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Recent progress in the anisotropic electrical

impedance problem ∗

Gunther Uhlmann

Abstract

We survey some recent progress on the problem of determining an
anisotropic conductivity of a medium by making voltage and current mea-
surements at the boundary of the medium.

1 Introduction

We give more details on open problem 5 stated in [13] which was only briefly
discussed there for lack of space. We also survey some recent developments on
the same problem.

Let Ω ⊆ Rn be a bounded domain with smooth boundary. Let γ = (γij(x))
be the electrical conductivity of Ω which is assumed to be a positive definite,
smooth, symmetric matrix on Ω. Muscle tissue in the human body is a prime
example of an anisotropic conductivity since the conductivity in the transverse
direction (for cardiac muscle this is 2.3 mho) is quite different than in the
longitudinal direction (for cardiac muscle this is 6.3 mho).
Under the assumption of no sources or sinks of current in Ω, the equation

for the potential, given a voltage potential f on ∂Ω, is given by the solution of
the Dirichlet problem

n∑
i,j=1

∂
∂xi

(
γij ∂u

∂xj

)
= 0 on Ω

u
∣∣
∂Ω
= f.

(1)

The Dirichlet-to-Neumann map (DN) is defined by

Λγ(f) =
n∑

i,j=1

νiγij
∂u

∂xj

∣∣
∂Ω

(2)
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304 Anisotropic conductivities

where ν = (ν1, . . . , νn) denotes the unit outer normal to ∂Ω and u is the solution
of (1). Λγ is also called the voltage to current map since Λγ(f) measures the
induced current flux at the boundary.
The inverse problem is whether one can determine γ by knowing Λγ . Calderón

proposed this problem in [4]. He worked as an engineer for YPF (Yacimientos
Petroleros Fiscales) in Argentina and he thought of this problem and his contri-
bution during that time. This problem arises naturally in geophysical prospec-
tion. In fact the Schlumberger-Doll company was founded in the early part of
the century to find oil using electrical prospection (see [15] for an account). We
are grateful to Alberto Grünbaum who convinced Calderón to publish his result
in 1980 (personal communication). Paul Malliavin in his lecture at the confer-
ence held at the University of Chicago to honor the 75th birthday of Calderón
mentioned that Calderón told him of his inverse result in 1954 (see footnote in
page 228 of [5]). More recently this inverse problem has been proposed as a
valuable diagnostic tool in medicine (see for instance [2]) and it has been called
electrical impedance tomography (EIT). Unfortunately, Λγ doesn’t determine γ
uniquely. This observation is due to L. Tartar (see [6] for an account). To see
this we define first the Dirichlet integral associated to a solution of (1). Let

Qγ(f) =
n∑

i,j=1

∫
Ω

γij(x)
∂u

∂xi

∂u

∂xj
dx (3)

with u a solution of (1).
A standard application of the divergence theorem gives that

Qγ(f) =

∫
∂Ω

Λγ(f)fdS, (4)

where dS denotes surface measure in ∂Ω. In other words, Λγ is the linear
operator associated to the quadratic form Qγ so that Λγ and Qγ carry the same
information.
Let ψ : Ω → Ω be a C∞ diffeomorphism with ψ

∣∣
∂Ω
= Identity. Let v =

u ◦ ψ−1. Then a straightforward calculation shows that v satisfies

n∑
i,j=1

∂
∂xi

(
γ̃ij

∂v
∂xj

)
= 0

v
∣∣
∂Ω
= f

(5)

where

γ̃ =

(
(Dψ)T ◦ γ ◦ (Dψ)

| detDψ|

)
◦ ψ−1 =: ψ∗γ. (6)

Here Dψ denotes the (matrix) differential of ψ, (Dψ)T its transpose and the
composition in (6) is to be interpreted as composition of matrices.
By making the change of variables v = u ◦ψ−1 in the quadratic form (3) we

see that
Qγ̃(f) = Qγ(f) (7)



Gunther Uhlmann 305

and therefore Λγ̃ = Λγ .
We have found a large number of conductivities with the same DN map:

any change of variables of Ω that leaves the boundary fixed gives rise to a new
conductivity with the same electrical boundary measurements. The question is
then whether this is the only obstruction to unique identifiability of the con-
ductivity. As we outline below this is a problem of geometrical nature and we
proceed to state it in invariant form.

2 Geometric Formulation

Let (M, g) be a compact Riemannian manifold with boundary. The Laplace-
Beltrami operator associated to the metric g is given in local coordinates by

∆gu =
1

√
det g

n∑
i,j=1

∂

∂xi

(√
det ggij

∂u

∂xj

)
(1)

where (gij) is the inverse of the metric g. Let us consider the Dirichlet problem
associated to (1)

∆gu = 0 on Ω
u
∣∣
∂Ω
= f

(2)

We define the DN map in this case by

Λg(f) =

n∑
i,j=1

νigij
∂u

∂xj

√
det g

∣∣
∂Ω

(3)

where (νi) = ν is the outer unit normal to ∂Ω. The inverse problem is to recover
g from Λg.
By using a similar argument to the one outlined above we have that

Λψ∗g = Λg (4)

where ψ is a C∞ diffeomorphism of M which is the identity on the boundary.
As usual ψ∗g denotes the pull back of the metric g by the diffeomorphism ψ.
In the case thatM is an open, bounded subset of Rn with smooth boundary,

it is easy to see that ([7]) for n ≥ 3

Λg = Λγ (5)

where
gij = (det γ

kl)
1
n−2 (γij)−1, γij = (det gkl)

1/2(gij)
−1. (6)

In the two dimensional case (1.12) is not valid. In fact in n = 2 the Laplace-
Beltrami operator is conformally invariant. More precisely

∆αg =
1

α
∆g
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for any function α, α 6= 0. Therefore we have that for n = 2

Λα(ψ∗g) = Λg (7)

for any smooth function α 6= 0 so that α
∣∣
∂M
= 1.

Now we give an invariant formulation of the EIT problem in the two dimen-
sional case. In the Euclidean case a current is a one form given by

i(x) = γ(x)du(x)

where u is the voltage potential. Then, in two dimensions, the conductivity γ
can be viewed as a linear map from 1-forms to 1-forms. Now let (M, g) be a
two dimensional Riemannian manifold. Let γ be a positive definite symmetric
mapping (with respect to the inner product defined by the metric g) from one
forms to one forms. In this case (1) takes the form

δ(γdu) = 0 in M
u
∣∣
∂M
= f

(8)

where d denotes differentiation and δ codifferentiation with respect to the metric
g.
The DN map is given by the 1-form

Λg,γf = γdu
∣∣
∂M

. (9)

An argument similar to the one outlined above shows that

Λg,ψ∗γ = Λγ (10)

for every diffeomorphism ψ : M → M which is the identity at the boundary.
Here ψ∗γ denotes the push-forward by the diffeomorphism ψ of the one form
γ. We remark that Riemannian metrics pullback naturally under smooth maps
and conductivities push-forward naturally under smooth maps.
Now we are in position to state the main conjectures.

Conjecture A (n ≥ 3).
Let (M, g) be a compact Riemannian manifold with boundary. The pair

(∂M,Λg) determines (M, g) uniquely. Of course uniquely means up to an iso-
metric copy.

Conjecture B (n = 2).
Let (M, g) be a compact Riemannian surface. Then the pair (∂M,Λg) de-

termines uniquely the conformal class of (M, g). Uniquely means again up to
an isometric copy.

Conjecture C (n = 2).
Let (M, g) be a compact Riemannian surface with boundary and γ a positive

definite symmetric map from one forms to one forms on M . Suppose we know
(M, g, ∂M,Λg,γ) with Λg,γ defined as in (9), then we can recover uniquely γ.
Uniquely means here up to an isometry which is the identity on the boundary
as in (1.6)
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3 The results

A basic result which is used in all the anisotropic results stated below is the
following Lemma proved in [7]:

Lemma 3.1 (a) n ≥ 3. Let (M, g) be a compact Riemannian manifold with
boundary. Then Λg determines the C

∞-jet of the metric at the boundary in the
following sense. If g′ is another Riemannian metric on M such that Λg = Λg′ ,
then there exists a diffeomorphism ϕ : M → M , ϕ

∣∣
∂M
= Identity such that

g′ = ϕ∗g to infinite order at ∂M .
(b) n = 2. Let (M, g) be a compact Riemannian manifold with boundary.

Then Λg determines the conformal class of the C
∞-jet of the metric at the

boundary.
(c) n = 2. Let (M, g) be a compact Riemannian surface with boundary. Let

γ be a positive definite symmetric map from one forms to one forms. Then
the mapping Λg,γ, as defined in (6), determines the C

∞-jet of the map γ at
the boundary in the following sense: If γ′ is another such one form such that
Λg,γ = Λg,γ′ . Then there exists a diffeomorphism ϕ :M →M , ϕ

∣∣
∂M
= Identity

such that γ′ = ϕ∗γ to infinite order at ∂M .

In other words Lemma 3.1 shows that Conjectures A, B, C above are valid at
the boundary. The proof of this result is done in case a) by showing that Λg is a
pseudodifferential operator of order 1. Its full symbol, calculated in appropriate
coordinates, determines the C∞-jet of the metric g at the boundary. The proofs
of b) and c) are similar.
The only case of Conjecture A that has been settled in general is the isotropic

case in Euclidean space. Namely we have in the case that M = Ω an open,
bounded subset of Rn with a smooth boundary and the metric g is given by

gij = α(x)δij , α > 0 (1)

where δij is the Krönecker delta.
Suppose g(1), g(2) are two isotropic Riemannian metrics

g(i) = αi(x)(δkl) i = 1, 2, αi > 0. (2)

Then it is straightforward to show that if ψ∗g1 = g2, ψ
∣∣
∂Ω
= Identity, then

ψ = Identity. So the Conjecture A in this case is that g1 = g2. This was proven
in [12]:

Theorem 3.2 Let Ω ⊆ Rn n ≥ 3 be a bounded domain with smooth boundary.
Let g(i), i = 1, 2 be two isotropic Riemannian manifolds satisfying (2). Then
Λg1 = Λg2 implies g1 = g2.

We won’t outline the proof here. We mention that a crucial ingredient in the
proof is the construction of complex geometrical optics solutions of the Laplace-
Beltrami operator when the Riemannian metric is isotropic. More precisely
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Lemma 3.3 Let g be an isotropic Riemannian metric as in (1), with α = 1
outside a large ball. Let ρ ∈ Cn, ρ · ρ = 0. Then for |ρ| sufficiently large, there
exist solutions of ∆gu = 0 of the form

u = ex·ρα−
1
2 (1 + ψg(x, ρ)) (3)

with ψg −→
|ρ|→∞

0 uniformly in compact sets.

For more precise statements and a recent survey of other results using com-
plex geometrical optics solutions, see [14].
One of the main difficulties in extending Theorem 3.2 to the general anisotropic

case even in the case whenM is an open subset of Euclidean space is to construct
an analog of (3) for the Laplace-Beltrami operator.
Lassas and the author ([M-U]) proved Conjecture A in the real-analytic case

and Conjecture B in general. Moreover these results assume that Λg is measured
only on an open subset of the boundary.
Let Γ be an open subset of ∂M . we define for f , supp f ⊆ Γ

Λg,Γ(f) = Λg(f)
∣∣
Γ
.

The first result of [7] is:

Theorem 3.4 (n ≥ 3) Let (M, g) be a real-analytic compact, connected Rie-
mannian manifold with boundary. Let Γ ⊆ ∂M be real-analytic and assume that
g is real-analytic up to Γ. Then (Λg,Γ, ∂M) determines uniquely (M, g).

Notice that Theorem 3.4 doesn’t assume any condition on the topology of
the manifold except for connectedness. An earlier result of [7] assumed that
(M, g) was strongly convex and simply connected and Γ = ∂M .
The second result of [8] is the proof of Conjecture B assuming we only

measure the DN map on an open subset of the boundary.

Theorem 3.5 (n = 2) Let (M, g) be a compact Riemannian surface with bound-
ary. let Γ ⊆ ∂M be an open subset. Then (Λg,Γ, ∂M) determines uniquely the
conformal class of (M, g).

Sketch of proof of Theorems 3.4 and 3.5. We’ll sketch the proof of Theorem
3.5. Theorem 3.4 follows along similar lines. Using Lemma 3.1 we know that
Λg determines g

∣∣
∂M
.

We add to M a collar neighborhood to construct M̃ = M ∪ (∂M × [0, 1])
with the metric given on ∂M × [0, 1] by

g
∣∣
∂M×[0,1]

= g
∣∣
∂M
+ ds2.

With this definition g ∈ C0,1(M̃). The Green’s kernel is defined by

∆ghy = δy in M̃
hy
∣∣
∂M̃
= 0

It is proven in [M-U] that the DN map determines the Green’s functions in the
collared neighborhood. More precisely we have:
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Lemma 3.6 Λg determines hy(x), x, y ∈ M̃ −M .

In two dimensions there are special coordinates that change any Riemannian
metric to a conformal multiple of the Euclidean one. These are called isothermal
coordinates ([A]). Given any point x ∈ M , there exists a coordinate system
(U, φ), φ : U ⊆M → R2 so that

g ◦ φ−1 = α(x)(δij) (4)

that is, the metric g is isotropic in these coordinates.
Let V be an open neighborhood of ∂M̃ so that ∂M̃ ⊆ V ⊆ M̃ . A fundamen-

tal step in the proof is to show the following result that states, roughly speaking
that we can use the Green’s functions based on points of V as coordinates.

Lemma 3.7 Given any point x ∈ M , there exists a neighborhood U of x and
points y1, y2 ∈ V so that Hy1,y2 = (hy1 , hy2) form a coordinate system on U .

The next observation is that Hy1,y2 are real-analytic in isothermal coordi-
nates on M . These follow since the Laplacian in two dimensions is conformally
invariant and therefore

∆hy ◦ φ
−1 = 0 on φ(U) if y ∈ M̃ −M

and harmonic functions are real-analytic. Let us take a point x ∈ M . Then
we find a coordinate system (U, φ) near x and y1, y2 ∈ V so that Hy1,y2 is
real-analytic in these coordinates.
Now we continue analytically hy, y ∈ V in these coordinates as much as

possible. When this is no longer possible we use Lemma 3.7 to find new points
ỹ1, ỹ2 ∈ V so thatHỹ1,ỹ2 is a system of coordinates and we continue this analytic
continuation process again. This is done in [8] using the theory of sheaves. Let
A be the sheaf of sequences of real-analytic maps. We define an equivalent class
B in this sheaf by identifying elements that are obtained from each other by
using real-analytic diffeomorphisms. Let p ∈ B be the element corresponding to
the germs of the Green’s kernel at a point x ∈ M̃ −M . The isometric copy of
the manifold (M, g) is constructed by taking the path connected component of
B containing the point p.
As for Conjecture C the only known result is the case when M = Ω is an

open subset of Rn with smooth boundary and g = (δij) =: e is the Euclidean
metric. More precisely we have

Theorem 3.8 (n = 2) Let Ω ⊆ Rn be a bounded domain with smooth boundary.
Let γ1, γ2 be two anisotropic conductivities so that

Λe,γ1 = Λe,γ2 .

Then there exists ψ : Ω→ Ω diffeomorphism ψ
∣∣
∂Ω
= Identity so that

ψ∗γ1 = γ2.
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The proof of Theorem 3.8 is a combination of the results of [9] and [10]. In [9]
it was proven Theorem 3.8 for isotropic conductivities. Then one uses the results
of [10] to reduce the anisotropic case to the isotropic one by using the analog
of isothermal coordinates in this case. The result is that given an anisotropic
conductivity, we can find a diffeomorphism φ so that φ∗γ is isotropic. We end
by mentioning that the result of [9] uses the complex geometrical solutions, (3)
for all complex frequencies ρ ∈ Cn − 0, ρ · ρ = 0 (not just large frequencies).
For another construction of these solutions which allow Lipschitz conductivities
see [3] (the result of [9] works for C2 conductivities). Theorem 3.8 has been
extended to anisotropic non-linear conductivities in [11].
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