing again to a subsequence,

a function m ∈ Lqg(R
n) such that

|un(x)| ≤ m(x)

a.e. with respect to the measure g(x)dx. Then, from condition (H0) we deduce
that

|f(x, u)− f(x, un)|
s1 ≤ 2s1 [|f(x, u)|s1 + |f(x, un)|

s2 ]

≤ 2s1+1[c1(x)
s1 + c2(x)

s1 |m|(σ−1)s1 ] .

Applying the bounded convergence theorem to
∫
Rn
|f(x, u) − f(x, un)|s1dx we

obtain that f(x, un)→ f(x, u) in Ls1(Rn). ♦
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Remark 2.4 The weak solutions of equation (1.5) are the critical points in
D1,p0 of the functional

Jε(u) =
1

p

∫
Rn

|∇u|pdx−
λ1 − ε

p

∫
Rn

|u|pg(x)dx −

∫
Rn

(F (x, u) + h(x)u)

Under the previous assumptions it is easy to check that Jε ∈ C1(D1,p).

Let

W =

{
w ∈ D1,p :

∫
Rn

g(x)|ϕ1|
p−2ϕ1w = 0

}

We recall that as a consequence of proposition 2.1 W is a weakly closed linear
subspace.

Lemma 2.5 If ε < λ1 , Jε is coercive in D
1,p, and there exist m > 0 such that

infu∈W Jε(u) ≥ −m.

Proof. We suppose 0 < ε < λ1, then

Jε(u) ≥
1

p

(
1−
λ1 − ε

λ1

)∫
Rn

|∇u|p −

∫
Rn

(F (x, u) + hu)

and
Jε(u) ≥

ε

pλ1
‖u‖p1,p − C1 − C2 ‖u‖

σ
1,p − ‖h‖(p∗)′ ‖u‖p∗

As σ < p, it follows that Jε is coercive.
We define

λW = inf

{∫
Rn

|∇w|2 : w ∈W,

∫
Rn

g(x)|w(x)|p = 1

}

We claim that λW > λ1. In fact if λ1 = λW then we would have w ∈ W
verifying ∫

Rn

|w|p = λ1,

∫
Rn

|w|pg(x)dx = 1

So by the simplicity of the first eigenvalue, w = cϕ1 but this contradicts the
definition of W .
Then, for u ∈W we have

Jε(u) ≥
λW − λ1
pλW

‖u‖p1,p − C1 − C2 ‖u‖
σ
1,p − ‖h‖(p∗)′ ‖u‖p∗

Then Jε is uniformly coercive in W respect to ε, and in particular is uniformly
bounded from below. ♦
For stating the next result we need the two open sets:

O+ =
{
w ∈ D1,p :

∫
Rn

g(x)|ϕ1|
p−2ϕ1w > 0

}
,

O− =
{
w ∈ D1,p :

∫
Rn

g(x)|ϕ1|
p−2ϕ1w < 0

}
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The next condition is a variant of the Palais-Smale condition (PS).
We will say that a functional φ : D1,p → R verifies the (PS)O±,c condition

if any sequence (un) in O
+ (respectively in O−) with φ(un) → c, φ′(un) → 0,

has a subsequence (unk)→ u ∈ O
+.

Proposition 2.6 The operator −∆p : D1,p → (D1,p)∗ satisfies the (S+) condi-
tion: if un ⇀ u (weakly in D

1,p(Rn) ) and lim supn→∞ 〈−∆pun, un − u〉 ≤ 0,
then un → u (strongly in D1,p )

Proof. This follows from the uniform convexity of D1,p(Rn) (see [3])

Lemma 2.7 Jε satisfies the (PS) condition, and it verifies (PS)O±,c if c <
−m.

Proof. Let (un) ⊂ D1,p be a (PS) sequence such that

Jε(un)→ c, J
′
ε(un)→ 0

Since Jε is coercive, it follows that (un) is bounded in D
1,p, which is reflexive,

so (after passing to a subsequence) we may assume that un → u weakly. We
want to show that in fact, un → u strongly. We have that

J ′ε(un)(un − u) =

∫
|∇un|

p−2∇un · ∇(un − u)

−(λ1 − ε)

∫
|un|

p−2un(un − u)g(x)dx

−

∫
h(un − u)−

∫
f(x, un)(un − u)

Clearly
∫
h(un−u)→ 0 since un ⇀ u weakly. Then un → u strongly in Lpg(R

n)
since the imbedding D1,p ⊂ Lpg is compact. It follows that:

∫
|un|p−2un(un −

u)g(x)dx→ 0
From proposition 2.3 and the Hölder inequality∫
f(x, un)(un−u)dx =

∫
[f(x, u)−f(x, un)](un−u)dx+

∫
f(x, u)(un−u)→ 0 .

Since J ′ε(un)(un − u)→ 0, it follows that∫
|∇un|

p−2∇un · ∇(un − u)dx→ 0

or equivalently, 〈−∆pun, un − u〉 → 0. By the S+ condition, this implies that
un → u strongly in D1,p.
To prove that Jε satisfies (PS)O±,c for c < −m, consider (un) ⊂ O

± be a
(PS)c sequence. There exists a convergent subsequence: unk → u, and it is
enough to prove that u ∈ O±, but if u ∈ ∂O± = W , then c = J(u) ≥ −m, a
contradiction. ♦

Lemma 2.8 If ε > 0 is small enough, there exists two numbers, t− < 0 < t+,
such that Jε(t

±ϕ1) < −m.
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Proof. From
∫
h(x)ϕ1(x)dx = 0, we have that

Jε(tϕ1) =
1

p

∫
Rn

94εtpϕp1g(x)−

∫
Rn

F (x, tϕ1(x))dx .

Since ϕ1 ∈ L∞, we can assume that 0 ≤ ϕ1(x) ≤ 1 for all x ∈ Rn.
First, since ϕp1g ∈ L

1, we can choose ρ big enough, such that:

1

p

∫
|x|>ρ

ϕp1gdx <
m

2

and we split the integral Jε in two parts: Jε = J
1
ε +J

2
ε , where J

1
ε is the integral

over |x| ≤ ρ, and J2ε is the integral over |x| > ρ.
We define

A(t) = {x : |x| ≤ ρ : ϕ1(x) > R/t}

B(t) = {x : |x| ≤ ρ : ϕ1(x) ≤ R/t}

Then ∫
B(t)

[
ε

p
tpϕp1 − F (x, tϕ1(x))]dx

is uniformly bounded in ε and t for ε ≤ ε0. Let

Mε(t) =

∫
A(t)

(
1

p
tϕ1(x)f(x, tϕ1(x)) − F (x, tϕ1(x))

)

+

∫
B(t)

[
ε

p
tpϕp1 − F (x, tϕ1(x))

]
dx

Then, from (H1) and Fatou lemma,Mε(t) < −2m for t big enough, and ε ≤ ε0.
By (H2) there exists 0 < εt ≤ ε0 such that

εtu
p−1g(x) < f(x, u) in Bρ × [R, t]

Then if ϕ1(x) > R/t and |x| ≤ ρ we have:

εtt
p−1ϕ1(x)

p−1g(x) < f(x, tϕ1)

and

J1ε (tϕ1) ≤Mε(t) < −2m.

From (H2), since F (x, tϕ1) ≥ 0, if we choose εt satisfying εt <
1
tp
then,

J2εt(tϕ1) ≤
1

p

∫
|x|>ρ

εtt
pϕp1dx <

m

2

and we conclude that Jεt(tϕ1) < −m for any εt ≤ ε0. In a similar way, choosing
first t big enough, and then εt small, we can prove that Jεt(−tϕ1) < −m ♦
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Proof of theorem 1.4

For ε > 0 small enough, from lemmas 2.7 and 2.8 we have that

−∞ < inf
O±
Jε < −m

and since (PS)c,O± holds for all c < −m, it follows from the deformation lemma
that the above infima are attained, say at u− ∈ O− and u+ ∈ O+. Since O±

are both open in D1,p we have found two critical points of Jε. Let

c = inf
γ∈Γ
max
t∈[0,1]

Jε(γ(t))

with
Γ = {γ ∈ C([0, 1], D1,p(Rn) : γ(0) = u−, γ(1) = u+}

We observe that γ([0, 1]) ∩W 6= 0 for any γ ∈ Γ, so we conclude that

c = inf
W
Jε ≥ −m

Jε verifies (PS), and from Ambrossetti-Rabinowitz’s Mountain Pass Theorem
[1] we conclude that c is a third critical value of Jε, and since Jε(u

±) < −m,
the corresponding critical point is different from u+, u−.
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