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Abstract

We prove the existence of heteroclinic connections for a system of
ordinary differential equations, with time-dependent coefficients, which is
reminiscent of the ODE arising in connection with traveling waves for the
Fisher equation. The approach is elementary and it allows in particular
the study of the existence of positive solutions for the same system that
vanish on the boundary of an interval (t0,+∞).

1 Introduction

When one looks for one-dimensional traveling waves u(x − ct) for the Fisher
equation

∂u

∂t
=
∂2u

∂x2
+ f(u)

(that models a diffusion phenomenon in biomathematics), one finds the ordinary
differential equation

u′′ + cu′ + f(u) = 0 . (1)

Here c > 0 represents the admissible wave speed; the function f takes positive
values between two zeros, say 0 and a (a > 0): see for example [7, 2].
In this paper we consider the following system, which is a non-autonomous

multi-dimensional analogue of (1):

u′′i + pi(t)u
′
i + fi(u) = 0, i = 1, . . . , n , (2)

where u = (u1, · · ·un). The vector field f = (f1, · · · , fn) is assumed to be
defined in some n-dimensional box [0, a1] × · · · × [0, an] (ai > 0, ∀i = 1, . . . , n),
the vertices (0, · · · , 0) and (a1, · · · , an) being its only zeros. More precisely, we
state the following basic assumptions:

(H1) For each i ∈ 1, · · · , n, fi : [0, a1] × · · · × [0, an] → R+ is a Lipschitz
continuous function such that fi(0, · · · , 0) = 0 = fi(a1, · · · an) and fi(u) >
0 if ui > 0 and u 6= a := (a1, · · · an).
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258 Heteroclinic connections

(H2) The functions pi : R → R+ will be assumed throughout to be continuous
and

ci := inf
t∈R
pi(t) > 0.

We look for positive solutions u(t) = (u1(t); · · · , un(t)), i.e., solutions that have
positive components. Accordingly, the word solution will be used to mean pos-
itive solution throughout.

The relevant problem is to find “monotonic” heteroclinics (in the sense
that their components are decreasing functions) that connect the equilibria
(a1, · · · an) and 0. This problem has been very much studied for the autonomous
scalar equation, various approaches being available in a vast literature: we refer
the reader to [2, 3, 6] and the bibliography in those papers. The autonomous
system has been dealt with in [1]; we owe a lot to the ideas there, and we would
like to stress that our approach, which is also elementary, works in a slightly
more general setting in the sense that it allows not only time dependence but
also consideration of models where the vector field f may vanish to a higher
order at u = 0. In addition we could equally consider a more general form of (2)
where nonlinear terms bi(t)fi(u) replace fi(u) and the functions bi are bounded
above and below by positive numbers (see [8]).

An important role is played by the functions gi(u), defined (for those u such
that 0 < ui ≤ ai) by

fi(u) = gi(u)ui.

Study of the autonomous case (1) has shown that a sufficient condition for the

existence of the mentioned heteroclinic is a bound of the form sup
0<u<a

f(u)

u
:=

M ≤ c2

4 . In the case of (2) with pi(t) ≡ ci it has been shown in [1] that

sup gi(u) ≤
c2i
4 remains a sufficient condition for the existence of the heteroclinic.

We shall show that this still holds for our system (2) as long as the meaning of
ci is that given in assumption (H2); in addition we remark that we do not need
an assumption used in [1] according to which (the continuous extension of) gi
takes its maximum value at the origin.

When (2) reduces to a single equation, boundary value problems for (2) in
a finite interval appear also in connection with nonlinear elliptic problems in
an annulus (see [5], [4]). By analogy we consider a second problem: that of
finding (nontrivial) positive solutions of (2) defined in an unbounded interval
of the form [t0,+∞) and satisfying u(t0) = 0 = u(+∞). We shall apply the
arguments used in the construction of heteroclinics to obtain as a by-product
the existence of a continuum of solutions to this problem when f , defined in
R
n
+, is (componentwise) non-negative and has its only zero at the origin.

In section 2 we collect some auxiliary results. In section 3 we deal with
the existence of heteroclinics. In section 4 we briefly consider the existence of
positive solutions vanishing in the boundary of an infinite interval.
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2 Some auxiliary results for scalar equations

We start with three very simple observations about the scalar equation

u′′ + p(t)u′ + f(u) = 0, (21)

where p is positive and f satisfies the one-dimensional analogue of (H1). Recall
that solution means positive solution.

Remarks. 1) The solution for the initial value problem for (21) with u(t0) =
u0 ≥ 0 and u′(t0) = u1 exists in the maximal interval [t0, s) with s < +∞ only
if limt→s u(t) = 0.
2) A nonconstant solution of (21) has at most a critical point, which must

be an absolute maximum.
3) Let c > 0, µ > 0, c2 ≥ 4M and 0 ≤ ε ≤ µ( c2+

√
c2−4M
2 ). Then the solution

u(t) of the initial value problem

u′′ + cu′ +Mu = 0 (3)

u(0) = µ, u′(0) = −ε (4)

is positive in [0,+∞) and tends to zero as t→ +∞. (See [8].)

Lemma 2.1 Let continuous functions p, q, l, m be given such that p(t) ≥
q(t) > 0, 0 ≤ l(t) ≤ m(t) in the interval [t0, t1]. Let u and v be the respective
solutions of

u′′ + p(t)u′ + l(t)u = 0, (5)

v′′ + q(t)v′ +m(t)v = 0 (6)

such that u(t0) = v(t0) ≥ 0 and u′(t0) = v′(t0). Assume in addition that
p(t) ≡ q(t) in case u′(t0) = v′(t0) > 0. Then if v(t) ≥ 0 in [t0, t1] we have
u(t) ≥ v(t) in [t0, t1].

Proof. If u(t0) = v(t0) = u
′(t0) = v

′(t0) = 0 or p ≡ q and l ≡ m there
is nothing to prove. Otherwise, starting with u(t0) = v(t0) ≥ 0 and u′(t0) =
v′(t0) + ε (ε > 0) it follows that u > v in some interval (t0, t0 + δ). Suppose
that there exists t̄ ≤ t1 such that u(t) > v(t) ∀t ∈ (t0, t̄) and u(t̄) = v(t̄). Set

P (t) :=
∫ t
t0
p(s) ds. Multiplying (5) and (6) by eP (t), then (5) by v, (6) by u,

integrating in [t0, t̄] and subtracting we obtain, since v
′(t) < 0 in case v′(t0) ≤ 0

(according to Remark 2)

0 > [eP (t)(u′(t)v(t)− u(t)v′(t)]t̄t0 +

∫ t̄
t0

eP (t)(p(t)− q(t))v′(t)u(t) dt

+

∫ t̄
t0

eP (t)(l(t)−m(t))u(t)v(t) dt = 0,
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a contradiction. Hence u ≥ v in [t0, t1]. In the limit as ε → 0+ the statement
follows.

Let us write, in accordance with previous notation for the n-dimensional
case,

f(u) = ug(u), 0 ≤ u ≤ a.

Lemma 2.2 Assume p is continuous in R, f is a Lipschitz continuous function
in [0, µ] such that f(0) = 0 and f(u) > 0 if 0 < u < µ; and p(t) ≥ c ≥ 2

√
M

where M := sup
0<u<µ

g(u). Given t0 ∈ R assume in addition that p(t) is bounded

for t > t0. Then the solution of the Cauchy problem

u′′ + p(t)u′ + f(u) = 0, u(t0) = µ, u
′(t0) = −ε

where we assume that µ and ε > 0 are as in Remark 3, is positive and strictly
decreasing in [t0,∞) and vanishes at +∞.

Proof. Apply Lemma 2.1 with q(t) = c, l(t) = g(u(t)), m(t) = M . Take
Remarks 2 and 3 into account. The fact that u(+∞) = 0 is an easy consequence
of the boundedness of p, u and u′ since for t > t0 and some t

∗ ∈ (t0, t)

u′(t) + ε+ p(t∗)(u(t)− u0) +

∫ t
t0

f(u(s)) ds = 0, t > t0

and we infer that
∫ +∞
t0
f(u(s)) ds converges.

Remark. It is immediately recognized that the above result still holds if ε = 0
provided f(u) > 0 ∀u ∈ (0, µ].

3 Heteroclinics

In this section we give a simple analytic argument to prove the existence of
heteroclinics under hypotheses (H1)-(H2). For the sake of clarity we start with
the case of the scalar equation

u′′ + p(t)u′ + f(u) = 0 , (21)

where f : [0, a]→ R+ has the property (H1) for n = 1 and we write accordingly

c := inf
t∈R
p(t) > 0; f(u) = ug(u).

A basic assumption, which cannot be improved when p ≡ c is a constant and

g(u) is decreasing, is c ≥ 2
√
sup
0<u<a

g(u). When one deals with other models,

namely when g(0) = 0, that lower bound can be improved. Condition (ii) in the
following proposition is motivated by this setting.
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Proposition 3.1 Assume p is continuous, f is Lipschitz continuous in some
interval [0, µ], f(0) = 0, f(u) > 0 0 < u < µ, and that either

(i) c ≥ 2
√
sup
0<u<µ

g(u) or

(ii) there exists ν ∈ (0, µ) such that N := sup0<u<µ f(u) and
M := sup0<u<ν g(u) satisfy c

2 ≥ 4M and

N

c
≤ ν(

c

2
+

√
c2 − 4M

2
) (7)

Suppose in addition that p(t) is bounded for t > t0. Then for each suffi-
ciently small ε > 0 the solution u(t, t0, ε) of (2) such that u(t0, t0, ε) = µ and
u′(t0, t0, ε) = −ε is positive in [t0,+∞) and

lim
t→+∞

u(t, t0, ε) = 0.

Proof. In case (i) holds, this is only Lemma 2.2. Otherwise note that the
solution u(t, t0, ε) has no critical points and therefore is strictly decreasing. It
cannot remain above a positive constant by the argument used at the end of
the proof of Lemma 2.2. Let t1 be such that u(t1, t0, ε) = ν. The equation itself
shows that u′(t1, t0, ε) ≥ −N/c (consider separately the cases where t1 lies in
an interval of convexity or of concavity of the solution) and therefore Lemma
2.2 can be applied.

Remark. According to the remark after Lemma 2.1 it is obvious, via the same
arguments, that the Proposition holds even if ε = 0 except in case f(µ) = 0.

Theorem 3.2 Assume (H1)-(H2) with n = 1 and, in addition to the hypothe-
ses of proposition 3.1 with µ = a, that p(t) is bounded. Then (21) has a strictly
decreasing heteroclinic solution connecting a and 0.

Proof. With respect to µ = a in Proposition 3.1 take a sequence tm decreasing
to −∞ and consider the solution u(., t1, ε1) where ε1 is a small positive number.
According to proposition 3.1, 0 < u(t, t1, ε1) ≤ a for t ≥ t1 and there exists t̄
such that u(t̄, t1, ε1) = a/2.
Claim: There exists m2 > 1 such that

u(t̄, tm2 , ε1) < a/2.

Proof of the Claim: Otherwise we would have u(t̄, tm, ε1) ≥ a/2 for all m > 1
and, by a tm translation, this can be written

um(t̄− tm) ≥ a/2 (8)
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in terms of the solution of

u′′m + pm(t)u
′
m + f(um) = 0, um(0) = a, u

′
m(0) = −ε1 ,

where pm(t) = p(t + tm). The boundedness of pm, um and u
′
m and Ascoli’s

theorem enable us, by extracting subsequences and a diagonal procedure, to
suppose that (where we set d := sup

t∈R
p(t))

pm → p∞ in L
∞weak-*, c ≤ p∞(t) ≤ d

um → u in C
1(K), K any compact interval in [0,+∞).

Since
u′′ + p∞(t)u

′ + f(u) = 0, u(0) = 1, u′(0) = −ε1

(and it is easy to see that proposition 3.1 still applies to solutions in the
Carathéodory sense) there exists t̃ such that u(t̃) = a/4. Since um → u uni-
formly in [0, t̃] and t̄− tm → +∞ this contradicts (8) and so the Claim holds.
To go on with the proof we observe that if δ > 0 is sufficiently small we

have u(t̄, tm2 , δ) > a/2, since u(., tm2 , δ) → a as δ → 0
+ in [tm2 , t̄]. By the

intermediate value theorem we can pick up 0 < ε2 < ε1 such that u(t̄, tm2 , ε2) =
a/2. This argument can be iterated so as to construct decreasing sequences
τk = tmk and εk with the property that u(t̄, τk, εk) = a/2.
Using again the boundedness of u(., τk, εk) and u

′(., τk, εk) and the diagonal
procedure we can pass to a subsequence (which for convenience is denoted by
the same symbol) so that for any compact interval K ⊂ R,

u(., τk, εk)→ u in C
1(K).

The limit function u thus obtained is, of course, a decreasing solution to (1),
such that u(t̄) = a/2 and 0 < u(t) < a ∀t ∈ R (by the uniqueness theorem for the
initial-value problem u cannot take the values 0 or a). Finally we can repeat the
argument used in the proof of Lemma 2.2 to conclude that limt→−∞ u(t) = a,
limt→+∞ u(t) = 0 and limt→±∞ u

′(t) = 0.

Remarks. 1) It can be shown, using an argument similar to the proof of the
Claim, that εk → 0.
2) See [8] to see how in some instances (with g(0) = 0) assumption (ii) is an
improvement over (i).
We now turn to the study of system (2).

Theorem 3.3 Assume (H1)-(H2), the functions pi are bounded and

ci ≥ 2
√
M i, Mi := sup

(0,a1)×···×(0,an)
gi(u); i = 1, . . . , n.

Then (2) has a heteroclinic solution, whose components are strictly decreasing,
connecting a = (a1, · · · an) and 0.
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Proof. As in the previous proof, we start by considering solutions u(., t0, ε)
to (2) such that u(t0, t0, ε) = a and u

′
i(t0, t0, ε) = −ε, i = 1, · · ·n. Using

Proposition 3.1, one easily sees that for ε > 0 sufficiently small such solutions
are defined in [t0,∞), their components being strictly decreasing and vanishing
at +∞. Now take a sequence tm → −∞ and u(., t1, ε1) where ε1 is small.
Selecting the first component, u1, we easily establish, as in the proof of theorem
3.2, that there exists t̄ and subsequences τk = tmk → −∞, εk → 0

+) so that

u1(t̄, τk, εk) = a1/2 (9)

(it is sufficient to argue as in the proof of theorem 3.2 with respect to the
equation for the first component).
Next consider the sequence u2(., τk, εk) and let sk be numbers such that

u2(sk, τk, εk) = a2/2.

We claim that the sequence sk−t̄ is bounded: for suppose for instance that along
a subsequence sk − t̄ → +∞ (the case sk − t̄ → −∞ is analogous); integrating
the second equation of the system (2) in [t̄, sk] we obtain

u′2(sk, τk, εk)− u
′
2(t̄, τk, εk) + p2(t

∗
k)(u2(sk, τk, εk)− u2(t̄, τk, εk))

+

∫ sk
t̄

u2(t, τk, εk)g2(u(t, τk, εk)) dt = 0 ,

where t∗k ∈ [t̄, sk]. Now the first factor in the integrand is greater than a2/2;
using (H1) we see that the second is bounded away from zero (because u1
takes values < a1/2 while u2 takes values > a2/2); therefore we have reached a
contradiction.
Since this argument can be repeated with respect to the remaining compo-

nents, along with (9) we construct sequences s
(j)
k , j = 2, · · · , n such that

uj(s
(j)
k , τk, εk) = aj/2 (10)

and s
(j)
k − t̄ is bounded. Now, as in theorem 3.2 we go to the limit through a

diagonal subsequence: u(., τk, εk)→ v uniformly in compact intervals, and v is
a solution of (2) with decreasing components. Moreover we may assume that

s
(j)
k → tj, j = 2, · · · , n and therefore on account of (9)-(10) we obtain

v1(t̄) = a1/2, vj(tj) = aj/2, j = 2, · · ·n. (11)

We assert that 0 < vi(t) < ai ∀t ∈ R, and in particular v′i(t) < 0 ∀t ∈ R,
i = 1, . . . , n. Indeed suppose for instance that v1(t) = a1 for t ≤ t∗. Then
the first equation of (2) implies that g1(a1, v2(t), · · · , vn(t)) = 0 if t ≤ t∗, so
that by (H1) we have vj(t) = aj for t ≤ t∗ and j = 2, · · · , n. By uniqueness of
solutions of the Cauchy problem, it follows that v ≡ a, contradicting (11). An
easier argument shows that vj cannot take the value 0. Then, arguing as in the
proof of lemma 2.2 one concludes that v(−∞) = a and v(+∞) = 0. Finally we
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illustrate the proof of the fact that v′(±∞) = 0 by showing that v′1(−∞) = 0.
If this were not the case we could select sequences tk < sk → −∞ and a number
δ > 0 with v′1(tk)→ 0 and |v

′
1(sk)| ≥ δ. Multiplying the first equation in (2) by

v′1 and integrating yields

1

2
[v′21 (sk)− v

′2
1 (tk)] +

∫ sk
tk

p1v
′2
1 +

∫ sk
tk

f1(v)v
′
1 = 0,

where, by the mean value theorem and what has been already proved, the last
summand tends to 0 as k →∞; this is a contradiction and the proof is complete.

Remark. As in theorem 3.2, we could use a set of conditions like (7) to im-
prove the lower bounds on ci, i = 1, . . . , n in case the functions gi approach 0
as ui → 0.

4 Positive solutions vanishing at the endpoints

of an unbounded interval

In this section we consider f satisfying

(H3) For each i ∈ 1, · · ·n, fi : R+
n → R+ is a locally Lipschitz continuous

function such that fi(0) = 0 and fi(u) > 0 if ui > 0.

We consider the problem of finding nontrivial positive solutions to

u′′i + pi(t)u
′
i + fi(u) = 0, i = 1, . . . , n (12)

u(0) = 0 = u(+∞) (13)

where by nontrivial we mean that each component ui of such solution is positive
in (0,+∞). For definiteness the initial endpoint is taken to be t0 = 0, but our
results can obviously be restated with an arbitrary left endpoint.

Before stating the result we note the following fact: denote by u(·, A) the
solution of the Cauchy problem

u′′i + pi(t)u
′
i + fi(u) = 0, ui(0) = 0, u

′
i(0) = A;

then ui(·, A) has, for every A > 0, a maximum µi(A) depending continuously on
A and µi(0

+) = 0, µi(+∞) = +∞. To see this, take t∗ > 0 in a neighborhood
of 0, A∗i = u

′
i(t
∗, A) > 0, u∗i = ui(t

∗, A) > 0. Let Ki be the least upper bound
of the (scalar) solution of

z′′ + pi(t)z
′ = 0, z(t∗) = u∗i , z

′(t∗) = A∗i ,

and define δi := inf{gi(x) : u∗i ≤ xi ≤ Ki; xj ≤ Kj if j 6= i} > 0. Comparing
ui(·, A) with the solution to

v′′ + pi(t)v
′ + δiv = 0, v(t

∗) = u∗i , v
′(t∗) = A∗i ,
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it is easy to see, using Lemma 2.1, that (since v ≤ z) ui(t, A) ≤ v(t) as long as
ui(t, A) > u

∗
i . But the behavior of v(t) implies that v(t) returns to the value u

∗
i

and therefore ui(t, A) attains a maximum. The assertion about µi(0
+) comes

from the fact that Ki → 0 as A→ 0+. The other assertion is straightforward.

Proposition 4.1 Assume (H2)-(H3). Assume p is bounded in [0,∞) and
let ci := inf

t≥0
pi(t). Given positive numbers αi, i = 1, · · · , n such that Mi :=

sup{gi(u) : 0 < ui < αi} ≤ c2i /4, then there exists a number A0 > 0 such that
whenever 0 < A ≤ A0 u(·, A) is a nontrivial solution of (12)-(13).

Proof. It suffices to define A0 := sup{A > 0 : (µ1(A), · · · , µn(A)) ∈ (0, α1]×
· · · × (0, αn]}. Then if 0 < A ≤ A0 and ui(t∗i , A) = µi it is easy to conclude,
using lemma 2.2 and the remark after it, that each component ui(·, A) remains
positive in [t∗i ,+∞) and vanishes at +∞.
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