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Gluing approximate solutions of minimum type

on the Nehari manifold ∗

Yanyan Li & Zhi-Qiang Wang

Abstract

In the last decade or so, variational gluing methods have been widely
used to construct homoclinic and heteroclinic type solutions of nonlinear
elliptic equations and Hamiltonian systems. This note is concerned with
the procedure of gluing mountain-pass type solutions. The first procedure
to glue mountain-pass type solutions was developed through the work of
Séré, and Coti Zelati - Rabinowitz. This procedure and its variants have
been extensively used in many problems by now for nonlinear equations
with superlinear nonlinearities. In this note we provide an alternative de-
vice to the by now standard procedure which allows us to glue minimizers
on the Nehari manifold together as genuine, multi-bump type, solutions.

1 Introduction

In the last decade or so, variational gluing methods have been widely used to
construct homoclinic and heteroclinic type solutions of nonlinear elliptic equa-
tions and Hamiltonian systems (see, e.g. Rabinowitz [7] and references therein).
The idea is to first construct some basic solutions (or approximate solutions)
which are characterized by minimax method and which are used as building
blocks for construction of multi-bump type solutions. These multi-bump type
solutions then are obtained by some gluing procedures and look roughly like
sums of the basic solutions. The general idea is clear by now, though for dif-
ferent types of basic solutions one has to employ different procedures for the
concrete problems. Different type of basic solutions have been glued together
by various authors, which include minimizers and mountain-pass type solutions.
In fact even cat > 1 solutions have been glued together, see for example Gian-
noni and Rabinowitz [4].
This note is concerned with the procedure of gluing mountain-pass type so-

lutions. The first procedure to glue mountain-pass type solutions was developed
through the work of Séré ([8] [9]) and Coti Zelati - Rabinowitz ([2] [3]), and this
procedure and its variants have been extensively used in many problems by now
for nonlinear equations with superlinear nonlinearities (see, e.g. Rabinowitz
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216 Gluing approximate solutions

[7] and references therein). In these papers the basic solutions are mountain-
pass type solutions. On the other hand, under slightly stronger conditions these
mountain-pass solutions can also be characterized as minimizers of a constrained
problem, namely, minimizers on the Nehari manifold. In this paper we provide
an alternative device to the by now standard procedure which allows us to
glue minimizers on the Nehari manifold (or local minimizers, approximate local
minimizers) together as genuine (multi-bump type) solutions. Though the new
procedure is somewhat parallel to the original one for mountain-pass solutions
there are still technical complications needed to be fixed. On the other hand, it
seems the new device in gluing minimizers on Nehari manifold is simpler than
those for gluing mountain-pass solutions in the full space. For instance, one step
involved in [2] and [3] is to do a minimization problem on some annulus regions
and to use elliptic estimates to achieve the smallness of certain map. This step
has to be done on a case by case basis for ODEs, PDEs with subcritical expo-
nents and PDEs with critical exponents and seems to be somewhat laborsome
for PDE problems, especially for those involving critical exponents ([5] [6]). Our
device given here will avoid this step and treat all problems uniformly.
For simplicity we only present our device for an ODE problem to demon-

strate the procedure. Although the results are not new, the procedure we use is
different from the known one and may prove to be of advantage in dealing with
some other problems with the presence of a Nehari manifold. The same device
clearly works for analogous subcritical exponent periodic PDEs

−∆u+ a(x)u = f(x, u), in RN ,

with suitable growth condition on f and periodic dependency in x; and presum-
ably should also work for analogous critical exponent periodic PDEs.

2 An ODE problem

Consider
−u′′ + a(t)u = f(t, u), t ∈ R (1)

We look for homoclinic solutions of this equation, i.e.,solutions such that lim|t|→∞ u(t) =
0 and lim|t|→∞ u

′(t) = 0. Assume

(f1) a(t) ∈ C(R,R) is T−periodic and minR a(t) > 0.

(f2) f(t, u) ∈ C(R× R,R) is T−periodic in t.

(f3) fu(t, 0) = 0 and |fu(t, u)| ≤ C(1 + |u|p) for some p > 1.

(f4) There is a θ > 1 such that f ′(t, u)u2 ≥ θf(t, u)u for all t and u.

There is a variational formulation of the problem. Namely,

I(u) =
1

2

∫
R

(|u̇|2 + au2)dt−

∫
R

F (t, u)dt



Yanyan Li & Zhi-Qiang Wang 217

for u ∈ X := H1(R). Then critical points of I are solutions of (1). We use ‖ · ‖
to denote the norm in X .
There is alternative approach to the above, namely the Nehari manifold.

Define

γ(u) :=

∫
R

f(t, u)udt−

∫
R

(|u̇|2 + au2)dt,

and let
V = {u ∈ X \ {0} | γ(u) = 0}.

Then it is well known that under conditions (f1 - f4), V is a C
1 manifold

and critical points of I on V are also critical points of I in X and therefore
solutions of (1). We use the usual notations. Ic = {u ∈ V | I(u) ≤ c},
Ic = {u ∈ V | I(u) ≥ c}, Iba = I

b ∩ Ia, K = {u ∈ V | I ′(u) = 0}, Kc = K ∩ Ic.
For an integer j, τju = u(t− j) the translation of u. Then for any j, τjw ∈ Kc.
Let

c := inf
V
I(u),

the ground state energy of I. Using the following compactness results for (PS)
sequences of I one easily gets that c is always achieved at some u which is a
ground state solution of (1).

Proposition 2.1 Let (un) ⊂ V be such that I(un) → b and (I|V )
′(un) → 0.

Then there is an l ∈ N (depending on b), v1, ..., vl ∈ K \ {0}, a subsequence of
un and corresponding (ji,n)

l
i=1 ⊂ Z

l such that

‖un −
l∑
i=1

τji,nvi‖ → 0,
l∑
i=1

I(vi) = b,

and for i 6= `, |ji,n − j`,n| → ∞.

This is just a reformulation of Prop. 2.31 in [3], since V is a natural constraint
of I in the sense that (I|V )

′(u) = 0 iff I ′(u) = 0.
Due to the translation invariance of the problem, there may be many solu-

tions on the energy level c. We shall assume

Kcc has an isolated point, say, w. (∗)

For an integer k ≥ 2, let ~j = (j1, · · · , jk), a k-tuples of integers. We shall show

that there are real solutions of (1) which roughly look like
∑k
i=1 τjiw. More

precisely, let
2r0 = min{ν, µ} > 0,

where ν = inf{‖u‖ | u ∈ K \ {0}} and µ = inf{‖u− w‖ | u ∈ K}.

Theorem 2.2 Assume (f1 - f4) and Kcc has an isolated point. For 0 < α <
c
2

and 0 < r < r0 there is j0 > 0 such that for all k-tuples of integers ~j satisfying
mini6=` |ji − j`| > j0

Kkc+αkc−α ∩Nr
( k∑
i=1

τjiw
)
6= ∅.
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Here, Nr(·) denotes the r-neighborhood in X .
The proof of Theorem 2.2 is based on an indirect argument with the basic

idea going back to [8] [2] [3]. Our procedure below is somewhat different from
the one used in the original argument ([8] [2] [3]), and in a way simpler.

Step 1. First, for R > 0 we define a cut-off operator

TR(u) = ρ(2R
−1|x|)u(x)

where ρ(t) = 1 for 0 ≤ t ≤ 1 and ρ(t) = 0 for t ≥ 2. With ~j = (j1, · · · , jk)
satisfying infi6=` |ji − j`| > 2R, for y = (y1, ..., yk) with yi ≥ 0, i = 1, ..., k and∑k
i=1 yi = 1, we define

G0(y) = b(y)

k∑
i=1

yiτjiTR(w)

where b(y) > 0 is such that G0(y) ∈ V . We fix a δ0 ∈ (0, 1/k) so that
maxy γ(δ0b(y)w) < 0 (which can be done due to (f3)) and define

∆k =

{
y = (y1, ..., yk) ∈ R

k|
k∑
i=1

yi = 1, yi ≥ δ0

}
,

a (k − 1)-dimensional simplex. Then G0 ∈ C(∆k, V ). By the explicit form of
G0 we have, as R→∞,

I(G0(y)) =

k∑
i=1

I(b(y)yiτjiTR(w)) =

k∑
i=1

I(b(y)yiw) + o(1) ≤ kc+ o(1).

So we get

lim
R→∞

max
∆k
I(G0(y)) ≤ kc. (2)

Note that I(G0(yc)) ≥ kc, where yc = (
1
k
, ..., 1

k
) the center of ∆k.

Define

Γ =
{
G ∈ C(∆k, V ) | G|∂∆k = G0

}
.

For ~j = (j1, ..., jk) satisfying infi6=` |ji − j`| > 2R, used for G0, we define for
any u ∈ V

u(i)(x) = ρ(R−1|x− ji|)u(x), i = 1, ..., k.

Lemma 2.3 Given G0 as above with ~j = (j1, ..., jk) and R fixed, for any G ∈ Γ
there exists y0 ∈ ∆k such that

γ(G(y0)
(i)) = 0, i = 1, ..., k.

Proof. Regarding ∆k as a part of an affine (k − 1)-plane which we denote by
Ak−1, we see Ak−1 − ( 1

k
, ..., 1

k
) is a (k − 1)−plane passing through the origin
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in Rk which we denote by Ãk−1. For any G ∈ Γ we introduce a map from
∆̃k = ∆k − (

1
k , ...,

1
k ) into Ã

k−1 (with ỹ = y − ( 1k , ...,
1
k )), by

h(ỹ) = (h1, ..., hk) := (γ(G(y)
(1)), ..., γ(G(y)(k))).

Then the claim is proved if we can show that

deg(h, ∆̃k, 0) 6= 0.

Note that 0 is the center of ∆̃k. But this degree only depends on G0 because
all G agree with G0 on the boundary of ∆̃k. Finally, we compute the above
degree for G0 and we claim it is 1. We prove this by an induction in k. For
k = 2 it is easy to check it by hand: when y1 = δ0 and y2 = 1 − δ0 we have
ỹ1 = δ0 −

1
2 < 0 and ỹ2 = 1 − δ0 −

1
2 > 0; and h1 = γ(bδ0τj1TR(w)) < 0 and

therefore h2 = γ(b(1− δ0)τj2TR(w)) > 0 for h1+h2 = 0. At the other end point
of ∆̃2 we have similar computations, which together shows that h is homotopy
to the identity map.
Now for k ≥ 3, ∆̃k has k faces (opposite to each vertex and denoted by

Fi). On the ith-face Fi, if y = (y1, ..., yk) ∈ Fi then yi = δ0 −
1
k . And we

get hi = γ(bδ0τjiTR(w)) < 0. Using this fact, we may first project (by radial

scalings on Ãk−1) the image of h to ε∆̃k for some ε > small. Then using an
expansion scaling we may have the image of ∂∆̃k into itself. We denote this
operation by P , i.e., Ph is a map from ∆̃k → Ãk−1 such that Ph(∂∆̃k) ⊂ ∂∆̃k.
By the homotopy property, deg(h, ∆̃k, 0) = deg(Ph, ∆̃k, 0). Note that taking
y = 0 we see γ(g1(y)) = · · · = γ(gk(y)) = 0. By some standard properties of
the degree (see, e.g. [1]),

deg(Ph, ∆̃k, 0) = deg(Ph, ∂∆̃k, ∂∆̃k).

Now on F1 the center c1 has coordinates y1 = δ0 −
1
k and for i = 2, ..., k,

yi =
1−δ0
k−1 −

1
k
. Using this it is easy to see that c1 is not covered by Ph(∪ki=2Fi),

for if not c1 = Ph(y) for some y ∈ Fi with i ≥ 2, then we have hi(y) < 0
and therefore (Ph)i(y) < 0, this is a contradiction with yi > 0 for c1. By the
excision property

deg(Ph, ∂∆̃k, ∂∆̃k) = deg(Ph, F1, c1).

However, this is what we would get from the (k − 1)-map. The induction is
complete. ♦
We need another technical result.

Lemma 2.4 Let u ∈ V be such that u(i) ∈ V for all i = 1, ..., k (obtained by
using ~j = (j1, ..., jk) satisfying infi6=` |ji − j`| > 2R). Then I(u) ≥ kc.

Proof. First, we write WR =
⋃k
i=1BR(ji). Then

I(u) =
1

2

∫
|∇u|2 + a|u|2 −

∫
F (x, u)
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=
k∑
i=1

(1
2

∫
B2R(ji)

|∇u(i)|2 + a|u(i)|2 −

∫
B2R(ji)

F (x, u(i))
)

+
1

2

∫
R\W2R

|∇u|2 + a|u|2 −

∫
R\W2R

F (x, u)

+

k∑
i=1

1

2

∫
B2R(ji)\BR(ji)

(
|∇((1 − ρ)u)|2 + (1 − ρ)2au2

+2∇(ρu)∇((1− ρ)u) + 2ρ(1− ρ)au2
)

−
k∑
i=1

∫
B2R(ji)\BR(ji)

(F (x, u)− F (x, u(i)))

Using u ∈ V and u(i) ∈ V for all i = 1, ..., k, we get∫
R\W2R

|∇u|2 + a|u|2 −

∫
R\W2R

f(x, u)u

+

k∑
i=1

∫
B2R(ji)\BR(ji)

(
|∇((1 − ρ)u)|2 + (1 − ρ)2au2

+2∇(ρu)∇((1− ρ)u) + 2ρ(1− ρ)au2
)

−
k∑
i=1

∫
B2R(ji)\BR(ji)

(f(x, u)u− f(x, u(i))u(i)) = 0 .

Bringing this into the earlier formula we have

I(u) ≥ kc+

∫
R\W2R

(
1

2
f(x, u)u− F (x, u))

+
k∑
i=1

∫
B2R(ji)\BR(ji)

(1
2
f(x, u)u−

1

2
f(x, u(i))u(i)

−F (x, u) + F (x, u(i))
)

which implies I(u) ≥ kc since the last two terms on the right hand side are both
non-negative. Indeed, by (f4) we have

1

2
f(x, u)u− F (x, u) ≥ 0,

and, writing g(t) = 1
2f(x, tu)tu− F (x, tu) by the mean value theorem, we have

for some ξ ∈ (0, 1),

1

2
f(x, u)u−

1

2
f(x, u(i))u(i) − F (x, u) + F (x, u(i))
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=
1

2
f(x, u)u−

1

2
f(x, ρ(R−1|x− ji|)u)ρ(R

−1|x− ji|)u− F (x, u)

+F (x, ρ(R−1|x− ji|)u)

= g(1)− g(ρ)

= g′(ρ+ ξ(1 − ρ))(1− ρ)

=
1

2

{
f ′(x, [ξ + ρ(1− ξ)]u)[ξ + ρ(1− ξ)]u2 − f(x, [ξ + ρ(1− ξ)]u)u

}
(1− ρ)

≥ 0 .

which completes the present proof ♦

Let zR = bR
∑k
i=1 τjiTR(w) with inf i6=` |j` − ji| > 2R, where bR > 0 is such

that zR ∈ V . Note bR → 1 as R→∞.
For any ε > 0, by choosingR > 0 large we may get, by (2), max∆k I(G0(y)) <

kc+ ε. Also we remark that when r0 > r > 0 is fixed, for all small ε and large
R it holds that I(G0(y)) ≥ kc − ε implies G0(y) ∈ N r

8
(zR). We fix r > 0 now

such that for all R ≥ 1 if G ∈ Γ satisfying ‖G(y)−G0(y)‖ ≤ r then G(y)(i) 6= 0
for all y and i = 1, ..., k.

Step 2. If we assume the conclusion of Theorem 2.2 is not true, using a defor-
mation argument from a pseudo-negative gradient flow we deform G0 to a map
G1 : ∆k → V such that max∆k I(G1(y)) ≤ kc − ε, ‖G1(y) − G0(y)‖ ≤ r and
G1|∂∆k = G0. Then using Lemmas 2.3 and 2.4 we will have a contradiction.
We need the following lemma.

Lemma 2.5 There exist δr > 0 and Rr > 0 such that for all R ≥ Rr and for
all u ∈ Nr(zR) \N r

8
(zR)

‖I ′(u)‖ ≥ δr.

Proof. If the conclusion is not true, we would have a sequence Rn → ∞ and
un ∈ Nr(zR) \N r

8
(zR) such that I

′(un)→ 0. Then (un) is a (PS)b sequence for
I with some b. By Proposition 2.1

‖un −
l∑
i=1

τji,nvi‖ → 0

for some integer l and v1, .., vl ∈ K and |ji,n − j`,n| → ∞ for i 6= `. Since as

Rn →∞, ‖zRn −
∑k
i=1 τji,Rnw‖ → 0, we get

‖
l∑
i=1

τji,nvi −
k∑
i=1

τji,Rnw‖ → 0.

From this it is easy to argue by using (*) that l = k, vi = w for all i and for n
large ji,n = ji,Rn . This is a contradiction to ‖un − zRn‖ ≥

r
8 . ♦

Now we can finish the proof of our main theorem.
We take 0 < ε < 3rδr

8 and R ≥ Rr so that max∆k I(G0(y)) < kc + ε and
that I(G0(y)) ≥ kc− ε implies G0(y) ∈ N r

8
(zR).
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Next, choose ε < ε1 < c. Let

φ(u) =
‖u−X \Nr(zR)‖

‖u−N r
2
(zR)‖+ ‖u−X \Nr(zR)‖

.

and let U be a locally Lipschitz pseudo-gradient vector field for I on V \K such
that

(i) ‖U(u)‖ ≤ 4ε1
‖I′(u)‖ ,

(ii) I ′(u)U(u) ≥ 2ε1.
Let η be the flow given by the solution of

dη

dt
= −φ(η)U(η), η(0, u) = u.

Let u = G0(y) be such that I(u) ≥ kc−ε so that u ∈ N r
8
(zR). Using Proposition

2.1 we can show either (i) η(t, u) reaches ∂Br(zR) for some t ≤ 1 or (ii) η(t, u)
remains in Br(zR) for t ∈ [0, 1]. If (i) occurs, in some time interval [t1, t2],
η(t, u) reaches from ∂B r

8
(zR) to ∂Br(zR). Then it must reach I

kc−ε already in
the time interval. Otherwise,

7r

8
= ‖η(t2, u)− η(t1, u)‖ ≤

∫ t2
t1

φ(η)‖U(η(t, u)‖dt ≤
4ε1
δr

∫ t2
t1

φ(η)dt,

and

2ε ≥ I(η(t2, u))− I(η(t1, u)) =

∫ t2
t1

dI

dt
(η(t, u))dt ≥ 2ε1

∫ t2
t1

φ(η)dt.

This implies ε ≥ 7rδr
8 , a contradiction. Thus if (i) occurs there is a unique

σ(u) ≤ 1 such that I(η(σ(u), u)) = kc − ε. If (ii) occurs we may have either
η(t, u) has to go from B r

8
(zR) to the boundary of B r

2
(zR) and similar argument

shows that there is a unique σ(u) ≤ 1 such that I(η(σ(u), u)) = kc− ε, or η(t, u)
stays in B r

2
(zR) for t ∈ [0, 1]. In the latter case if η(t, u) does not reach Ikc−ε we

would have φ equal to 1 along η(t, u) and we have 2ε ≥ I(η(0, u))− I(η(1, u)) ≥
2ε1, a contradiction. In both cases, we have ‖η(σ(u), u) − u‖ ≤ r. We get
G1(y) = η(σ(G0(y)), G0(y)) which is a continuous map from ∆k into V and
agrees with G0(y) on ∂∆k. Moreover,

‖G1(y)−G0(y)‖ ≤ r. (3)

To finish the proof of Theorem 2.2, let us produce a contradiction as follows.
Applying Lemma 2.3 to G1(y) we conclude that there exists y ∈ ∆k such that

γ(G1(y)
(i)) = 0, i = 1, ..., k.

Due to (3), we obtain G1(y)
(i) 6= 0 for i = 1, ..., k, i.e., G1(y)(i) ∈ V for i =

1, ..., k. Applying Lemma 2.4, we get a contradiction with max I(G1(y)) ≤ kc−ε.
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