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Exponential dichotomies for linear systems with

impulsive effects ∗

Raúl Naulin

Abstract

In this paper we give conditions for the existence of a dichotomy for
the impulsive equation

µ(t, ε)x′ = A(t)x, t 6= tk,

x(t+k ) = Ckx(t
−
k ) ,

where µ(t, ε) is a positive function such that limµ(t, ε) = 0 in some sense.
The results are expressed in terms of the properties of the eigenvalues of
matrices A(t), the properties of the eigenvalues of matrices {Ck} and the
location of the impulsive times {tk} in [0,∞).

1 Introduction

In this paper we study the dichotomic properties of the impulsive system

µ(t, ε)x′(t) = A(t)x(t), t 6= tk, J = [0,∞), (1)

x(t+k ) = Ckx(t
−
k ), k ∈ N = {1, 2, 3, . . .} ,

where x(t±k ) = limt→t±k
x(t). The function A(·) and the sequence {Ck} have

properties to be specified later. The function µ(t, ε) depends on a parameter ε,
in general, belonging to a metric space E. We will assume that µ(t, ε), for each
fixed ε, is continuous. The cases we are interested in most are µ(t, ε) = ε > 0,
µ(t, ε) = µ(t), such that limt→∞ µ(t) = 0 and µ(t, ε) = 1. In what follows, for
technical purposes we shall suppose that

0 < µ(t, ε) ≤ 1, ∀(t, ε) ∈ J × E. (2)

For ordinary differential equations, the singular perturbed case (µ(t, ε) = ε >
0) has been intensively studied in [7, 15]; the regular case (µ(t, ε) = 1) has been
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226 Exponential dichotomies for linear systems

considered in [6]; the general setting of the problem (1), when µ(t, ε) = µ(t),
limt→∞ µ(t) = 0 was studied in [13].
The aim of this paper is to give a set of algebraic conditions of existence

of a (µ1, µ2)-dichotomy [4], meaning by this conditions involving the properties
of the functions of eigenvalues of matrices A(t), the eigenvalues of matrices
belonging to the sequence {Ck}, and the location of the impulsive times {tk}.

2 Notations and basic hypotheses

In this paper V stands for the field of complex numbers. We will assume that
a fixed norm ‖ · ‖ on the space V n is defined. For a matrix A ∈ V n×n, ‖A‖
will denote the corresponding functional matrix norm. If m and n are integral
numbers, then the set {m,m + 1,m + 2, . . . , n} will be denoted by m,n. The
symbol {tk} identifies a strictly increasing sequence of positive numbers, sat-
isfying limk→∞ tk = ∞. The solutions of all considered impulsive systems are
uniformly continuous on each interval Jk = (tk−1, tk]. Further notations;

- For a bounded function f , we denote ‖f‖∞ = sup{‖f(t)‖ : t ∈ J},

- For an absolutely integrable function f , we denote ‖f‖1 =
∫∞
0
‖f(t)‖dt,

- For a bounded sequence {Ck}, we denote ‖{Ck}‖∞ = sup{‖Ck‖ : k ∈ N},

- For a summable sequence {Ck}, we denote ‖{Ck}‖1 =
∑∞
k=1 ‖Ck‖,

-C({tk}) = {f : J → V n : f is uniformly continuous on all intervals Jk},

-BC({tk}) = {f ∈ C({tk}) : f is bounded}.

- The function i[s, t) will denote the number of impulsive times contained in
the interval [s, t) if t > s; if s ≤ tk < tk+1 < · · · < th < t, we define∑

[s,t)

Ci = Ck + Ck+2 + · · ·+ Ch,
∑
[t,t)

Ci = 0,

∏
[s,t)

Ci = ChCh−1 · · ·Ck,
∏
[t,t)

Ci = I .

We will denote by X(t) = X(t, ε) the fundamental matrix of the impulsive
system (1). By this we mean a function X : J → V n×n uniformly continuous,
of class C1 on each interval Jk, such that X(0

+) = I and X satisfies (1). The
definition and basic properties of function X(t, ε), for each fixed ε, are described
in [2, 8].
Below, we list the basic hypotheses H1-H5 we will use.

H1: The function A is bounded and piecewise uniformly continuous on J with
respect to {tk}. This last means: For any ρ > 0, there exists a number δ(ρ) > 0,
such that ‖A(t)−A(s)‖ < ρ, if |t− s| < δ, t, s ∈ Jk for all k ∈ N .

H2: There exist numbers p ≥ 0 and q > 1, such that

|i[s, t)− p(t− s)| ≤ q, s ≤ t.
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H3: {Ck}∞k=1 is a bounded sequence of invertible matrices.

H4: There exists a positive number γ, such that for any k, all eigenvalues µk
of the matrix Ck satisfy the condition γ|µk| ≥ 1.

Definition 1 We shall say that {λ1, λ2, . . . , λn}, the eigenvalues of matrix A,
are ordered by real parts (respectively, ordered by norms) iff

Reλ1 ≤ Reλ2 ≤ . . . ≤ Reλn, (respectively |λ1| ≤ |λ2| ≤ . . . ≤ |λn|).

In the sequel, we will assume that {λ1(t), λ2(t), . . . , λn(t)} the eigenvalues of
matrix A(t) are ordered by real parts, and {µ1(k), µ2(k), . . . , µn(k)} the eigen-
values of matrix Ck are ordered by norms.
We will consider the following piecewise constant function

um : J → R, um(t) =
ln |µm(k)|

tk − tk−1
, if t ∈ Jk. (3)

In order to alleviate the writing, let us denote for m ∈ 1, n− 1

αm(t, ε) =
Re(λm(t)− λm+1(t))

µ(t, ε)
+ um(t)− um+1(t).

The following hypothesis is a slight modification of a condition of splitting used
in [9].

H5: There exists a positive constant M such that the function

Um(t, ε) =

∫ t
0

1

µ(s, ε)
exp

{∫ t
s

αm(τ, ε)dτ

}
ds,

+

∫ +∞
t

1

µ(s, ε)
exp

{∫ s
t

αm(τ, ε)τ

}
ds

satisfies
‖Um(t, ε)‖ ≤M, ∀(t, ε) ∈ [0,∞)× E.

3 The quasidiagonalization method

We will assume that, for some positive number r, the families of matrices {A(t) :
t ∈ J} and {Ck : k ∈ N} are contained in the set

M(r) = {F ∈ V n×n : ‖F‖ ≤ r}.

For each matrix F ∈ M(r) and σ > 0, by Theorem 1.6 in [1], we may choose a
nonsingular matrix S such that

S−1FS = Λ(F ) +R(F, σ), ‖R(F, σ)‖ ≤ σ/2, (4)
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where Λ(F ) denotes the diagonal matrix of eigenvalues of matrix F , ordered by
real parts. Let us consider the ball B[F, ρ] = {G ∈ V n×n : ‖f − G‖ ≤ ρ}. For
any G ∈ B[F, ρ] we have

S−1GS = ReΛ(F ) + i ImΛ(F ) + S−1(G− F )S +R(F, σ), i2 = −1,

where

Λ(F ) = diag{λ1, λ2, . . . , λn}, ReΛ(F ) = diag{Reλ1,Reλ2, . . . ,Reλn}.

¿From this decomposition we obtain

S−1GS = ReΛ(G) + i ImΛ(F ) + T (F, ρ) +R(F, σ),

where
T (F, ρ) = (Λ(F )− Λ(G)) + S−1(G− F )S.

¿From Hurwitz’s theorem (see [5], page 148), the function L : V n×n → V n×n

defined by L(F ) = Re Λ(F ) is continuous. This assertion implies, for a fixed
number σ > 0 and a matrix F ∈M(r) the existence of a nonsingular matrix S
and a ρ > 0, such that if G ∈ B[F, ρ], then

S−1GS = ReΛ(G) + i ImΛ(F ) + Γ(F, σ), Γ(F, σ) := T (F, ρ) +R(F, σ),

and ‖Γ(F, σ)‖ ≤ σ. Since M(r) is compact, then given a σ > 0, there ex-
ist a covering F = {B[Fj , ρj ]}mj=1 of M(r), and nonsingular matrices S =
{S1, S2, . . . , Sm} having the following property: For a fixed G ∈ M(r) there
exists an index j ∈ {1, 2, . . . ,m}, such that G ∈ B[Fj , ρj ] and

S−1j GSj = ReΛ(G) + i ImΛ(Fj) + Γj(σ), ‖Γj(σ)‖ ≤ σ. (5)

Let ρ > 0 be a Lebesgue number of the covering F . According to H1, there
exists a δ > 0, non depending on k, such that for t, s ∈ Jk, |t− s| ≤ δ we have
‖A(t)−A(s)‖ < ρ. Let us define

n(k, δ) = inf{j ∈ N :
tk − tk−1
j

≤ δ},

and the partition of the interval Jk:

Pk = {t
k
0 , t
k
1 , . . . , t

k
n(k)}, t

k
0 = tk−1, t

k
n(k) = tk,

defined by

|tki−1 − t
k
i | = δk, i ∈ 1, n(k), δk :=

tk − tk−1
n(k, δ)

.

We emphasize that n(k, δ) = 1 iff tk − tk−1 ≤ δ. This and H2 yield

n(k, δ) ≤ L(p, δ)(tk − tk−1), L(p, δ) := max{
p

q − 1
,
2

δ
}. (6)



Raúl Naulin 229

According to the decomposition (5), we may assign to the interval (tki−1, t
k
i ] a

nonsingular matrix Sk,i ∈ S and Fk,i ∈ {Fj}mj=1, such that

S−1k,iA(t)Sk,i = ReΛ(t) + iImΛ(Fk,i) + Γk,i(σ), t ∈ (t
k
i−1, t

k
i ], (7)

where we have abbreviated Λ(t) = Λ(A(t)) and

‖Γk,i(σ)‖ ≤ σ. (8)

Regarding the sequence {Ck}∞k=1, we will accomplish a similar procedure.
Let us consider a matrix D ∈ M(r) and σ > 0. For some nonsingular matrix T
we will have, instead of (4), the decomposition

T−1DT = N(D) +R(D,σ), ‖R(D,σ)‖ < σ, (9)

where the matrix N(D) is defined by means of the eigenvalues D:

N(D) = diag{µ1, µ2, . . . , µn}, |µ1| ≤ |µ2| ≤ . . . ≤ |µn|.

We may write (9) in the form

T−1DT = |N(D)|eiArg(D) +R(D,σ),

where
Arg(D) = diag{arg(µ1), arg(µ2), . . . , arg(µn)}

and
|N(D)| = diag{|µ1|, |µ2|, . . . , |µn}|.

For a matrix C ∈ B[D, ρ], ρ > 0, we write

T−1CT = |N(C)|eiArg(D) + (|N(C)| − |N(D)|)eiArg(D)

+ T−1(C −D)T +R(D,σ), ‖R(D, ρ)‖ ≤ σ.

The Hurwitz’s theorem implies that the function N : V n×n → V n×n defined
by N (C) = |C| is continuous. SinceM(r) is compact, then for a given σ > 0,
there exists a covering D = {B[Di, ρi]}m̃i=1 of M(r), and a set of nonsingular
matrices T = {T1, T2, . . . , Tm̃} , such that for each Ck there exists a Tk ∈ T and
Dk ∈ {Di}m̃i=1 such that

T−1k CkTk = |N(Ck)|e
iArg(Dk) + Γ̃k(σ), ‖Γ̃k(σ)‖ ≤ σ. (10)

4 A change of variables

Let g : [0, 1] → [0, 1] be a strictly increasing function, g ∈ C∞, such that
g(0) = g′(0) = g′(1) = 0, g(1) = 1. For an ordered pair (Q,R) of invertible
matrices we define

θ : [a, b]→ V n×n, θ(t) = Q exp

{
g

(
t− a

b− a

)
Ln(Q−1R)

}
.
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The path θ is of class C∞. Moreover θ(t) is a nonsingular matrix for each
t, and θ(a) = Q, θ(b) = R, θ′(a) = 0, θ′(b) = 0. In the sequel, we shall
say that the path θ splices the ordered pair of matrices (Q,R) on the interval
[a, b]. In order to perform a change of variable of system (1), we splice matrices
(Sk,i, Sk,i+1), i ∈ 1, n(k)− 1 on an interval [tki − νk(ε)δk,i/2, t

k
i + νk(ε)δk,i/2],

where νk(ε) = inf{ µ(t, ε) : t ∈ Jk}, and δk,i are small numbers satisfying
νk(ε)δk,i < δk and another condition we will specify in the forthcoming definition
of number ν (see (13). Let us define the path

θk,i : [t
k
i − νk(ε)δk,i/2, t

k
i + νk(ε)δk,i/2]→ V

n×n

splicing the matrices (Sk,i, Sk,i+1) in the following way

θk,i(t) = Sk,i exp

{
g

(
t− tki + νk(ε)δk,i
µk(ε)δk,i

)
Ln(S−1k,iSk,i+1)

}
.

For the constant

K1(σ) = max
{(
‖Sk‖+ ‖Ln(S

−1
k Si)‖

)
exp

{
‖Ln(S−1k Si)‖

}
: 1 ≤ k, i ≤ m

}
we have the estimates

‖θk,i(t)‖∞ ≤ K1(σ), ‖θ
′
k,i(t)‖∞ ≤

K1(σ)

νk(ε)δk,i
. (11)

The matrix Tk+1 assigned to the impulsive time t
k+1
0 = tk+1 = t

k
n(k) and

the matrix Sk+1,1 are spliced on the interval [t
k+1
0 , tk+10 +µk+1(ε)δk+1,0/2] by a

path we denote by θk+1,0. The matrices (Sk,n(k), Tk+1) are spliced on the interval

[tkn(k)−νk(ε)δk,n(k)/2, t
k
n(k)] by a path we denote by θk,n(k). We emphasize that

θk+1,0(tk) = Tk1 = θk,n(k)(tk). A special mention deserves the time t = 0 which
is not considered as an impulsive time. We will attach to the time t = 0 the
matrix S1,1. For these splicing paths are valid similar estimates to (11), with a
modified constant for which we maintain the notation K1(σ).
Let us define the intervals

Ik = [t
k+1
0 − νk(ε)δk,0/2, t

k+1
0 + νk+1(ε)δk+1,0/2], k = 1, 2, . . . ,

Ik,i = (t
k
i − νk(ε)δk,i/2, t

k
i + νk(ε)δk,i/2), i ∈ 1, n(k)− 1,

(12)

and the number

ν =

∞∑
k=1

n(k)∑
i=1

δk,i. (13)

The choice of the numbers δk,i is at our disposal. Therefore, ν can be made as
small as necessary. Let us consider the C∞ function

S(t) =




θk+1,0(t), t ∈ [t
k+1
0 , tk+10 + νk+1(ε)δk,0/2], k = 0, 1, . . .

Sk,i, t ∈ [tki + νk(ε)δk,i/2, t
k
i+1 − νk(ε)δk,i+1/2], i ∈ 0, n(k)− 1,

θk,i(t), t ∈ [tki − νk(ε)δk,i/2, t
k
i + νk(ε)δk,i/2], i ∈ 1, n(k)− 1,

θk,n(k)(t), t ∈ [t
k
n(k)−1 − νk(ε)δk,n(k)/2, t

k
n(k)], k = 1, 2, . . .
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From this definition S′(t) = 0 except on the intervals Ik and Ik,i. Since S(tk) =
Tk, the change of variable x = S(t)y reduces System (1) to the form

µ(t, ε)y′(t) =
(
S−1(t)A(t)S(t) − µ(t, ε)S−1(t)S′(t)

)
y(t), t 6= tk, (14)

y(t+k ) =
(
|N(Ck)|ei Arg(Dk) + Γ̃k(σ)

)
y(tk), k ∈ N,

where ‖Γ̃k(σ)‖ ≤ σ. Thus, this change of variable yields a notable simplification
of the discrete component of (1). Let us define the left continuous function
L : J → V n×n by

L(0) = S1,1, L(t) = Sk,i, t ∈ (t
k
i−1, t

k
i ], i ∈ 1, n(k).

From S−1(t)A(t)S(t) = L−1(t)A(t)L(t) + F (t, σ), where

F (t, σ) = S−1(t)A(t)S(t) − L−1(t)A(t)L(t), (15)

we may write System (14) in the form

rcl µ(t, ε)y′(t) =
(
L−1(t)A(t)L(t) + F (t, σ)− µ(t, ε)S−1(t)S′(t)

)
y(t), t 6= tk,

y(t+k ) =
(
Nke
iArg(Dk) + Γ̃k(σ)

)
y(tk), k ∈ N .

From (7) and the definition of the piecewise constant functions

G(t) = ImΛ(Fk,i), t ∈ (t
k
i−1, t

k
i ], Γ(t, σ) = Γk,i(σ), t ∈ (t

k
i−1, t

k
i ], (16)

we can write the last system in the form

µ(t, ε)y′(t) =
(
ReΛ(t) + iG(t) + Γ(t, σ) + F (t, σ)

−µ(t, ε)S−1(t)S′(t)
)
y(t), t 6= tk, (17)

y(t+k ) =
(
Nke
iArg(Dk) + Γ̃k(σ)

)
y(tk), k ∈ N .

Lemma 1

‖Γ(t, σ)‖∞ ≤ σ, ‖{Γ̃k(σ)}‖∞ ≤ σ, (18)

‖µ(., ε)−1F (., σ)‖1 ≤ K2(σ)ν, (19)

∫ t
s

‖S−1(τ)S′(τ)‖dτ ≤ K3(σ)L(δ, p)(t− s), t ≥ s. (20)

Proof. The first estimate of (18) follows from the definition of function Γ(t, σ)
given by (16) and (8), and the second follows from (10). From definition (15),
there exists a constant K2(σ) depending only on σ such that

‖F (·, σ)‖∞ ≤ K2(σ).
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Moreover, from (15) we observe that F (·, σ) vanishes outside of the intervals
Ik,i and Ik. Therefore, from the definitions (12)-(13) we obtain∫ ∞

0

|
F (t, σ)

µ(t, ε)
|dt = K2(σ)

(∑
i,k

∫
Ik,i

1

µk(ε)
dt+

∑
k

∫
Ik

1

µk(ε)
dt
)
≤ K2(σ)ν .

In order to obtain (20) we observe that S−1(t)S′(t) vanishes outside of the
intervals Ik,i and Ik. Moreover, there exists a constant K3(σ) depending only
on σ, such that on each interval [tki−1, t

k
i ] we have∫ tki

tki−1

‖S−1(τ)S′(τ)‖dτ ≤ K3(σ).

From this estimate and (6), it follows∫ t
s

‖S−1(τ)S′(τ)‖dτ ≤ K3(σ)L(p, δ)(t − s).

In what follows we unify the notations of the constants Ki(σ), i = 1, 2, 3 in a
simple constant K(σ).

5 Splitting and dichotomies

We are interested in the proof of existence of a dichotomy for the System (17).
In this task we will follow the way indicated by Coppel in [6]: First we split
System (17) in two systems of lower dimensions and after this, the Gronwall
inequality for piecewise continuous functions [3] will give the required result.
Following the ideas of paper [11], we write System (17) in the form:

µ(t, ε)y′(t) =
(
ReΛ(t) + iG(t) + Γ(t, σ) + F (t, σ)

−µ(t, ε)S−1(t)S′(t)
)
y(t), t 6= tk, (21)

∆y(tk) =
(
Bk + Γ̂k(σ)

)
y(t+k ), k ∈ N ,

where ∆y(tk) = y(t
+
k )− y(t

−
k ), Bk = I −N

−1
k e
−i Arg(Dk), and

Γ̂k(σ) = N
−1
k e
−iArg(Dk)Γk(σ)

(
Nke
iArg(Dk) + Γk(σ)

)−1
.

From hypotheses H3-H4 and (18) we obtain, for a small σ, the estimate

|Γ̂k(σ)| ≤
σγ2

1− γσ
. (22)

On the other hand, the fundamental matrix of system

µ(t, ε)w′(t) = (ReΛ(t) + iG(t))w(t), t 6= tk,

∆w(tk) = Bkw(t
+
k ), k ∈ N ,
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coincides with the fundamental matrix Z(t, ε) = Z(t) of the diagonal system

µ(t, ε)z′(t) = (ReΛ(t) + iG(t)) z(t), t 6= tk, (23)

z(t+k ) = |N(Ck)|e
iArg(Dk)z(tk), k ∈ N ,

which is equal to Z(t) := Φ(t)Ψ(t), where

Ψ(t) = exp

{∫ t
0

ReΛ(τ) + iG(τ)

µ(τ, ε)
dτ

}
, Φ(t) =

∏
[0,t)

|N(Ck)|e
i Arg(Dk).

For the projection matrix P = diag{

m︷ ︸︸ ︷
1, 1, . . . , 1, 0, . . . , 0}, the function Φ satisfies

the following estimates:

‖Φ(t)P‖ ≤ exp
{∑
[0,t)

ln |µm(k)|
}
.

From definition (3), we may write

‖Φ(t)P‖ ≤ L exp
{∫ t
0

um(τ)dτ
}
,

‖Φ−1(t)(I − P )‖ ≤ L exp
{∫ 0
t

um+1(τ)dτ
}
,

where L is a constant depending on the condition H3 only. Since Φ(t) and Ψ(t)
commute with P , then for t ≥ s we obtain the following estimates

‖Z(t)PZ−1(s)‖ ≤ L1 exp
{∫ t
s

(Reλm
µ(·, ε)

+ um
)
(τ)dτ

}
, (24)

‖Z(s)(I − P )Z−1(t)‖ ≤ L1 exp
{ ∫ s
t

(Reλm+1
µ(·, ε)

+ um+1
)
(τ)dτ

}
,

where L1 is a constant independent of σ and ε. In the sequelW (t, s) will denote
the matrix: W (t, s) = Z(t)Z−1(s). ¿From (24), for t ≥ s, we have

‖W (t, s)P‖‖W (s, t)(I − P )‖ ≤ L21 exp
{∫ t
s

αm(τ, ε)dτ
}
. (25)

For a given matrix C, we write {C}1 = PCP + (I − P )C(I − P ).

Definition 2 By a splitting of System (21), we mean the existence of a function
T : J → V n×n with the following properties:

T1: T is continuously differentiable on each interval Jk,

T2: For each impulsive time tk, there exists the right hand side limit T (t
+
k ),

T3: T (t) is invertible for each t ∈ Jk. T (t
+
k ) are invertible for all k,
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T4: The functions T and T−1 are bounded,

T5: The change of variables y(t) = T (t)z(t) reduces System (21) to

µ(t, ε)z′(t) =
(
ReΛ(t) + iG(t) + {(Γ(t, σ) + F (t, σ)) T (t)}1

−µ(t, ε){S−1(t)S′(t)T (t)}1
)
z(t), t 6= tk, (26)

∆z(tk) =
(
Bk + {Γ̂k(σ)}1

)
z(t+k ), k ∈ N .

For ordinary differential equations, problem T1-T5 was solved in [6]. For
difference equations, it was solved in [14]. The problem of splitting for impulsive
equations is treated in [11]. None of the cited works study the splitting of system
(21), where the unbounded coefficient {S−1(t)S′(t)}1 appears.
Following the general setting of [6, 14, 11], we will seek a function T in the

form T (t) = I +H(t), where H ∈ BC({tk}), ‖H‖∞ ≤ 1/2, such that T satisfies
conditions T1-T5. In the following we use the notations

Hk = H(tk), H
+
k = H(t

+
k ).

Let us consider the following operators: The operator of continuous splitting

O(H)(t) =

∫ t
t0

1

µ(s, ε)
W (t, s)P (I −H(s))(Γ(s, σ)

+F (s, σ))(I +H(s))(I − P )W (s, t)ds

−

∫ ∞
t

1

µ(s, ε)
W (t, s)(I − P )(I −H(s))(Γ(s, σ)

+F (s, σ))(I +H(s))PW (s, t) ds ;

the operator of discrete splitting

D(H)(t) =
∑
[t0,t)

W (t, tk)P (I −Hk)Γ̃k(σ)(I +H
+
k )(I − P )W (t

+
k , t)

−
∑
[t,∞)

W (t, tk)(I − P )(I −Hk)Γ̃k(σ)(I +H
+
k )PW (t

+
k , t );

and the operator of impulsive splitting

S(H)(t)

= −

∫ t
t0

W (t, s)P (I −H(s))(S−1(s)S′(s)(I +H(s))(I − P )W (s, t)ds

+

∫ ∞
t

W (t, s)(I − P )(I −H(s))S−1(s)S(s)(I +H(s))PW (s, t)ds .
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Lemma 2 Uniformly with respect to t0 ∈ J , for some constant L2 non depend-
ing on σ nor on ε, we have the following estimates

‖O(H)‖∞ ≤ L2(σ +K(σ)ν), (27)

and

‖D(H)(t)‖∞ ≤ L2σ. (28)

Proof. From condition H5 and (25) we have the estimate

‖O(H)(t)‖ =

∫ t
t0

9L21
4µ(s, ε)

exp
{∫ t
s

αm(τ, ε)dτ
}
(‖Γ(s, σ)‖+ ‖F (s, σ)‖) ds

+

∫ ∞
t

9L21
4µ(s, ε)

exp
{∫ s
t

αm(τ, ε)dτ
}
(‖Γ(s, σ)‖+ ‖F (s, σ)‖) ds

≤
9L21
4

(
σ‖Um(·, ε)‖∞ +

∫ ∞
t0

‖F (s, σ)‖

µ(s, ε)
ds

)
.

Now the estimate (26) follows from (18) and H5, for some constant L2.
For a fixed t > 0, let us consider the impulsive times divided as follows:

t1 < t2 < . . . < tk < t ≤ tk+1 < tk+2 < . . .

From (17) and (24) we can write the estimate

‖D(H)(t)‖

≤
9L21σ

4

k∑
i=1

exp
{∫ t
ti

αm(τ, ε)dτ
}
+
9L21σ

4

∞∑
i=k+1

exp
{∫ ti
t

αm(τ, ε)dτ
}

≤
9L21σ

4

(
2 +

k−1∑
i=1

exp
{∫ t
ti

αm(τ, ε)dτ
}
+

∞∑
i=k+2

exp
{∫ ti
t

αm(τ, ε)dτ
})

≤
9L21σ

4

(
2 +

k−1∑
i=1

1

ti − ti−1

∫ ti
ti−1

exp
{∫ t
s

αm(τ, ε)dτ
}
ds

+

∞∑
i=k+2

1

ti+1 − ti

∫ ti+1
ti

exp
{∫ s
t

αm(τ, ε)dτ
}
ds
)

From (2) and H2 we obtain

‖D(H)(t)‖ ≤
9L21σp

4(K − 1)

(
2 +

p

4(q − 1)

∫ t
0

1

µ(s, ε)
exp
{∫ t
s

αm(τ, ε)dτ
}
ds

+
p

4(q − 1)

∫ ∞
t

1

µ(s, ε)
exp
{ ∫ s
t

αm(τ, ε)dτ
})
.

From this estimate it follows (28) for some constant L2. ♦
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The estimate of operator S is more complicated. From (25) we obtain

‖S(H)(t)‖ ≤ I1(t) + I2(t),

where

I1(t) =

∫ t
t0

exp
{∫ t
s

αm(τ, ε)dτ
}
‖S−1(s)S′(s)‖ds ,

I2(t) =

∫ ∞
t

exp
{ ∫ s
t

αm(τ, ε)dτ
}
‖S−1(s)S′(s)‖ds.

We can write I1 in the form

I1(t) =

∫ t
t0

exp
{∫ t
s

αm(τ, ε)dτ
} d
ds

∫ s
t

‖S−1(ξ)S′(ξ)‖dξds .

Integration by parts gives

I1(t) = exp
{∫ t
t0

αm(τ, ε)dτ
} ∫ t
t0

‖S−1S′‖(u)du

−

∫ t
t0

αm(s, ε) exp
{∫ t
s

αm(τ, ε)dτ
} ∫ t
s

‖S−1S′‖(u)du .

Taking into account the estimate (20) we obtain

I1(t) ≤ K(σ)L(δ, p) exp
{∫ t
t0

αm(τ, ε)dτ
}
(t− t0)

−K(σ)L(δ, p)

∫ t
t0

αm(s, ε) exp
{ ∫ t
s

αm(τ, ε)dτ
}
(t− s)ds .

Once again, integrating by parts the last integral, from the right hand side of
this inequality we obtain

I1(t) ≤ K(σ)L(δ, p)

∫ t
t0

exp
{∫ t
s

αm(τ, ε)dτ
}
ds . (29)

By similar tokens

I2(t) ≤ K(σ)L(δ, p)

∫ ∞
t

exp
{ ∫ s
t

αm(τ, ε)dτ
}
ds . (30)

Using (2) and the hypothesis H5 we obtain the estimate

Ii(t) ≤MK(σ)L(δ, p)‖µ(·, ε)‖∞, i = 1, 2 .

Thus, for a given α > 0, if ‖µ(·, ε)‖∞ is small enough, we will have

‖S(H)(t)‖ ≤ α . (31)
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Theorem 1 The conditions H1-H5 imply, for a small values of the norm
{µ(·, ε)}, the existence of a function T : [t0,∞) → V n×n satisfying T1-T5.
Moreover ‖T ‖ ≤ 3

2 , ‖T
−1‖ ≤ 2.

Proof. According to Lemma 4 and Lemma 5, the operator T = O+D+S, for
small values of σ, ν and α (see (31), satisfies

T : {H ∈ BC({tk}) : ‖H‖∞ ≤ 1/2} → {H ∈ BC({tk}) : ‖H‖∞ ≤ 1/2}.

Also, for small values of σ, ν and α this operator is a contraction. This and
further details of this theory are well known for exponential dichotomies. The
corresponding result for the dichotomy (24) are similar [6, 14, 12]. ♦

Once we have split (17), we write System (26) in the form

µ(t, ε)z′(t) =
(
ReΛ(t) + iG(t) + {(Γ(t, σ) + F (t, σ)) T (t)}1

−µ(t, ε){S−1(t)S′(t)T (t)}1
)
z(t), t 6= tk, (32)

z(t+k ) =
(
Nke
iArg(Dk) + {Gk(σ)}1

)
z(tk), k ∈ N ,

where

Gk(σ) =
(
I −Nke

iArg(Dk){Γ̂k(σ)}1
)−1
Nke
iArg(Dk) −Nke

iArg(Dk).

From (22) we obtain

‖Gk(σ)‖ ≤ L3σ, L3 = 2‖{Ck}‖∞, if 0 < 2σ < ‖{Ck}‖
−1
∞ . (33)

The right hand side equation of (32) commute with projection P . Therefore,
(32) may be written as two systems of dimensions m and n−m,

µ(t, ε)z′j(t) =
(
ReΛj(t) + iGj(t) + Γj(t, σ) + Fj(t, σ)

+µ(t, ε)Vj(t)
)
zi(t), t 6= tk, (34)

zj(t
+
k ) =

(
Nk,je

iArg(Dk,j) +Gk,j(σ)
)
zj(tk), k ∈ N , (35)

where j = 1, 2. The matrices Λ1(t), Λ2(t) are defined by

Λ1(t) = {λ1(t), λ2(t), . . . , λm(t)}, Λ2(t) = {λm+1(t), λm+2(t), . . . , λn(t)},

and similarly the diagonal matrices Gj(t), Nk,j and Dk,j are defined. The
matrices Gk,j(σ) satisfy estimate (33). Γj(t, σ) has the estimate (18), where
instead of σ it is necessary to write 3σ, Fj(t, σ) has the estimate (19) and

‖

∫ t
s

Vj(τ)dτ‖ ≤ 3‖

∫ t
s

S−1(τ)S′(τ)dτ‖ ≤ 3L(δ, p)K(σ)(t− s), t ≥ s.
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The Gronwall inequality for piecewise continuous functions [3] gives the follow-
ing estimates for Zi(t), the fundamental matrices of systems (34), j = 1, 2:

‖Z1(t)Z
−1
1 (s)‖ ≤ L exp

{∫ t
s

µ1(τ, ε)dτ
}
, s ≤ t,

‖Z2(t)Z
−1
2 (s)‖ ≤ L exp

{∫ t
s

µ2(τ, ε)dτ
}
, t ≤ s,

where L is a constant non depending on ε neither on σ, and

µ1(t, ε) =
Re(λm(t))

µ(t, ε)
+ um(t) + L4σ + 3L(δ, p)K(σ),

µ2(t, ε) =
Re(λm+1(t))

µ(t, ε)
+ um+1(t) + L4σ + 3L(δ, p)K(σ),

with a constant L4 = 3 + L3. Since the decoupled system (34) is kinetically
similar to System (1), we obtain for this system the following

Theorem 2 If the hypotheses H1-H5 are fulfilled, then for a small value of
‖µ(·, ε)‖ the System (1) has the following (µ1, µ2)-dichotomy:

‖X(t, ε)PX−1(s, ε)‖ ≤ L exp
{∫ t
s

µ1(τ, ε)dτ
}
, s ≤ t, (36)

‖X(t, ε)PX−1(s, ε)‖ ≤ L exp
{∫ t
s

µ2(τ, ε)dτ
}
, t ≤ s ,

where L is a constant independent of ε and σ.

6 Dichotomies for linear differential systems

In this section we present some applications of formulas (36).

The case ‖µ(·, ε)‖∞ ≤ ε

Theorem 3 Under conditions H1-H5, if ‖µ(·, ε)‖ ≤ ε, ε ∈ (0,∞), then there
exists a positive number ε0 such that for each ε ∈ (0, ε0), the impulsive system
(1) has the dichotomy (36).

In the particular case µ(t, ε) = ε, we obtain the system

εx′(t) = A(t)x(t), t 6= tk, J = [0,∞), (37)

x(t+k ) = Ckx(t
−
k ), k ∈ N = {1, 2, 3, . . .},

and the dichotomy (36) has the form

µ1(t, ε) =
Re(λm(t)) + εum(t) + L4εσ + 3εL(δ, p)K(σ)

ε
,

µ2(t, ε) =
Re(λm+1(t)) + εum+1(t) + L4εσ + 3εL(δ, p)K(σ)

ε
.
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Considering in (37) Ck = I for k ∈ N , we obtain that the solutions of this
sytems coincide with the solutions of the ordinary system with a small and a
positive parameter at the derivative

εy′(t) = A(t)y(t). (38)

Denoting by Y (t, ε) the fundamental matrix of System (38), from (36) we obtain
the dichotomy

‖Y (t, ε)PY −1(s, ε)‖ ≤ K exp
{∫ t
s

µ1(τ, ε)dτ
}
, s ≤ t,

‖Y (t, ε)(I − P )Y −1(s, ε)‖ ≤ K exp
{
−

∫ s
t

µ2(τ, ε)
}
, t ≤ s,

where

µ1(t, ε) =
Re(λm(t)) + L4εσ + εL(δ, 0)K(σ)

ε
,

µ2(t, ε) =
Re(λm+1(t)) + L4εσ + 3εL(δ, 0)K(σ)

ε
.

If Re(λm(t)) ≤ −α < 0 and Re(λm(t)) ≥ β > 0, for all values of t, for a small
ε0, we obtain for (38) the dichotomy

‖Y (t, ε)PY −1(s, ε)‖ ≤ L exp
{
−
α

2ε
(t− s)

}
, s ≤ t,

‖Y (t, ε)(I − P )Y −1(s, ε)‖ ≤ L exp
{ β
2ε
(t− s)

}
, t ≤ s,

for ε ∈ (0, ε0] and L is independent of ε. This dichotomy was obtained by Chang
[7] for almost periodic systems and by Mitropolskii-Lykova [9] for a system (38)
which function A(t) is uniformly continuous on J .

The case µ(t, ε) = µ(t)→ 0, if t→∞

In this case the condition limt→∞ µ(t) = 0 allows to obtain a small value of
|µ(t, ε)| if we consider t ∈ [t0,∞). All the reasoning leading to Theorem 2 can
be acomplished on the interval [t0,∞) instead of [0,∞).

Theorem 4 If we assume valid H1-H5, where U(t, ε) is defined with

αm(t, ε) =
λm(t)− λm+1(t)

µ(t)
+ um(t)− um+1(t),

(therefore U(t, ε) does not depend on ε), then the impulsive system

µ(t)x′(t) = A(t)x(t), t 6= tk, J = [0,∞)

x(t+k ) = Ckx(t
−
k ), k ∈ N = {1, 2, 3, . . .} ,
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has the dichotomy

‖X(t)PX−1(s)‖ ≤ K exp
{∫ t
s
µ1(τ)dτ

}
, s ≤ t,

‖X(t)(I − P )X−1(s)‖ ≤ K exp
{∫ s
t
µ2(τ)

}
, t ≤ s ,

where

µ1(t) =
Re(λm(t)) + L4µ(t)σ + µ(t)L(δ, 0)K(σ)

µ(t)
,

µ2(t) =
Re(λm+1(t)) + L4σµ(t) + 3µ(t)L(δ, 0)K(σ)

µ(t)
.

As an application of the above formula let us consider the ordinary system

µ(t)x′(t) = A(t)x(t), lim
t→∞

µ(t) = 0. (39)

Theorem 5 If A(·) satisfies H1 and the function Um(t) defined in H5 with

αm(t, ε) =
λm(t)− λm+1(t)

µ(t)
,

is bounded, then system (39) has the dichotomy (36), where

µ1(t) =
Re(λm(t)) + 3σµ(t) + µ(t)L(δ, 0)K(σ)

µ(t)
,

µ2(t) =
Re(λm+1(t)) − 3σµ(t)− 3µ(t)L(δ, 0)K(σ)

µ(t)
.

The above theorem gives conditions of existence of a (µ1, µ2)- dichotomy for
(39) with an unbounded function µ(t)−1A(t). These systems have been studied
in [13].
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