Exponential dichotomies for linear systems with impulsive effects *

Raúl Naulin

Abstract

In this paper we give conditions for the existence of a dichotomy for the impulsive equation $$
\begin{gathered} \mu(t, \varepsilon) x^{\prime}=A(t) x, t \neq t_{k}, \\ x\left(t_{k}^{+}\right)=C_{k} x\left(t_{k}^{-}\right), \end{gathered}
$$ where $\mu(t, \varepsilon)$ is a positive function such that $\lim \mu(t, \varepsilon)=0$ in some sense. The results are expressed in terms of the properties of the eigenvalues of matrices $A(t)$, the properties of the eigenvalues of matrices $\left\{C_{k}\right\}$ and the location of the impulsive times $\left\{t_{k}\right\}$ in $[0, \infty)$.

1 Introduction

In this paper we study the dichotomic properties of the impulsive system

$$
\begin{gather*}
\mu(t, \varepsilon) x^{\prime}(t)=A(t) x(t), \quad t \neq t_{k}, J=[0, \infty) \tag{1}\\
x\left(t_{k}^{+}\right)=C_{k} x\left(t_{k}^{-}\right), \quad k \in \mathbb{N}=\{1,2,3, \ldots\}
\end{gather*}
$$

where $x\left(t_{k}^{ \pm}\right)=\lim _{t \rightarrow t_{k}^{ \pm}} x(t)$. The function $A(\cdot)$ and the sequence $\left\{C_{k}\right\}$ have properties to be specified later. The function $\mu(t, \varepsilon)$ depends on a parameter ε, in general, belonging to a metric space E. We will assume that $\mu(t, \varepsilon)$, for each fixed ε, is continuous. The cases we are interested in most are $\mu(t, \varepsilon)=\varepsilon>0$, $\mu(t, \varepsilon)=\mu(t)$, such that $\lim _{t \rightarrow \infty} \mu(t)=0$ and $\mu(t, \varepsilon)=1$. In what follows, for technical purposes we shall suppose that

$$
\begin{equation*}
0<\mu(t, \varepsilon) \leq 1, \forall(t, \varepsilon) \in J \times E \tag{2}
\end{equation*}
$$

For ordinary differential equations, the singular perturbed case $(\mu(t, \varepsilon)=\varepsilon>$ 0) has been intensively studied in $[7,15]$; the regular case $(\mu(t, \varepsilon)=1)$ has been

[^0]considered in [6]; the general setting of the problem (1), when $\mu(t, \varepsilon)=\mu(t)$, $\lim _{t \rightarrow \infty} \mu(t)=0$ was studied in [13].

The aim of this paper is to give a set of algebraic conditions of existence of a (μ_{1}, μ_{2})-dichotomy [4], meaning by this conditions involving the properties of the functions of eigenvalues of matrices $A(t)$, the eigenvalues of matrices belonging to the sequence $\left\{C_{k}\right\}$, and the location of the impulsive times $\left\{t_{k}\right\}$.

2 Notations and basic hypotheses

In this paper V stands for the field of complex numbers. We will assume that a fixed norm $\|\cdot\|$ on the space V^{n} is defined. For a matrix $A \in V^{n \times n},\|A\|$ will denote the corresponding functional matrix norm. If m and n are integral numbers, then the set $\{m, m+1, m+2, \ldots, n\}$ will be denoted by $\overline{m, n}$. The symbol $\left\{t_{k}\right\}$ identifies a strictly increasing sequence of positive numbers, satisfying $\lim _{k \rightarrow \infty} t_{k}=\infty$. The solutions of all considered impulsive systems are uniformly continuous on each interval $J_{k}=\left(t_{k-1}, t_{k}\right]$. Further notations;

- For a bounded function f, we denote $\|f\|_{\infty}=\sup \{\|f(t)\|: t \in J\}$,
- For an absolutely integrable function f, we denote $\|f\|_{1}=\int_{0}^{\infty}\|f(t)\| d t$,
- For a bounded sequence $\left\{C_{k}\right\}$, we denote $\left\|\left\{C_{k}\right\}\right\|_{\infty}=\sup \left\{\left\|C_{k}\right\|: k \in \mathbb{N}\right\}$,
- For a summable sequence $\left\{C_{k}\right\}$, we denote $\left\|\left\{C_{k}\right\}\right\|_{1}=\sum_{k=1}^{\infty}\left\|C_{k}\right\|$,
$-C\left(\left\{t_{k}\right\}\right)=\left\{f: J \rightarrow V^{n}: f\right.$ is uniformly continuous on all intervals $\left.J_{k}\right\}$, $-B C\left(\left\{t_{k}\right\}\right)=\left\{f \in C\left(\left\{t_{k}\right\}\right): f\right.$ is bounded $\}$.
- The function $i[s, t)$ will denote the number of impulsive times contained in the interval $[s, t)$ if $t>s$; if $s \leq t_{k}<t_{k+1}<\cdots<t_{h}<t$, we define

$$
\begin{gathered}
\sum_{[s, t)} C_{i}=C_{k}+C_{k+2}+\cdots+C_{h}, \quad \sum_{[t, t)} C_{i}=0 \\
\prod_{[s, t)} C_{i}=C_{h} C_{h-1} \cdots C_{k}, \quad \prod_{[t, t)} C_{i}=I
\end{gathered}
$$

We will denote by $X(t)=X(t, \varepsilon)$ the fundamental matrix of the impulsive system (1). By this we mean a function $X: J \rightarrow V^{n \times n}$ uniformly continuous, of class C^{1} on each interval J_{k}, such that $X\left(0^{+}\right)=I$ and X satisfies (1). The definition and basic properties of function $X(t, \varepsilon)$, for each fixed ε, are described in $[2,8]$.

Below, we list the basic hypotheses H1-H5 we will use.
H1: The function A is bounded and piecewise uniformly continuous on J with respect to $\left\{t_{k}\right\}$. This last means: For any $\rho>0$, there exists a number $\delta(\rho)>0$, such that $\|A(t)-A(s)\|<\rho$, if $|t-s|<\delta, t, s \in J_{k}$ for all $k \in N$.
H2: There exist numbers $p \geq 0$ and $q>1$, such that

$$
|i[s, t)-p(t-s)| \leq q, s \leq t
$$

H3: $\left\{C_{k}\right\}_{k=1}^{\infty}$ is a bounded sequence of invertible matrices.
H4: There exists a positive number γ, such that for any k, all eigenvalues μ_{k} of the matrix C_{k} satisfy the condition $\gamma\left|\mu_{k}\right| \geq 1$.

Definition 1 We shall say that $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$, the eigenvalues of matrix A, are ordered by real parts (respectively, ordered by norms) iff

$$
\operatorname{Re} \lambda_{1} \leq \operatorname{Re} \lambda_{2} \leq \ldots \leq \operatorname{Re} \lambda_{n},\left(\text { respectively }\left|\lambda_{1}\right| \leq\left|\lambda_{2}\right| \leq \ldots \leq\left|\lambda_{n}\right|\right)
$$

In the sequel, we will assume that $\left\{\lambda_{1}(t), \lambda_{2}(t), \ldots, \lambda_{n}(t)\right\}$ the eigenvalues of matrix $A(t)$ are ordered by real parts, and $\left\{\mu_{1}(k), \mu_{2}(k), \ldots, \mu_{n}(k)\right\}$ the eigenvalues of matrix C_{k} are ordered by norms.

We will consider the following piecewise constant function

$$
\begin{equation*}
u_{m}: J \rightarrow \mathbb{R}, u_{m}(t)=\frac{\ln \left|\mu_{m}(k)\right|}{t_{k}-t_{k-1}}, \quad \text { if } t \in J_{k} \tag{3}
\end{equation*}
$$

In order to alleviate the writing, let us denote for $m \in \overline{1, n-1}$

$$
\alpha_{m}(t, \varepsilon)=\frac{\operatorname{Re}\left(\lambda_{m}(t)-\lambda_{m+1}(t)\right)}{\mu(t, \varepsilon)}+u_{m}(t)-u_{m+1}(t)
$$

The following hypothesis is a slight modification of a condition of splitting used in [9].
H5: There exists a positive constant M such that the function

$$
\begin{aligned}
U_{m}(t, \varepsilon) & =\int_{0}^{t} \frac{1}{\mu(s, \varepsilon)} \exp \left\{\int_{s}^{t} \alpha_{m}(\tau, \varepsilon) d \tau\right\} d s \\
& +\int_{t}^{+\infty} \frac{1}{\mu(s, \varepsilon)} \exp \left\{\int_{t}^{s} \alpha_{m}(\tau, \varepsilon) \tau\right\} d s
\end{aligned}
$$

satisfies

$$
\left\|U_{m}(t, \varepsilon)\right\| \leq M, \forall(t, \varepsilon) \in[0, \infty) \times E
$$

3 The quasidiagonalization method

We will assume that, for some positive number r, the families of matrices $\{A(t)$: $t \in J\}$ and $\left\{C_{k}: k \in \mathbb{N}\right\}$ are contained in the set

$$
\mathcal{M}(r)=\left\{F \in V^{n \times n}:\|F\| \leq r\right\}
$$

For each matrix $F \in \mathcal{M}(r)$ and $\sigma>0$, by Theorem 1.6 in [1], we may choose a nonsingular matrix S such that

$$
\begin{equation*}
S^{-1} F S=\Lambda(F)+R(F, \sigma),\|R(F, \sigma)\| \leq \sigma / 2 \tag{4}
\end{equation*}
$$

where $\Lambda(F)$ denotes the diagonal matrix of eigenvalues of matrix F, ordered by real parts. Let us consider the ball $B[F, \rho]=\left\{G \in V^{n \times n}:\|f-G\| \leq \rho\right\}$. For any $G \in B[F, \rho]$ we have

$$
S^{-1} G S=\operatorname{Re} \Lambda(F)+i \operatorname{Im} \Lambda(F)+S^{-1}(G-F) S+R(F, \sigma), i^{2}=-1
$$

where

$$
\Lambda(F)=\operatorname{diag}\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}, \operatorname{Re} \Lambda(F)=\operatorname{diag}\left\{\operatorname{Re} \lambda_{1}, \operatorname{Re} \lambda_{2}, \ldots, \operatorname{Re} \lambda_{n}\right\}
$$

¿From this decomposition we obtain

$$
S^{-1} G S=\operatorname{Re} \Lambda(G)+i \operatorname{Im} \Lambda(F)+T(F, \rho)+R(F, \sigma)
$$

where

$$
T(F, \rho)=(\Lambda(F)-\Lambda(G))+S^{-1}(G-F) S
$$

¿From Hurwitz's theorem (see [5], page 148), the function $\mathcal{L}: V^{n \times n} \rightarrow V^{n \times n}$ defined by $\mathcal{L}(F)=\operatorname{Re} \Lambda(F)$ is continuous. This assertion implies, for a fixed number $\sigma>0$ and a matrix $F \in \mathcal{M}(r)$ the existence of a nonsingular matrix S and a $\rho>0$, such that if $G \in B[F, \rho]$, then

$$
S^{-1} G S=\operatorname{Re} \Lambda(G)+i \operatorname{Im} \Lambda(F)+\Gamma(F, \sigma), \Gamma(F, \sigma):=T(F, \rho)+R(F, \sigma)
$$

and $\|\Gamma(F, \sigma)\| \leq \sigma$. Since $\mathcal{M}(r)$ is compact, then given a $\sigma>0$, there exist a covering $\mathcal{F}=\left\{B\left[F_{j}, \rho_{j}\right]\right\}_{j=1}^{m}$ of $\mathcal{M}(r)$, and nonsingular matrices $\mathcal{S}=$ $\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$ having the following property: For a fixed $G \in \mathcal{M}(r)$ there exists an index $j \in\{1,2, \ldots, m\}$, such that $G \in B\left[F_{j}, \rho_{j}\right]$ and

$$
\begin{equation*}
S_{j}^{-1} G S_{j}=\operatorname{Re} \Lambda(G)+i \operatorname{Im} \Lambda\left(F_{j}\right)+\Gamma_{j}(\sigma),\left\|\Gamma_{j}(\sigma)\right\| \leq \sigma \tag{5}
\end{equation*}
$$

Let $\rho>0$ be a Lebesgue number of the covering \mathcal{F}. According to $\mathbf{H 1}$, there exists a $\delta>0$, non depending on k, such that for $t, s \in J_{k},|t-s| \leq \delta$ we have $\|A(t)-A(s)\|<\rho$. Let us define

$$
n(k, \delta)=\inf \left\{j \in \mathbb{N}: \frac{t_{k}-t_{k-1}}{j} \leq \delta\right\}
$$

and the partition of the interval J_{k} :

$$
\mathcal{P}_{k}=\left\{t_{0}^{k}, t_{1}^{k}, \ldots, t_{n(k)}^{k}\right\}, t_{0}^{k}=t_{k-1}, t_{n(k)}^{k}=t_{k}
$$

defined by

$$
\left|t_{i-1}^{k}-t_{i}^{k}\right|=\delta_{k}, i \in \overline{1, n(k)}, \delta_{k}:=\frac{t_{k}-t_{k-1}}{n(k, \delta)}
$$

We emphasize that $n(k, \delta)=1$ iff $t_{k}-t_{k-1} \leq \delta$. This and $\mathbf{H} 2$ yield

$$
\begin{equation*}
n(k, \delta) \leq L(p, \delta)\left(t_{k}-t_{k-1}\right), L(p, \delta):=\max \left\{\frac{p}{q-1}, \frac{2}{\delta}\right\} \tag{6}
\end{equation*}
$$

According to the decomposition (5), we may assign to the interval $\left(t_{i-1}^{k}, t_{i}^{k}\right]$ a nonsingular matrix $S_{k, i} \in \mathcal{S}$ and $F_{k, i} \in\left\{F_{j}\right\}_{j=1}^{m}$, such that

$$
\begin{equation*}
S_{k, i}^{-1} A(t) S_{k, i}=\operatorname{Re} \Lambda(t)+i \operatorname{Im} \Lambda\left(F_{k, i}\right)+\Gamma_{k, i}(\sigma), t \in\left(t_{i-1}^{k}, t_{i}^{k}\right] \tag{7}
\end{equation*}
$$

where we have abbreviated $\Lambda(t)=\Lambda(A(t))$ and

$$
\begin{equation*}
\left\|\Gamma_{k, i}(\sigma)\right\| \leq \sigma \tag{8}
\end{equation*}
$$

Regarding the sequence $\left\{C_{k}\right\}_{k=1}^{\infty}$, we will accomplish a similar procedure. Let us consider a matrix $D \in \mathcal{M}(r)$ and $\sigma>0$. For some nonsingular matrix T we will have, instead of (4), the decomposition

$$
\begin{equation*}
T^{-1} D T=N(D)+R(D, \sigma),\|R(D, \sigma)\|<\sigma \tag{9}
\end{equation*}
$$

where the matrix $N(D)$ is defined by means of the eigenvalues D :

$$
N(D)=\operatorname{diag}\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right\},\left|\mu_{1}\right| \leq\left|\mu_{2}\right| \leq \ldots \leq\left|\mu_{n}\right|
$$

We may write (9) in the form

$$
T^{-1} D T=|N(D)| e^{i \operatorname{Arg}(D)}+R(D, \sigma)
$$

where

$$
\operatorname{Arg}(D)=\operatorname{diag}\left\{\arg \left(\mu_{1}\right), \arg \left(\mu_{2}\right), \ldots, \arg \left(\mu_{n}\right)\right\}
$$

and

$$
|N(D)|=\operatorname{diag}\left\{\left|\mu_{1}\right|,\left|\mu_{2}\right|, \ldots, \mid \mu_{n}\right\} \mid
$$

For a matrix $C \in B[D, \rho], \rho>0$, we write

$$
\begin{aligned}
T^{-1} C T & =|N(C)| e^{i \operatorname{Arg}(D)}+(|N(C)|-|N(D)|) e^{i \operatorname{Arg}(D)} \\
& +T^{-1}(C-D) T+R(D, \sigma),\|R(D, \rho)\| \leq \sigma
\end{aligned}
$$

The Hurwitz's theorem implies that the function $\mathcal{N}: V^{n \times n} \rightarrow V^{n \times n}$ defined by $\mathcal{N}(C)=|C|$ is continuous. Since $\mathcal{M}(r)$ is compact, then for a given $\sigma>0$, there exists a covering $\mathcal{D}=\left\{B\left[D_{i}, \rho_{i}\right]\right\}_{i=1}^{\tilde{m}}$ of $\mathcal{M}(r)$, and a set of nonsingular matrices $\mathcal{T}=\left\{T_{1}, T_{2}, \ldots, T_{\tilde{m}}\right\}$, such that for each C_{k} there exists a $T_{k} \in \mathcal{T}$ and $D_{k} \in\left\{D_{i}\right\}_{i=1}^{\tilde{m}}$ such that

$$
\begin{equation*}
T_{k}^{-1} C_{k} T_{k}=\left|N\left(C_{k}\right)\right| e^{i \operatorname{Arg}\left(D_{k}\right)}+\tilde{\Gamma}_{k}(\sigma),\left\|\tilde{\Gamma}_{k}(\sigma)\right\| \leq \sigma \tag{10}
\end{equation*}
$$

4 A change of variables

Let $g:[0,1] \rightarrow[0,1]$ be a strictly increasing function, $g \in C^{\infty}$, such that $g(0)=g^{\prime}(0)=g^{\prime}(1)=0, g(1)=1$. For an ordered pair (Q, R) of invertible matrices we define

$$
\theta:[a, b] \rightarrow V^{n \times n}, \theta(t)=Q \exp \left\{g\left(\frac{t-a}{b-a}\right) \operatorname{Ln}\left(Q^{-1} R\right)\right\}
$$

The path θ is of class C^{∞}. Moreover $\theta(t)$ is a nonsingular matrix for each t, and $\theta(a)=Q, \theta(b)=R, \theta^{\prime}(a)=0, \theta^{\prime}(b)=0$. In the sequel, we shall say that the path θ splices the ordered pair of matrices (Q, R) on the interval $[a, b]$. In order to perform a change of variable of system (1), we splice matrices $\left(S_{k, i}, S_{k, i+1}\right), i \in \overline{1, n(k)-1}$ on an interval $\left[t_{i}^{k}-\nu_{k}(\varepsilon) \delta_{k, i} / 2, t_{i}^{k}+\nu_{k}(\varepsilon) \delta_{k, i} / 2\right]$, where $\nu_{k}(\varepsilon)=\inf \left\{\mu(t, \varepsilon): t \in J_{k}\right\}$, and $\delta_{k, i}$ are small numbers satisfying $\nu_{k}(\varepsilon) \delta_{k, i}<\delta_{k}$ and another condition we will specify in the forthcoming definition of number ν (see (13). Let us define the path

$$
\theta_{k, i}:\left[t_{i}^{k}-\nu_{k}(\varepsilon) \delta_{k, i} / 2, t_{i}^{k}+\nu_{k}(\varepsilon) \delta_{k, i} / 2\right] \rightarrow V^{n \times n}
$$

splicing the matrices $\left(S_{k, i}, S_{k, i+1}\right)$ in the following way

$$
\theta_{k, i}(t)=S_{k, i} \exp \left\{g\left(\frac{t-t_{i}^{k}+\nu_{k}(\varepsilon) \delta_{k, i}}{\mu_{k}(\varepsilon) \delta_{k, i}}\right) \operatorname{Ln}\left(S_{k, i}^{-1} S_{k, i+1}\right)\right\}
$$

For the constant

$$
K_{1}(\sigma)=\max \left\{\left(\left\|S_{k}\right\|+\left\|\operatorname{Ln}\left(S_{k}^{-1} S_{i}\right)\right\|\right) \exp \left\{\left\|\operatorname{Ln}\left(S_{k}^{-1} S_{i}\right)\right\|\right\}: 1 \leq k, i \leq m\right\}
$$

we have the estimates

$$
\begin{equation*}
\left\|\theta_{k, i}(t)\right\|_{\infty} \leq K_{1}(\sigma),\left\|\theta_{k, i}^{\prime}(t)\right\|_{\infty} \leq \frac{K_{1}(\sigma)}{\nu_{k}(\varepsilon) \delta_{k, i}} \tag{11}
\end{equation*}
$$

The matrix T_{k+1} assigned to the impulsive time $t_{0}^{k+1}=t_{k+1}=t_{n(k)}^{k}$ and the matrix $S_{k+1,1}$ are spliced on the interval $\left[t_{0}^{k+1}, t_{0}^{k+1}+\mu_{k+1}(\varepsilon) \delta_{k+1,0} / 2\right]$ by a path we denote by $\theta_{k+1,0}$. The matrices $\left(S_{k, n(k)}, T_{k+1}\right)$ are spliced on the interval $\left[t_{n(k)}^{k}-\nu_{k}(\varepsilon) \delta_{k, n(k)} / 2, t_{n(k)}^{k}\right]$ by a path we denote by $\theta_{k, n(k)}$. We emphasize that $\theta_{k+1,0}\left(t_{k}\right)=T_{k_{1}}=\theta_{k, n(k)}\left(t_{k}\right)$. A special mention deserves the time $t=0$ which is not considered as an impulsive time. We will attach to the time $t=0$ the matrix $S_{1,1}$. For these splicing paths are valid similar estimates to (11), with a modified constant for which we maintain the notation $K_{1}(\sigma)$.

Let us define the intervals

$$
\begin{gather*}
I_{k}=\left[t_{0}^{k+1}-\nu_{k}(\varepsilon) \delta_{k, 0} / 2, t_{0}^{k+1}+\nu_{k+1}(\varepsilon) \delta_{k+1,0} / 2\right], k=1,2, \ldots \\
I_{k, i}=\left(t_{i}^{k}-\nu_{k}(\varepsilon) \delta_{k, i} / 2, t_{i}^{k}+\nu_{k}(\varepsilon) \delta_{k, i} / 2\right), i \in \overline{1, n(k)-1} \tag{12}
\end{gather*}
$$

and the number

$$
\begin{equation*}
\nu=\sum_{k=1}^{\infty} \sum_{i=1}^{n(k)} \delta_{k, i} \tag{13}
\end{equation*}
$$

The choice of the numbers $\delta_{k, i}$ is at our disposal. Therefore, ν can be made as small as necessary. Let us consider the C^{∞} function

$$
S(t)= \begin{cases}\theta_{k+1,0}(t), t \in\left[t_{0}^{k+1}, t_{0}^{k+1}+\nu_{k+1}(\varepsilon) \delta_{k, 0} / 2\right], & k=0,1, \ldots \\ S_{k, i}, t \in\left[t_{i}^{k}+\nu_{k}(\varepsilon) \delta_{k, i} / 2, t_{i+1}^{k}-\nu_{k}(\varepsilon) \delta_{k, i+1} / 2\right], & i \in \overline{0, n(k)-1}, \\ \theta_{k, i}(t), t \in\left[t_{i}^{k}-\nu_{k}(\varepsilon) \delta_{k, i} / 2, t_{i}^{k}+\nu_{k}(\varepsilon) \delta_{k, i} / 2\right], & i \in \overline{1, n(k)-1}, \\ \theta_{k, n(k)}(t), t \in\left[t_{n(k)-1}^{k}-\nu_{k}(\varepsilon) \delta_{k, n(k)} / 2, t_{n(k)}^{k}\right], & k=1,2, \ldots\end{cases}
$$

From this definition $S^{\prime}(t)=0$ except on the intervals I_{k} and $I_{k, i}$. Since $S\left(t_{k}\right)=$ T_{k}, the change of variable $x=S(t) y$ reduces System (1) to the form

$$
\begin{align*}
\mu(t, \varepsilon) y^{\prime}(t) & =\left(S^{-1}(t) A(t) S(t)-\mu(t, \varepsilon) S^{-1}(t) S^{\prime}(t)\right) y(t), t \neq t_{k} \tag{14}\\
y\left(t_{k}^{+}\right) & =\left(\left|N\left(C_{k}\right)\right| e^{i \operatorname{Arg}\left(D_{k}\right)}+\tilde{\Gamma}_{k}(\sigma)\right) y\left(t_{k}\right), k \in \mathbb{N}
\end{align*}
$$

where $\left\|\tilde{\Gamma}_{k}(\sigma)\right\| \leq \sigma$. Thus, this change of variable yields a notable simplification of the discrete component of (1). Let us define the left continuous function $L: J \rightarrow V^{n \times n}$ by

$$
L(0)=S_{1,1}, \quad L(t)=S_{k, i}, \quad t \in\left(t_{i-1}^{k}, t_{i}^{k}\right], i \in \overline{1, n(k)}
$$

From $S^{-1}(t) A(t) S(t)=L^{-1}(t) A(t) L(t)+F(t, \sigma)$, where

$$
\begin{equation*}
F(t, \sigma)=S^{-1}(t) A(t) S(t)-L^{-1}(t) A(t) L(t) \tag{15}
\end{equation*}
$$

we may write System (14) in the form

$$
\begin{gathered}
r c l \quad \mu(t, \varepsilon) y^{\prime}(t)=\left(L^{-1}(t) A(t) L(t)+F(t, \sigma)-\mu(t, \varepsilon) S^{-1}(t) S^{\prime}(t)\right) y(t), t \neq t_{k} \\
y\left(t_{k}^{+}\right)=\left(N_{k} e^{i \operatorname{Arg}\left(D_{k}\right)}+\tilde{\Gamma}_{k}(\sigma)\right) y\left(t_{k}\right), \quad k \in \mathbb{N}
\end{gathered}
$$

From (7) and the definition of the piecewise constant functions

$$
\begin{equation*}
G(t)=\operatorname{Im} \Lambda\left(F_{k, i}\right), t \in\left(t_{i-1}^{k}, t_{i}^{k}\right], \quad \Gamma(t, \sigma)=\Gamma_{k, i}(\sigma), t \in\left(t_{i-1}^{k}, t_{i}^{k}\right] \tag{16}
\end{equation*}
$$

we can write the last system in the form

$$
\begin{align*}
& \mu(t, \varepsilon) y^{\prime}(t)=(\operatorname{Re} \Lambda(t)+i G(t)+\Gamma(t, \sigma)+F(t, \sigma) \\
&\left.-\mu(t, \varepsilon) S^{-1}(t) S^{\prime}(t)\right) y(t), t \neq t_{k} \tag{17}\\
& y\left(t_{k}^{+}\right)=\left(N_{k} e^{i \operatorname{Arg}\left(D_{k}\right)}+\tilde{\Gamma}_{k}(\sigma)\right) y\left(t_{k}\right), \quad k \in \mathbb{N}
\end{align*}
$$

Lemma 1

$$
\begin{gather*}
\|\Gamma(t, \sigma)\|_{\infty} \leq \sigma, \quad\left\|\left\{\tilde{\Gamma}_{k}(\sigma)\right\}\right\|_{\infty} \leq \sigma \tag{18}\\
\left\|\mu(., \varepsilon)^{-1} F(., \sigma)\right\|_{1} \leq K_{2}(\sigma) \nu \tag{19}\\
\int_{s}^{t}\left\|S^{-1}(\tau) S^{\prime}(\tau)\right\| d \tau \leq K_{3}(\sigma) L(\delta, p)(t-s), t \geq s \tag{20}
\end{gather*}
$$

Proof. The first estimate of (18) follows from the definition of function $\Gamma(t, \sigma)$ given by (16) and (8), and the second follows from (10). From definition (15), there exists a constant $K_{2}(\sigma)$ depending only on σ such that

$$
\|F(\cdot, \sigma)\|_{\infty} \leq K_{2}(\sigma)
$$

Moreover, from (15) we observe that $F(\cdot, \sigma)$ vanishes outside of the intervals $I_{k, i}$ and I_{k}. Therefore, from the definitions (12)-(13) we obtain

$$
\int_{0}^{\infty}\left|\frac{F(t, \sigma)}{\mu(t, \varepsilon)}\right| d t=K_{2}(\sigma)\left(\sum_{i, k} \int_{I_{k, i}} \frac{1}{\mu_{k}(\varepsilon)} d t+\sum_{k} \int_{I_{k}} \frac{1}{\mu_{k}(\varepsilon)} d t\right) \leq K_{2}(\sigma) \nu
$$

In order to obtain (20) we observe that $S^{-1}(t) S^{\prime}(t)$ vanishes outside of the intervals $I_{k, i}$ and I_{k}. Moreover, there exists a constant $K_{3}(\sigma)$ depending only on σ, such that on each interval $\left[t_{i-1}^{k}, t_{i}^{k}\right]$ we have

$$
\int_{t_{i-1}^{k}}^{t_{i}^{k}}\left\|S^{-1}(\tau) S^{\prime}(\tau)\right\| d \tau \leq K_{3}(\sigma)
$$

From this estimate and (6), it follows

$$
\int_{s}^{t}\left\|S^{-1}(\tau) S^{\prime}(\tau)\right\| d \tau \leq K_{3}(\sigma) L(p, \delta)(t-s)
$$

In what follows we unify the notations of the constants $K_{i}(\sigma), i=1,2,3$ in a simple constant $K(\sigma)$.

5 Splitting and dichotomies

We are interested in the proof of existence of a dichotomy for the System (17). In this task we will follow the way indicated by Coppel in [6]: First we split System (17) in two systems of lower dimensions and after this, the Gronwall inequality for piecewise continuous functions [3] will give the required result. Following the ideas of paper [11], we write System (17) in the form:

$$
\begin{align*}
\mu(t, \varepsilon) y^{\prime}(t)= & (\operatorname{Re} \Lambda(t)+i G(t)+\Gamma(t, \sigma)+F(t, \sigma) \\
& \left.-\mu(t, \varepsilon) S^{-1}(t) S^{\prime}(t)\right) y(t), \quad t \neq t_{k} \tag{21}\\
\Delta y\left(t_{k}\right)= & \left(B_{k}+\hat{\Gamma}_{k}(\sigma)\right) y\left(t_{k}^{+}\right), \quad k \in \mathbb{N}
\end{align*}
$$

where $\Delta y\left(t_{k}\right)=y\left(t_{k}^{+}\right)-y\left(t_{k}^{-}\right), B_{k}=I-N_{k}^{-1} e^{-i \operatorname{Arg}\left(D_{k}\right)}$, and

$$
\hat{\Gamma}_{k}(\sigma)=N_{k}^{-1} e^{-i \operatorname{Arg}\left(D_{k}\right)} \Gamma_{k}(\sigma)\left(N_{k} e^{i \operatorname{Arg}\left(D_{k}\right)}+\Gamma_{k}(\sigma)\right)^{-1}
$$

From hypotheses H3-H4 and (18) we obtain, for a small σ, the estimate

$$
\begin{equation*}
\left|\hat{\Gamma}_{k}(\sigma)\right| \leq \frac{\sigma \gamma^{2}}{1-\gamma \sigma} \tag{22}
\end{equation*}
$$

On the other hand, the fundamental matrix of system

$$
\begin{gathered}
\mu(t, \varepsilon) w^{\prime}(t)=(\operatorname{Re} \Lambda(t)+i G(t)) w(t), \quad t \neq t_{k} \\
\Delta w\left(t_{k}\right)=B_{k} w\left(t_{k}^{+}\right), \quad k \in \mathbb{N}
\end{gathered}
$$

coincides with the fundamental matrix $Z(t, \varepsilon)=Z(t)$ of the diagonal system

$$
\begin{gather*}
\mu(t, \varepsilon) z^{\prime}(t)=(\operatorname{Re} \Lambda(t)+i G(t)) z(t), \quad t \neq t_{k} \tag{23}\\
z\left(t_{k}^{+}\right)=\left|N\left(C_{k}\right)\right| e^{i \operatorname{Arg}\left(D_{k}\right)_{z}\left(t_{k}\right), \quad k \in \mathbb{N},}
\end{gather*}
$$

which is equal to $Z(t):=\Phi(t) \Psi(t)$, where

$$
\Psi(t)=\exp \left\{\int_{0}^{t} \frac{\operatorname{Re} \Lambda(\tau)+i G(\tau)}{\mu(\tau, \varepsilon)} d \tau\right\}, \quad \Phi(t)=\prod_{[0, t)}\left|N\left(C_{k}\right)\right| e^{i \operatorname{Arg}\left(D_{k}\right)} .
$$

For the projection matrix $P=\operatorname{diag}\{\overbrace{1,1, \ldots, 1}^{m}, 0, \ldots, 0\}$, the function Φ satisfies the following estimates:

$$
\|\Phi(t) P\| \leq \exp \left\{\sum_{[0, t)} \ln \left|\mu_{m}(k)\right|\right\} .
$$

From definition (3), we may write

$$
\begin{gathered}
\|\Phi(t) P\| \leq L \exp \left\{\int_{0}^{t} u_{m}(\tau) d \tau\right\} \\
\left\|\Phi^{-1}(t)(I-P)\right\| \leq L \exp \left\{\int_{t}^{0} u_{m+1}(\tau) d \tau\right\}
\end{gathered}
$$

where L is a constant depending on the condition $\mathbf{H 3}$ only. Since $\Phi(t)$ and $\Psi(t)$ commute with P, then for $t \geq s$ we obtain the following estimates

$$
\begin{align*}
\left\|Z(t) P Z^{-1}(s)\right\| & \leq L_{1} \exp \left\{\int_{s}^{t}\left(\frac{\operatorname{Re} \lambda_{m}}{\mu(\cdot, \varepsilon)}+u_{m}\right)(\tau) d \tau\right\} \tag{24}\\
\left\|Z(s)(I-P) Z^{-1}(t)\right\| & \leq L_{1} \exp \left\{\int_{t}^{s}\left(\frac{\operatorname{Re} \lambda_{m+1}}{\mu(\cdot, \varepsilon)}+u_{m+1}\right)(\tau) d \tau\right\}
\end{align*}
$$

where L_{1} is a constant independent of σ and ϵ. In the sequel $W(t, s)$ will denote the matrix: $W(t, s)=Z(t) Z^{-1}(s)$. ¿From (24), for $t \geq s$, we have

$$
\begin{equation*}
\|W(t, s) P\|\|W(s, t)(I-P)\| \leq L_{1}^{2} \exp \left\{\int_{s}^{t} \alpha_{m}(\tau, \varepsilon) d \tau\right\} \tag{25}
\end{equation*}
$$

For a given matrix C, we write $\{C\}_{1}=P C P+(I-P) C(I-P)$.
Definition 2 By a splitting of System (21), we mean the existence of a function $T: J \rightarrow V^{n \times n}$ with the following properties:
T1: T is continuously differentiable on each interval J_{k},
T2: For each impulsive time t_{k}, there exists the right hand side limit $T\left(t_{k}^{+}\right)$,
T3: $T(t)$ is invertible for each $t \in J_{k} . T\left(t_{k}^{+}\right)$are invertible for all k,

T4: The functions T and T^{-1} are bounded,
T5: The change of variables $y(t)=T(t) z(t)$ reduces System (21) to

$$
\begin{gather*}
\mu(t, \varepsilon) z^{\prime}(t)=\left(\operatorname{Re} \Lambda(t)+i G(t)+\{(\Gamma(t, \sigma)+F(t, \sigma)) T(t)\}_{1}\right. \\
\left.-\mu(t, \varepsilon)\left\{S^{-1}(t) S^{\prime}(t) T(t)\right\}_{1}\right) z(t), \quad t \neq t_{k} \tag{26}\\
\Delta z\left(t_{k}\right)=\left(B_{k}+\left\{\hat{\Gamma}_{k}(\sigma)\right\}_{1}\right) z\left(t_{k}^{+}\right), \quad k \in \mathbb{N}
\end{gather*}
$$

For ordinary differential equations, problem T1-T5 was solved in [6]. For difference equations, it was solved in [14]. The problem of splitting for impulsive equations is treated in [11]. None of the cited works study the splitting of system (21), where the unbounded coefficient $\left\{S^{-1}(t) S^{\prime}(t)\right\}_{1}$ appears.

Following the general setting of $[6,14,11]$, we will seek a function T in the form $T(t)=I+H(t)$, where $H \in B C\left(\left\{t_{k}\right\}\right),\|H\|_{\infty} \leq 1 / 2$, such that T satisfies conditions T1-T5. In the following we use the notations

$$
H_{k}=H\left(t_{k}\right), H_{k}^{+}=H\left(t_{k}^{+}\right)
$$

Let us consider the following operators: The operator of continuous splitting

$$
\begin{aligned}
\mathcal{O}(H)(t)= & \int_{t_{0}}^{t} \frac{1}{\mu(s, \varepsilon)} W(t, s) P(I-H(s))(\Gamma(s, \sigma) \\
& +F(s, \sigma))(I+H(s))(I-P) W(s, t) d s \\
& -\int_{t}^{\infty} \frac{1}{\mu(s, \varepsilon)} W(t, s)(I-P)(I-H(s))(\Gamma(s, \sigma) \\
& +F(s, \sigma))(I+H(s)) P W(s, t) d s
\end{aligned}
$$

the operator of discrete splitting

$$
\begin{aligned}
\mathcal{D}(H)(t)= & \sum_{\left[t_{0}, t\right)} W\left(t, t_{k}\right) P\left(I-H_{k}\right) \tilde{\Gamma}_{k}(\sigma)\left(I+H_{k}^{+}\right)(I-P) W\left(t_{k}^{+}, t\right) \\
& -\sum_{[t, \infty)} W\left(t, t_{k}\right)(I-P)\left(I-H_{k}\right) \tilde{\Gamma}_{k}(\sigma)\left(I+H_{k}^{+}\right) P W\left(t_{k}^{+}, t\right)
\end{aligned}
$$

and the operator of impulsive splitting

$$
\begin{aligned}
& \mathcal{S}(H)(t) \\
&=-\int_{t_{0}}^{t} W(t, s) P(I-H(s))\left(S^{-1}(s) S^{\prime}(s)(I+H(s))(I-P) W(s, t) d s\right. \\
& \quad+\int_{t}^{\infty} W(t, s)(I-P)(I-H(s)) S^{-1}(s) S(s)(I+H(s)) P W(s, t) d s
\end{aligned}
$$

Lemma 2 Uniformly with respect to $t_{0} \in J$, for some constant L_{2} non depending on σ nor on ε, we have the following estimates

$$
\begin{equation*}
\|\mathcal{O}(H)\|_{\infty} \leq L_{2}(\sigma+K(\sigma) \nu) \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\mathcal{D}(H)(t)\|_{\infty} \leq L_{2} \sigma \tag{28}
\end{equation*}
$$

Proof. From condition H5 and (25) we have the estimate

$$
\begin{aligned}
\|\mathcal{O}(H)(t)\|= & \int_{t_{0}}^{t} \frac{9 L_{1}^{2}}{4 \mu(s, \varepsilon)} \exp \left\{\int_{s}^{t} \alpha_{m}(\tau, \varepsilon) d \tau\right\}(\|\Gamma(s, \sigma)\|+\|F(s, \sigma)\|) d s \\
& +\int_{t}^{\infty} \frac{9 L_{1}^{2}}{4 \mu(s, \varepsilon)} \exp \left\{\int_{t}^{s} \alpha_{m}(\tau, \varepsilon) d \tau\right\}(\|\Gamma(s, \sigma)\|+\|F(s, \sigma)\|) d s \\
\leq & \frac{9 L_{1}^{2}}{4}\left(\sigma\left\|U_{m}(\cdot, \varepsilon)\right\|_{\infty}+\int_{t_{0}}^{\infty} \frac{\|F(s, \sigma)\|}{\mu(s, \varepsilon)} d s\right)
\end{aligned}
$$

Now the estimate (26) follows from (18) and H5, for some constant L_{2}.
For a fixed $t>0$, let us consider the impulsive times divided as follows:

$$
t_{1}<t_{2}<\ldots<t_{k}<t \leq t_{k+1}<t_{k+2}<\ldots
$$

From (17) and (24) we can write the estimate

$$
\begin{aligned}
&\|\mathcal{D}(H)(t)\| \\
& \leq \frac{9 L_{1}^{2} \sigma}{4} \sum_{i=1}^{k} \exp \left\{\int_{t_{i}}^{t} \alpha_{m}(\tau, \varepsilon) d \tau\right\}+\frac{9 L_{1}^{2} \sigma}{4} \sum_{i=k+1}^{\infty} \exp \left\{\int_{t}^{t_{i}} \alpha_{m}(\tau, \varepsilon) d \tau\right\} \\
& \leq \frac{9 L_{1}^{2} \sigma}{4}\left(2+\sum_{i=1}^{k-1} \exp \left\{\int_{t_{i}}^{t} \alpha_{m}(\tau, \varepsilon) d \tau\right\}+\sum_{i=k+2}^{\infty} \exp \left\{\int_{t}^{t_{i}} \alpha_{m}(\tau, \varepsilon) d \tau\right\}\right) \\
& \leq \frac{9 L_{1}^{2} \sigma}{4}\left(2+\sum_{i=1}^{k-1} \frac{1}{t_{i}-t_{i-1}} \int_{t_{i-1}}^{t_{i}} \exp \left\{\int_{s}^{t} \alpha_{m}(\tau, \varepsilon) d \tau\right\} d s\right. \\
&\left.+\sum_{i=k+2}^{\infty} \frac{1}{t_{i+1}-t_{i}} \int_{t_{i}}^{t_{i+1}} \exp \left\{\int_{t}^{s} \alpha_{m}(\tau, \varepsilon) d \tau\right\} d s\right)
\end{aligned}
$$

From (2) and H2 we obtain

$$
\begin{aligned}
\|\mathcal{D}(H)(t)\| \leq & \frac{9 L_{1}^{2} \sigma p}{4(K-1)}\left(2+\frac{p}{4(q-1)} \int_{0}^{t} \frac{1}{\mu(s, \varepsilon)} \exp \left\{\int_{s}^{t} \alpha_{m}(\tau, \varepsilon) d \tau\right\} d s\right. \\
& \left.+\frac{p}{4(q-1)} \int_{t}^{\infty} \frac{1}{\mu(s, \varepsilon)} \exp \left\{\int_{t}^{s} \alpha_{m}(\tau, \varepsilon) d \tau\right\}\right)
\end{aligned}
$$

From this estimate it follows (28) for some constant L_{2}.

The estimate of operator \mathcal{S} is more complicated. From (25) we obtain

$$
\|\mathcal{S}(H)(t)\| \leq I_{1}(t)+I_{2}(t)
$$

where

$$
\begin{aligned}
& I_{1}(t)=\int_{t_{0}}^{t} \exp \left\{\int_{s}^{t} \alpha_{m}(\tau, \varepsilon) d \tau\right\}\left\|S^{-1}(s) S^{\prime}(s)\right\| d s \\
& I_{2}(t)=\int_{t}^{\infty} \exp \left\{\int_{t}^{s} \alpha_{m}(\tau, \varepsilon) d \tau\right\}\left\|S^{-1}(s) S^{\prime}(s)\right\| d s
\end{aligned}
$$

We can write I_{1} in the form

$$
I_{1}(t)=\int_{t_{0}}^{t} \exp \left\{\int_{s}^{t} \alpha_{m}(\tau, \varepsilon) d \tau\right\} \frac{d}{d s} \int_{t}^{s}\left\|S^{-1}(\xi) S^{\prime}(\xi)\right\| d \xi d s
$$

Integration by parts gives

$$
\begin{aligned}
I_{1}(t)= & \exp \left\{\int_{t_{0}}^{t} \alpha_{m}(\tau, \varepsilon) d \tau\right\} \int_{t_{0}}^{t}\left\|S^{-1} S^{\prime}\right\|(u) d u \\
& -\int_{t_{0}}^{t} \alpha_{m}(s, \varepsilon) \exp \left\{\int_{s}^{t} \alpha_{m}(\tau, \varepsilon) d \tau\right\} \int_{s}^{t}\left\|S^{-1} S^{\prime}\right\|(u) d u
\end{aligned}
$$

Taking into account the estimate (20) we obtain

$$
\begin{aligned}
I_{1}(t) \leq & K(\sigma) L(\delta, p) \exp \left\{\int_{t_{0}}^{t} \alpha_{m}(\tau, \varepsilon) d \tau\right\}\left(t-t_{0}\right) \\
& -K(\sigma) L(\delta, p) \int_{t_{0}}^{t} \alpha_{m}(s, \varepsilon) \exp \left\{\int_{s}^{t} \alpha_{m}(\tau, \varepsilon) d \tau\right\}(t-s) d s
\end{aligned}
$$

Once again, integrating by parts the last integral, from the right hand side of this inequality we obtain

$$
\begin{equation*}
I_{1}(t) \leq K(\sigma) L(\delta, p) \int_{t_{0}}^{t} \exp \left\{\int_{s}^{t} \alpha_{m}(\tau, \varepsilon) d \tau\right\} d s \tag{29}
\end{equation*}
$$

By similar tokens

$$
\begin{equation*}
I_{2}(t) \leq K(\sigma) L(\delta, p) \int_{t}^{\infty} \exp \left\{\int_{t}^{s} \alpha_{m}(\tau, \varepsilon) d \tau\right\} d s \tag{30}
\end{equation*}
$$

Using (2) and the hypothesis H5 we obtain the estimate

$$
I_{i}(t) \leq M K(\sigma) L(\delta, p)\|\mu(\cdot, \varepsilon)\|_{\infty}, \quad i=1,2
$$

Thus, for a given $\alpha>0$, if $\|\mu(\cdot, \varepsilon)\|_{\infty}$ is small enough, we will have

$$
\begin{equation*}
\|\mathcal{S}(H)(t)\| \leq \alpha \tag{31}
\end{equation*}
$$

Theorem 1 The conditions H1-H5 imply, for a small values of the norm $\{\mu(\cdot, \varepsilon)\}$, the existence of a function $T:\left[t_{0}, \infty\right) \rightarrow V^{n \times n}$ satisfying T1-T5. Moreover $\|T\| \leq \frac{3}{2},\left\|T^{-1}\right\| \leq 2$.

Proof. According to Lemma 4 and Lemma 5, the operator $\mathcal{T}=\mathcal{O}+\mathcal{D}+\mathcal{S}$, for small values of σ, ν and α (see (31), satisfies

$$
\mathcal{T}:\left\{H \in B C\left(\left\{t_{k}\right\}\right):\|H\|_{\infty} \leq 1 / 2\right\} \rightarrow\left\{H \in B C\left(\left\{t_{k}\right\}\right):\|H\|_{\infty} \leq 1 / 2\right\}
$$

Also, for small values of σ, ν and α this operator is a contraction. This and further details of this theory are well known for exponential dichotomies. The corresponding result for the dichotomy (24) are similar [6, 14, 12].

Once we have split (17), we write System (26) in the form

$$
\begin{align*}
& \mu(t, \varepsilon) z^{\prime}(t)=\left(\operatorname{Re} \Lambda(t)+i G(t)+\{(\Gamma(t, \sigma)+F(t, \sigma)) T(t)\}_{1}\right. \\
&\left.-\mu(t, \varepsilon)\left\{S^{-1}(t) S^{\prime}(t) T(t)\right\}_{1}\right) z(t), \quad t \neq t_{k} \tag{32}\\
& z\left(t_{k}^{+}\right)=\left(N_{k} e^{i \operatorname{Arg}\left(D_{k}\right)}+\left\{G_{k}(\sigma)\right\}_{1}\right) z\left(t_{k}\right), \quad k \in \mathbb{N}
\end{align*}
$$

where

$$
G_{k}(\sigma)=\left(I-N_{k} e^{i \operatorname{Arg}\left(D_{k}\right)}\left\{\hat{\Gamma}_{k}(\sigma)\right\}_{1}\right)^{-1} N_{k} e^{i \operatorname{Arg}\left(D_{k}\right)}-N_{k} e^{i \operatorname{Arg}\left(D_{k}\right)}
$$

From (22) we obtain

$$
\begin{equation*}
\left\|G_{k}(\sigma)\right\| \leq L_{3} \sigma, \quad L_{3}=2\left\|\left\{C_{k}\right\}\right\|_{\infty}, \quad \text { if } 0<2 \sigma<\left\|\left\{C_{k}\right\}\right\|_{\infty}^{-1} \tag{33}
\end{equation*}
$$

The right hand side equation of (32) commute with projection P. Therefore, (32) may be written as two systems of dimensions m and $n-m$,

$$
\begin{gather*}
\mu(t, \varepsilon) z_{j}^{\prime}(t)=\left(\operatorname{Re} \Lambda_{j}(t)+i G_{j}(t)+\Gamma_{j}(t, \sigma)+F_{j}(t, \sigma)\right. \\
\left.\quad+\mu(t, \varepsilon) V_{j}(t)\right) z_{i}(t), \quad t \neq t_{k} \tag{34}\\
z_{j}\left(t_{k}^{+}\right)=\left(N_{k, j} e^{i \operatorname{Arg}\left(D_{k, j}\right)}+G_{k, j}(\sigma)\right) z_{j}\left(t_{k}\right), \quad k \in \mathbb{N} \tag{35}
\end{gather*}
$$

where $j=1,2$. The matrices $\Lambda_{1}(t), \Lambda_{2}(t)$ are defined by

$$
\Lambda_{1}(t)=\left\{\lambda_{1}(t), \lambda_{2}(t), \ldots, \lambda_{m}(t)\right\}, \Lambda_{2}(t)=\left\{\lambda_{m+1}(t), \lambda_{m+2}(t), \ldots, \lambda_{n}(t)\right\}
$$

and similarly the diagonal matrices $G_{j}(t), N_{k, j}$ and $D_{k, j}$ are defined. The matrices $G_{k, j}(\sigma)$ satisfy estimate (33). $\Gamma_{j}(t, \sigma)$ has the estimate (18), where instead of σ it is necessary to write $3 \sigma, F_{j}(t, \sigma)$ has the estimate (19) and

$$
\left\|\int_{s}^{t} V_{j}(\tau) d \tau\right\| \leq 3\left\|\int_{s}^{t} S^{-1}(\tau) S^{\prime}(\tau) d \tau\right\| \leq 3 L(\delta, p) K(\sigma)(t-s), \quad t \geq s
$$

The Gronwall inequality for piecewise continuous functions [3] gives the following estimates for $Z_{i}(t)$, the fundamental matrices of systems $(34), j=1,2$:

$$
\begin{aligned}
& \left\|Z_{1}(t) Z_{1}^{-1}(s)\right\| \leq L \exp \left\{\int_{s}^{t} \mu_{1}(\tau, \varepsilon) d \tau\right\}, \quad s \leq t \\
& \left\|Z_{2}(t) Z_{2}^{-1}(s)\right\| \leq L \exp \left\{\int_{s}^{t} \mu_{2}(\tau, \varepsilon) d \tau\right\}, \quad t \leq s
\end{aligned}
$$

where L is a constant non depending on ε neither on σ, and

$$
\begin{gathered}
\mu_{1}(t, \varepsilon)=\frac{\operatorname{Re}\left(\lambda_{m}(t)\right)}{\mu(t, \varepsilon)}+u_{m}(t)+L_{4} \sigma+3 L(\delta, p) K(\sigma) \\
\mu_{2}(t, \varepsilon)=\frac{\operatorname{Re}\left(\lambda_{m+1}(t)\right)}{\mu(t, \varepsilon)}+u_{m+1}(t)+L_{4} \sigma+3 L(\delta, p) K(\sigma)
\end{gathered}
$$

with a constant $L_{4}=3+L_{3}$. Since the decoupled system (34) is kinetically similar to System (1), we obtain for this system the following

Theorem 2 If the hypotheses $\mathbf{H 1} \mathbf{- H 5}$ are fulfilled, then for a small value of $\|\mu(\cdot, \varepsilon)\|$ the System (1) has the following $\left(\mu_{1}, \mu_{2}\right)$-dichotomy:

$$
\begin{align*}
& \left\|X(t, \varepsilon) P X^{-1}(s, \varepsilon)\right\| \leq L \exp \left\{\int_{s}^{t} \mu_{1}(\tau, \varepsilon) d \tau\right\}, \quad s \leq t \tag{36}\\
& \left\|X(t, \varepsilon) P X^{-1}(s, \varepsilon)\right\| \leq L \exp \left\{\int_{s}^{t} \mu_{2}(\tau, \varepsilon) d \tau\right\}, \quad t \leq s
\end{align*}
$$

where L is a constant independent of ε and σ.

6 Dichotomies for linear differential systems

In this section we present some applications of formulas (36).

The case $\|\mu(\cdot, \varepsilon)\|_{\infty} \leq \varepsilon$
Theorem 3 Under conditions H1-H5, if $\|\mu(\cdot, \varepsilon)\| \leq \varepsilon, \varepsilon \in(0, \infty)$, then there exists a positive number ε_{0} such that for each $\varepsilon \in\left(0, \varepsilon_{0}\right)$, the impulsive system (1) has the dichotomy (36).

In the particular case $\mu(t, \varepsilon)=\varepsilon$, we obtain the system

$$
\begin{align*}
& \varepsilon x^{\prime}(t)=A(t) x(t), \quad t \neq t_{k}, \quad J=[0, \infty) \tag{37}\\
& x\left(t_{k}^{+}\right)=C_{k} x\left(t_{k}^{-}\right), \quad k \in \mathbb{N}=\{1,2,3, \ldots\}
\end{align*}
$$

and the dichotomy (36) has the form

$$
\begin{aligned}
& \mu_{1}(t, \varepsilon)=\frac{\operatorname{Re}\left(\lambda_{m}(t)\right)+\varepsilon u_{m}(t)+L_{4} \varepsilon \sigma+3 \varepsilon L(\delta, p) K(\sigma)}{\varepsilon} \\
& \mu_{2}(t, \varepsilon)=\frac{\operatorname{Re}\left(\lambda_{m+1}(t)\right)+\varepsilon u_{m+1}(t)+L_{4} \varepsilon \sigma+3 \varepsilon L(\delta, p) K(\sigma)}{\varepsilon}
\end{aligned}
$$

Considering in (37) $C_{k}=I$ for $k \in N$, we obtain that the solutions of this sytems coincide with the solutions of the ordinary system with a small and a positive parameter at the derivative

$$
\begin{equation*}
\varepsilon y^{\prime}(t)=A(t) y(t) \tag{38}
\end{equation*}
$$

Denoting by $Y(t, \varepsilon)$ the fundamental matrix of System (38), from (36) we obtain the dichotomy

$$
\begin{gathered}
\left\|Y(t, \varepsilon) P Y^{-1}(s, \varepsilon)\right\| \leq K \exp \left\{\int_{s}^{t} \mu_{1}(\tau, \varepsilon) d \tau\right\}, \quad s \leq t \\
\left\|Y(t, \varepsilon)(I-P) Y^{-1}(s, \varepsilon)\right\| \leq K \exp \left\{-\int_{t}^{s} \mu_{2}(\tau, \varepsilon)\right\}, \quad t \leq s
\end{gathered}
$$

where

$$
\begin{gathered}
\mu_{1}(t, \varepsilon)=\frac{\operatorname{Re}\left(\lambda_{m}(t)\right)+L_{4} \varepsilon \sigma+\varepsilon L(\delta, 0) K(\sigma)}{\varepsilon} \\
\mu_{2}(t, \varepsilon)=\frac{\operatorname{Re}\left(\lambda_{m+1}(t)\right)+L_{4} \varepsilon \sigma+3 \varepsilon L(\delta, 0) K(\sigma)}{\varepsilon} .
\end{gathered}
$$

If $\operatorname{Re}\left(\lambda_{m}(t)\right) \leq-\alpha<0$ and $\operatorname{Re}\left(\lambda_{m}(t)\right) \geq \beta>0$, for all values of t, for a small ε_{0}, we obtain for (38) the dichotomy

$$
\begin{gathered}
\left\|Y(t, \varepsilon) P Y^{-1}(s, \varepsilon)\right\| \leq L \exp \left\{-\frac{\alpha}{2 \varepsilon}(t-s)\right\}, \quad s \leq t \\
\left\|Y(t, \varepsilon)(I-P) Y^{-1}(s, \varepsilon)\right\| \leq L \exp \left\{\frac{\beta}{2 \varepsilon}(t-s)\right\}, \quad t \leq s
\end{gathered}
$$

for $\varepsilon \in\left(0, \varepsilon_{0}\right]$ and L is independent of ε. This dichotomy was obtained by Chang [7] for almost periodic systems and by Mitropolskii-Lykova [9] for a system (38) which function $A(t)$ is uniformly continuous on J.

The case $\mu(t, \varepsilon)=\mu(t) \rightarrow 0$, if $t \rightarrow \infty$
In this case the condition $\lim _{t \rightarrow \infty} \mu(t)=0$ allows to obtain a small value of $|\mu(t, \varepsilon)|$ if we consider $t \in\left[t_{0}, \infty\right)$. All the reasoning leading to Theorem 2 can be acomplished on the interval $\left[t_{0}, \infty\right)$ instead of $[0, \infty)$.

Theorem 4 If we assume valid $\mathbf{H 1} \mathbf{- H 5}$, where $U(t, \varepsilon)$ is defined with

$$
\alpha_{m}(t, \varepsilon)=\frac{\lambda_{m}(t)-\lambda_{m+1}(t)}{\mu(t)}+u_{m}(t)-u_{m+1}(t)
$$

(therefore $U(t, \varepsilon)$ does not depend on ε), then the impulsive system

$$
\begin{aligned}
& \mu(t) x^{\prime}(t)=A(t) x(t), \quad t \neq t_{k}, \quad J=[0, \infty) \\
& x\left(t_{k}^{+}\right)=C_{k} x\left(t_{k}^{-}\right), \quad k \in \mathbb{N}=\{1,2,3, \ldots\},
\end{aligned}
$$

has the dichotomy

$$
\begin{gathered}
\left\|X(t) P X^{-1}(s)\right\| \leq K \exp \left\{\int_{s}^{t} \mu_{1}(\tau) d \tau\right\}, \quad s \leq t \\
\left\|X(t)(I-P) X^{-1}(s)\right\| \leq K \exp \left\{\int_{t}^{s} \mu_{2}(\tau)\right\}, \quad t \leq s
\end{gathered}
$$

where

$$
\begin{gathered}
\mu_{1}(t)=\frac{\operatorname{Re}\left(\lambda_{m}(t)\right)+L_{4} \mu(t) \sigma+\mu(t) L(\delta, 0) K(\sigma)}{\mu(t)} \\
\mu_{2}(t)=\frac{\operatorname{Re}\left(\lambda_{m+1}(t)\right)+L_{4} \sigma \mu(t)+3 \mu(t) L(\delta, 0) K(\sigma)}{\mu(t)}
\end{gathered}
$$

As an application of the above formula let us consider the ordinary system

$$
\begin{equation*}
\mu(t) x^{\prime}(t)=A(t) x(t), \lim _{t \rightarrow \infty} \mu(t)=0 \tag{39}
\end{equation*}
$$

Theorem 5 If $A(\cdot)$ satisfies $\mathbf{H 1}$ and the function $U_{m}(t)$ defined in $\mathbf{H 5}$ with

$$
\alpha_{m}(t, \varepsilon)=\frac{\lambda_{m}(t)-\lambda_{m+1}(t)}{\mu(t)}
$$

is bounded, then system (39) has the dichotomy (36), where

$$
\begin{gathered}
\mu_{1}(t)=\frac{\operatorname{Re}\left(\lambda_{m}(t)\right)+3 \sigma \mu(t)+\mu(t) L(\delta, 0) K(\sigma)}{\mu(t)}, \\
\mu_{2}(t)=\frac{\operatorname{Re}\left(\lambda_{m+1}(t)\right)-3 \sigma \mu(t)-3 \mu(t) L(\delta, 0) K(\sigma)}{\mu(t)} .
\end{gathered}
$$

The above theorem gives conditions of existence of a $\left(\mu_{1}, \mu_{2}\right)$ - dichotomy for (39) with an unbounded function $\mu(t)^{-1} A(t)$. These systems have been studied in [13].

References

[1] Bellman, R.: Stability Theory of Differential Equations, Dover Publications, New York (1953).
[2] Bainov, D.D.; Simeonov, P.S.: Systems with impulse effect (Stability Theory and Applications), Ellis Horwood \& John Wiley, New York (1989).
[3] Bainov, D.D.; Simeonov P.S.: Integral Inequalities and Applications, Kluwer Academic Publishers, Dordrecht (1992).
[4] Simeonov, P.S.; Bainov, D.D.: Criteria for dichotomies of linear impulsive differential equations, Tamkang J. Math., 25, 2, 101-112 (1994).
[5] Conway, J.B.: Functions of One Complex Variables, Springer, Student Edition, New York (1973).
[6] Coppel, W.A.: Dichotomies in Stability Theory, Lecture Notes in Mathematics, 629, Springer Verlag (1978).
[7] Chang, K.W.: Almost periodic solutions of singularly perturbed systems of differential equations, J. Diff. Eqns. 4, 300-307 (1968).
[8] Lakshmikantham, V.; Bainov, D.D.; Simeonov, P.S.: Theory of Impulsive Differential Equations, World Scientific (1989).
[9] Lizana, M.; Muldowney, J.S.: Existence and roughness of $\left(\mu_{1}, \mu_{2}\right)$ dichotomies, preprint (1997).
[10] Mitropolskii, Y.A.; Likova, O.B.: Integral Manifolds in Nonlinear Mechanich, (Russian) Nauka, Moscow (1973).
[11] R. Naulin, R.; Pinto, M.: Splitting of linear differential systems with impulsive effect, to appear in Rocky Mountain J. Math. (1999).
[12] R. Naulin, R.; Pinto, M.: Quasi-diagonalization of linear impulsive systems and applications, J. Math. Anal. Appl., Vol. 208, 281-297 (1997).
[13] R. Naulin, R.; Pinto, M.: Dichotomies for differential systems with unbounded coefficients", Dyn. Syst. Appl. , 3, 333-348 (1994).
[14] Papashinopoulos, G.: Some roughness results concerning reducibility for linear difference equations, Internat. J. Math. \& Math. Sci. , Vol. 11, No 4, 793-804 (1988).
[15] Smith, D.R.: Singular Perturbation Theory, Cambridge University Press (1985).

Raúl NaUlin
Departamento de Matemáticas, Universidad de Oriente
Apartado 245, Cumaná 6101-A, Venezuela
e-mail: rnaulin@cumana.sucre.udo.edu.ve

[^0]: * Mathematics Subject Classifications: 34A05, 34E05.

 Key words: Impulsive linear systems, singularly perturbed impulsive systems,
 dichotomies, splitting of impulsive systems.
 (C)2001 Southwest Texas State University.

 Published January 8, 2001.
 Supported by Proyecto UDO-CI-5-1003-0936/00.

