Existence of non-negative solutions for a Dirichlet problem *

Cecilia S. Yarur

Abstract

The aim of this paper is the study of existence of non-negative solutions of fundamental type for some systems without sign restrictions on the non linearity.

1 Introduction

We study the existence of non-negative non-trivial solutions to the boundaryvalue problem

$$
\begin{gather*}
\Delta u=a_{2} v^{p_{2}}-a_{1} v^{p_{1}} \quad \text { in } B^{\prime} \\
\Delta v=b_{2} u^{q_{2}}-b_{1} u^{q_{1}} \quad \text { in } B^{\prime} \tag{1.1}\\
u=v=0 \quad \text { on } \partial B
\end{gather*}
$$

where a_{i}, b_{i} are non-negative constants, $p_{i}>0, q_{i}>0$ for $i=1,2, B$ is the unit ball centered at zero in $\mathbb{R}^{N}, N \geq 3$, and $B^{\prime}=B \backslash\{0\}$.

The above problem involves many problems of a quite different nature depending on the values of a_{i}, b_{i}. For instance, if $a_{2}=b_{2}=0$ the solutions u, v are sub-harmonic functions, while if $a_{1}=b_{1}=0$ the solutions are super-harmonic.

For a better understanding of this system, we recall that P.L. Lions [12], Ni and Sacks [15], and Ni and Serrin [16], studied conditions for existence or non existence of non-negative solutions u to

$$
\begin{equation*}
-\Delta u=u^{q} \quad \text { in } B^{\prime}, \quad u=0 \quad \text { on } \partial B \tag{1.2}
\end{equation*}
$$

The range of existence of solutions to (1.2) is $q<(N+2) /(N-2)$. On the other hand, the problem

$$
\Delta u=u^{q} \quad \text { in } B^{\prime}, \quad u=0 \quad \text { on } \partial B
$$

has a non-negative non-trivial solution if and only if $q<N /(N-2)$, see [5] for the non-existence and [18] for existence and related problems.

[^0]We state next some known results concerning particular cases of problem (1.1). Assume first that $a_{1}=b_{1}=0$. Thus, we are concerned with

$$
\begin{align*}
& -\Delta u=a_{2} v^{p_{2}} \quad \text { in } B^{\prime} \\
& -\Delta v=b_{2} u^{q_{2}} \quad \text { in } B^{\prime} \tag{1.3}\\
& u=v=0 \quad \text { on } \partial B
\end{align*}
$$

The following result is well known.
Theorem 1.1 Assume that $a_{1}=b_{1}=0, p_{2} q_{2}>1$ and $a_{2}>0, b_{2}>0$. Then, there exists a classical solution to (1.3) if and only if

$$
\frac{N}{p_{2}+1}+\frac{N}{q_{2}+1}>N-2
$$

Troy [17] proved radial symmetry of positive classical solutions to problem (1.3). The existence of positive classical solutions of (1.3) was studied by Hulshof and van der Vorst [11] and de Figueiredo and Felmer [9]. The behavior of solutions was studied by Bidaut-Véron in [2]. The existence of some singular solutions, that is solutions with either
$\lim \sup _{x \rightarrow 0} u(x)=+\infty$ or $\lim \sup _{x \rightarrow 0} v(x)=+\infty$, is given by García-Huidobro, Manásevich, Mitidieri and Yarur, see [10]. Using Pohozaev-Pucci-Serrin type identity, Mitidieri [13, 14] and van der Vorst [19] proved non existence of classical solutions of (1.3). Non-existence of radially symmetric singular positive solutions was given by Garcia-Huidobro, Manásevich, Mitidieri and Yarur in [10].

We note that since u and v are super-harmonic functions, and due to a result of Brezis and P.L.Lions [1], $u^{q_{2}} \in L^{1}(B), v^{p_{2}} \in L^{1}(B)$ and there exist $c \geq 0$ and $d \geq 0$ such that

$$
\begin{gathered}
-\Delta u=a_{2} v^{p_{2}}+c \delta_{0} \quad \text { in } \mathcal{D}^{\prime}(B) \\
-\Delta v=b_{2} u^{q_{2}}+d \delta_{0} \quad \text { in } \mathcal{D}^{\prime}(B) \\
u=v=0 \quad \text { on } \partial B
\end{gathered}
$$

If $(c, d) \neq(0,0)$ we call this singularity of fundamental type.
Let us consider now $a_{1}=b_{2}=0$, in (1.1). Hence, we are looking for the solutions of:

$$
\begin{gather*}
-\Delta u=a_{2} v^{p_{2}} \quad \text { in } B^{\prime} \\
\Delta v=b_{1} u^{q_{1}} \quad \text { in } B^{\prime} \tag{1.4}\\
u=v=0 \quad \text { on } \partial B
\end{gather*}
$$

Since v is sub-harmonic, there exists no non-negative classical solutions to (1.4).
The following result is given in [6] for $p_{2} q_{1}>1$ and in [7] for $p_{2} q_{1}<1$.
Theorem 1.2 Assume $a_{1}=b_{2}=0, p_{2}>0, q_{1}>0$, and $p_{2} q_{1} \neq 1$. Then there exists a non-trivial non-negative solution to (1.4) if and only if

$$
\frac{N}{p_{2}+1}+\frac{N-2}{q_{1}+1}>N-2, \quad \text { and } \quad p_{2}<N /(N-2)
$$

The above result is based on the results given in [3].
We say that (u, v) has a strong singularity at 0 if either

$$
\limsup _{x \rightarrow 0}|x|^{N-2} u(x)=+\infty \quad \text { or } \quad \limsup _{x \rightarrow 0}|x|^{N-2} v(x)=+\infty
$$

It can be proved that there exists a region in the plane $p_{2}-q_{1}$ where there exist both strong and fundamental non-negative singular solutions, see [7]. This region is given by

$$
\frac{N-2}{p_{2}+1}+\frac{N}{q_{1}+1}>N-2, \quad \text { and } \quad p_{2}<N /(N-2)<q_{1}
$$

Assume now that $a_{2}=b_{2}=0$, and thus the problem (1.1) is

$$
\begin{align*}
& \Delta u=a_{1} v^{p_{1}} \quad \text { in } B^{\prime} \\
& \Delta v=b_{1} u^{q_{1}} \quad \text { in } B^{\prime} \tag{1.5}\\
& u=v=0 \quad \text { on } \partial B
\end{align*}
$$

Since u and v are sub-harmonic we have non existence of non-negative solutions with either u or v bounded.

In [4] and [20] it was proved non existence of positive solutions if either

$$
\frac{N}{p_{1}+1}+\frac{N-2}{q_{1}+1} \leq N-2, \quad \text { or } \quad \frac{N-2}{p_{1}+1}+\frac{N}{q_{1}+1} \leq N-2
$$

If $a_{1}=0\left(\right.$ similarly for $\left.b_{1}=0\right)$ we have

$$
\begin{gather*}
-\Delta u=a_{2} v^{p_{2}} \quad \text { in } B^{\prime} \\
-\Delta v=b_{2} u^{q_{2}}-b_{1} u^{q_{1}} \quad \text { in } B^{\prime} \tag{1.6}\\
u=v=0 \quad \text { on } \partial B \tag{1.7}
\end{gather*}
$$

The following result was proved in [8].
Theorem 1.3 Let $p_{2}>0, q_{1}>0$ and $q_{2}>0$. Let $a_{1}=0, a_{2} \geq 0, b_{1} \geq 0$ and $b_{2} \geq 0$. Assume that for $i=1,2$ we have

$$
\begin{equation*}
p_{2}<\frac{N}{N-2}, \quad \frac{N}{p_{2}+1}+\frac{N-2}{q_{i}+1}>N-2 \tag{1.8}
\end{equation*}
$$

Assume that one of the following holds:
(i) $p_{2} q_{i}>1$ for all $i=1,2$.
(ii) $p_{2} q_{i}<1$, for all $i=1,2$.
(iii) If $p_{2} q_{i}=1$ for some $i=1,2$ then $a_{2}^{p_{2}} b_{i}$ is sufficiently small.
(iv) $p_{2} q_{i}<1<p_{2} q_{j}$, for some $i, j=1,2, i \neq j$, and $a_{2}^{p_{2}} b_{i}$ is sufficiently small.

Then, there exist $d_{*} \geq 0, d^{*}>0$ with $d_{*}<d^{*}$ such that for any $d \in\left(d_{*}, d^{*}\right)$, there exists (u, v) a non-negative solution to (1.6) satisfying

$$
\lim _{x \rightarrow 0}|x|^{N-2}(u(x), v(x))=(0, d) .
$$

Moreover, if $p_{2} q_{i} \geq 1, i=1,2$ then $d_{*}=0$, and if $p_{2} q_{i} \leq 1, i=1,2$ then $d^{*}=\infty$.

For the general case we have the following previous result, see [8].
Theorem 1.4 Let $p_{1}>0, p_{2}>0, q_{1}>0$ and $q_{2}>0$. Let $a_{i}, b_{i} i=1,2$ be non-negative constants. Assume that

$$
\begin{equation*}
p_{i}<\frac{N}{N-2}, \quad q_{i}<\frac{N}{N-2}, \quad i=1,2 \tag{1.9}
\end{equation*}
$$

Assume that one of the following holds:
(i) $p_{i} q_{j}>1$, for all $i, j=1,2$.
(ii) $p_{i} q_{j}<1$, for all $i, j=1,2$.
(iii) If $p_{i} q_{j}=1$ for some $i=1,2$ and some $j=1,2$ then $a_{i}^{p_{i}} b_{j}$ is sufficiently small.
(iv) $p_{i} q_{j}<1<p_{k} q_{l}$, for some $i, j, k, l=1,2$ and $a_{i}^{p_{i}} b_{j}$ is sufficiently small.

Then, there exist $c>0, d>0$ and (u, v) a non-negative solution to (1.1) such that

$$
\lim _{x \rightarrow 0}|x|^{N-2}(u(x), v(x))=(c, d)
$$

Here we prove the following general existence result of non negative nontrivial solutions to (1.1). Set

$$
\begin{equation*}
\Gamma(p, q):=\frac{N-2}{p+1}+\frac{N}{q+1}-(N-2) \tag{1.10}
\end{equation*}
$$

Theorem 1.5 Let $p_{i}, q_{i}, i=1,2$, positive numbers. Then, there exists a nonnegative nontrivial solution (u, v) of (1.1) if one of the following holds:
(i) $a_{1}>0, b_{1}>0$, and $p_{2}<N /(N-2), q_{2}<N /(N-2)$

$$
\min \left\{\Gamma\left(p_{1}, q_{1}\right), \Gamma\left(q_{1}, p_{1}\right), \Gamma\left(p_{2}, q_{1}\right), \Gamma\left(q_{2}, p_{1}\right)\right\}>0
$$

with small coefficient a_{j} (respectively b_{j}) for some $j=1,2$ if $p_{j} \leq 1$ (respectively $\left.q_{j} \leq 1\right)$ and $1 \leq \max _{i=1,2}\left\{p_{i}, q_{i}\right\}$.
(ii) $a_{1}=0, b_{1}>0, p_{2}<N /(N-2)$ and

$$
\min \left\{\Gamma\left(q_{1}, p_{2}\right), \Gamma\left(q_{2}, p_{2}\right)\right\}>0
$$

with small coefficient a_{2} (respectively b_{j}) if $p_{2} \leq 1$ (respectively $q_{j} \leq 1$) for some $j=1,2$, and $1 \leq \max _{i=1,2}\left\{p_{2}, q_{i}\right\}$.
(iii) $a_{1}=0=b_{1}$, and

$$
\max \left\{\Gamma\left(p_{2}, q_{2}\right), \Gamma\left(q_{2}, p_{2}\right)\right\}>0,
$$

with small coefficient a_{2} (respectively b_{2}) if $p_{2} \leq 1$ (respectively $q_{2} \leq 1$) and $1 \leq \max \left\{p_{2}, q_{2}\right\}$.

2 Proof of Theorem 1.5

We note that for p and q non-negative numbers the condition $\Gamma(p, q)>0$ is equivalent to

$$
p(2-(N-2) q)+N>0 .
$$

Moreover, if $p q>1$,

$$
\begin{array}{ll}
\Gamma(p, q)=(\zeta-(N-2))(p q-1), & \zeta=\frac{2(p+1)}{p q-1} \\
\Gamma(q, p)=(\xi-(N-2))(p q-1), & \xi=\frac{2(q+1)}{p q-1} .
\end{array}
$$

Recall that $u(x)=C_{1}|x|^{-\zeta}, v(x)=C_{2}|x|^{-\xi}$ for some positive constants C_{1} and C_{2} is a non-negative solution of

$$
-\Delta u=v^{p}, \quad-\Delta v=u^{q}
$$

if $\Gamma(p, q)<0$ and $\Gamma(q, p)<0$. This particular solution also plays a fundamental role for example for the system

$$
-\Delta u=v^{p}, \quad \Delta v=u^{q},
$$

where this solution exists if $\Gamma(p, q)<0$ and $\Gamma(q, p)>0$.
Proof of Theorem 1.5. Set

$$
f_{i}(t)=a_{i} t^{p_{i}}, g_{i}(t)=b_{i} t^{q_{i}}, i=1,2 .
$$

We will construct radially symmetric non-negative solutions to (1.1), by monotone iteration as follows. Let $d>0,\left(u_{1}, v_{1}\right)=(0, d m)$, where $m(r):=|x|^{2-N}-1$ and let $\left(u_{n}, v_{n}\right)$ be given by $\left(u_{n+1}, v_{n+1}\right)=T\left(u_{n}, v_{n}\right)$ where $T=\left(T_{1}, T_{2}\right)$ is the operator given by

$$
\begin{align*}
T_{1}(u, v)(r)= & \int_{r}^{1} s^{1-N} \int_{s}^{1} t^{N-1} f_{1}(v(t)) d t d s \\
& +\int_{r}^{1} s^{1-N} \int_{0}^{s} t^{N-1} f_{2}(v(t)) d t d s, \tag{2.1}\\
T_{2}(u, v)(r)= & d m(r)+\int_{r}^{1} s^{1-N} \int_{s}^{1} t^{N-1} g_{1}(u(t)) d t d s \\
& +\int_{r}^{1} s^{1-N} \int_{0}^{s} t^{N-1} g_{2}(u(t)) d t d s,
\end{align*}
$$

We are looking for α, δ and C such that

$$
T_{1}\left(C r^{\alpha}, C r^{\delta}\right) \leq C r^{\alpha}, T_{2}\left(C r^{\alpha}, C r^{\delta}\right) \leq C r^{\delta}
$$

and $v_{1}=d m(r) \leq C r^{\delta}$. Hence, the sequence $\left(u_{n}, v_{n}\right)$ satisfies

$$
u_{n} \leq C r^{\alpha}, v_{n} \leq C r^{\delta} \text { for all } n \in \mathbb{N}
$$

and the convergence of $\left(u_{n}, v_{n}\right)$ to a solution of (1.1) follows.
To find C, d, α and δ we use the following: Let κ be any number such that $\kappa+N \neq 0$, and define

$$
\phi(\kappa):=\min \{2-N, \kappa+2\}
$$

Then

$$
\begin{equation*}
m_{\kappa}(r):=\int_{r}^{1} s^{1-N} \int_{s}^{1} t^{N-1+\kappa} d t d s \leq K r^{\phi(\kappa)} \tag{2.2}
\end{equation*}
$$

where $K=K(N, \kappa)$.
Moreover, for any κ satisfying $\kappa+N>0$, and $\kappa+2 \neq 0$, set

$$
\psi(\kappa):=\min \{0, \kappa+2\} .
$$

We have

$$
\begin{equation*}
h_{\kappa}:=\int_{r}^{1} s^{1-N} \int_{0}^{s} t^{N-1+\kappa} d t d s \leq K r^{\psi(\kappa)} \tag{2.3}
\end{equation*}
$$

where $K=K(N, \kappa)$. Hence,

$$
T_{1}\left(C r^{\alpha}, C r^{\delta}\right)=a_{1} C^{p_{1}} m_{p_{1} \delta}+a_{2} C^{p_{2}} h_{p_{2} \delta}
$$

From (2.2) and (2.3) and if we choose $p_{1} \delta+N \neq 0$ and $p_{2} \delta+N>0$ we obtain

$$
\begin{equation*}
T_{1}\left(C r^{\alpha}, C r^{\delta}\right) \leq K\left(a_{1} C^{p_{1}} r^{\phi\left(p_{1} \delta\right)}+a_{2} C^{p_{2}} r^{\psi\left(p_{2} \delta\right)}\right) \tag{2.4}
\end{equation*}
$$

We note that $\phi\left(p_{1} \delta\right) \leq 2-N<\psi\left(p_{2} \delta\right)$, and thus

$$
\begin{equation*}
T_{1}\left(C r^{\alpha}, C r^{\delta}\right) \leq K\left(a_{1} C^{p_{1}}+a_{2} C^{p_{2}}\right) r^{\sigma} \tag{2.5}
\end{equation*}
$$

where

$$
\sigma:= \begin{cases}\phi\left(p_{1} \delta\right) & \text { if } a_{1} \neq 0 \\ \psi\left(p_{2} \delta\right) & \text { if } a_{1}=0\end{cases}
$$

Therefore, if $\alpha \leq \sigma$ and $K\left(a_{1} C^{p_{1}}+a_{2} C^{p_{2}}\right) \leq C$, we obtain $T_{1}\left(C r^{\alpha}, C r^{\delta}\right) \leq C r^{\alpha}$. Arguing as above, we have

$$
\begin{equation*}
T_{2}\left(C r^{\alpha}, C r^{\delta}\right) \leq d r^{2-N}+K\left(b_{1} C^{q_{1}} r^{\phi\left(q_{1} \alpha\right)}+b_{2} C^{q_{2}} r^{\psi\left(q_{2} \alpha\right)}\right) \tag{2.6}
\end{equation*}
$$

with $q_{1} \alpha+N \neq 0, q_{2} \alpha+2 \neq 0$, and $q_{2} \alpha+N>0$. Therefore,

$$
\begin{equation*}
T_{2}\left(C r^{\alpha}, C r^{\delta}\right) \leq\left(d+K\left(b_{1} C^{q_{1}}+b_{2} C^{q_{2}}\right)\right) r^{\rho} \tag{2.7}
\end{equation*}
$$

where

$$
\rho:= \begin{cases}\phi\left(q_{1} \alpha\right) & \text { if } b_{1} \neq 0 \\ 2-N & \text { if } b_{1}=0\end{cases}
$$

Hence,

$$
T_{2}\left(C r^{\alpha}, C r^{\delta}\right) \leq C r^{\delta}
$$

if $\delta \leq \rho$ and $d+K\left(b_{1} C^{q_{1}}+b_{2} C^{q_{2}}\right) \leq C$.
Next we prove the existence of α, δ, C and d under the hypothesis of the theorem. The existence of C and d, is classical. We can choose $d=C / 2$ and for $i=1,2$

$$
K a_{i} C^{p_{i}} \leq C / 2, \quad K b_{i} C^{q_{i}} \leq C / 4
$$

Therefore, if either for all $i, p_{i}<1$ and $q_{i}<1$, or $p_{i}>1$ and $q_{i}>1$, the existence of C follows. By the contrary if $\max \left\{p_{i}, q_{i}, i=1,2\right\} \geq 1$ and $\min \left\{p_{i}, q_{i}, i=\right.$ $1,2\} \leq 1$, we obtain existence with a restriction on the coefficients.

We summarize the conditions that α and δ must satisfy as follows:

$$
\begin{aligned}
& \alpha \leq \begin{cases}\min \left\{2-N, p_{1} \delta+2\right\} & \text { if } a_{1} \neq 0 \\
\min \left\{0, p_{2} \delta+2\right\} & \text { if } a_{1}=0\end{cases} \\
& \delta \leq \begin{cases}\min \left\{2-N, q_{1} \alpha+2\right\} & \text { if } b_{1} \neq 0 \\
2-N & \text { if } b_{1}=0\end{cases}
\end{aligned}
$$

Moreover, we need that

$$
\begin{equation*}
p_{2} \delta+N>0, \quad q_{2} \alpha+N>0 \tag{2.8}
\end{equation*}
$$

We also used that $p_{1} \delta+N \neq 0, q_{1} \alpha+N \neq 0, p_{2} \delta+2 \neq 0, q_{2} \alpha+2 \neq 0$. These last conditions are not relevant since we can take α and δ smaller and hence these new α and δ satisfy the conditions.

Case (i). Assume first that $a_{1}>0$ and $b_{1}>0$. If $p_{1}<N /(N-2)$, and since $\Gamma\left(p_{1}, q_{1}\right)>0$, and $\Gamma\left(p_{2}, q_{1}\right)>0$, we can take

$$
\alpha=2-N, \delta=\min \left\{2-N, 2-\left(q_{1}-\varepsilon\right)(N-2)\right\}
$$

where $\varepsilon>0$ is such that

$$
\Gamma\left(p_{1}, q_{1}-\varepsilon\right)>0, \quad \text { and } \Gamma\left(p_{2}, q_{1}-\varepsilon\right)>0
$$

Now, since $q_{2}<N /(N-2)$, we have that $q_{2} \alpha+N>0$. From $p_{2}<N /(N-2)$ and $\Gamma\left(p_{2}, q_{1}-\varepsilon\right)>0$, we also have $p_{2} \delta+N>0$. It remains to prove that $\alpha=2-N \leq p_{1} \delta+2$, which follows easily from $\Gamma\left(p_{1}, q_{1}-\varepsilon\right)>0$.

If $p_{1} \geq N /(N-2)$, from $\Gamma\left(p_{1}, q_{1}\right)>0$ we deduce that $q_{1}<N /(N-2)$. Thus, we may proceed as before but now with

$$
\delta=2-N, \alpha=p_{1}(2-N)+2
$$

Case (ii). Assume that $a_{1}=0$ and $b_{1}>0$. Let us choose

$$
\delta=2-N, \alpha=\min \left\{0,2-\left(p_{2}-\varepsilon\right)(N-2)\right\}
$$

where $\varepsilon>0$ is such that $\Gamma\left(q_{1}, p_{2}-\varepsilon\right)>0$ and $\Gamma\left(q_{2}, p_{2}-\varepsilon\right)>0$. Then the conclusion follows as in the above case.

Case (iii). Assume that $b_{1}=0$ and $a_{1}=0$. Assume that $p_{2} \leq q_{2}$. Since $\Gamma\left(q_{2}, p_{2}\right)>0$, then $p_{2}<N /(N-2)$. Let us choose

$$
\delta=2-N, \text { and } \alpha=\min \left\{0,2-\left(p_{2}-\varepsilon\right)(N-2)\right\},
$$

and thus the conclusion follows by taking $\Gamma\left(q_{2}, p_{2}-\varepsilon\right)>0$.

References

[1] H. Brezis, P.L. Lions, A note on isolated singularities for linear elliptic equations, Jl. Math. Anal. and Appl., 9A (1981), 263-266.
[2] M. F. Bidaut-Véron, Local behaviour of solutions of a class of nonlinear elliptic systems, Adv. Differential Equations, to appear.
[3] M.F.Bidaut-Véron and P. Grillot, Asymptotic behaviour of elliptic system with mixed absorption and source terms, Asymptot. Anal., (1999), 19, 117147.
[4] M.F.Bidaut-Véron and P. Grillot, Singularities in elliptic systems, preprint.
[5] H. Brezis and L. Véron, Removable singularities of some nonlinear elliptic equations Archive Rat. Mech. Anal. 75 (1980), .
[6] C. Cid and C. Yarur, A sharp existence result for a Dirichlet problem - The superlinear case, to appear in Nonlinear Anal.
[7] C. Cid and C. Yarur, Existence of solutions for a sublinear system of elliptic equations, Electron. J. Diff. Eqns., 2000 (2000), No. 33, 1-11. (http://ejde.math.swt.edu)
[8] C. Cid and C. Yarur, in preparation.
[9] P. Felmer and D.G. de Figueiredo, On superquadratic elliptic systems, Trans. Amer. Math. Soc. 343 (1994), 99-116.
[10] M. García-Huidobro, R. Manásevich, E. Mitidieri, and C. Yarur Existence and noexistence of positive singular solutions for a class of semilinear systems, Archive Rat. Mech. Anal. 140 (1997), 253-284.
[11] J. Hulsholf and R.C.A.M. van der Vorst, Differential systems with strongly indefinite variational structure, J. Func. Anal. 114 (1993), 32-58.
[12] P.L. Lions, Isolated singularities in semilinear problems, J. Differential Equations 38 (1980),441-450.
[13] E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in \mathbb{R}^{N}, Quaderno Matematici 285, University of Trieste 1992.
[14] E. Mitidieri, A Rellich type identity and applications, Comm. in P.D.E. 18 (1993), 125-151.
[15] W.M. Ni and P. Sacks, Singular behavior in nonlinear parabolic equations, Trans. Amer. Mat. Soc. 287 (1985),657-671.
[16] W.M. Ni and J. Serrin, Nonexistence theorems for singular solutions of quasilinear partial differential equations, Comm. Pure Appl. Math. 38 (1986), 379-399.
[17] W.C. Troy, Symmetry properties of semilinear elliptic systems, J. Differential Equations 42 (1981), 400-413.
[18] L. Véron, Singular solutions of some nonlinear elliptic equations, Nonlinear Analysis, Methods \mathcal{E}^{3} Applications 5 (1981), 225-242.
[19] Van der Vorst, R.C.A.M., Variational identities and applications to differential systems, Arch. Rational Mech. Anal. 116 (1991), 375-398.
[20] C. Yarur, Nonexistence of positive singular solutions for a class of semilinear elliptic systems, Electron. J. Diff. Eqs., 1996 (1996), No. 8, 1-22. (http://ejde.math.swt.edu)

Cecilia S. Yarur
Departamento de Matematicas
Universidad de Santiago de Chile
Casilla 307, Correo 2, Santiago, Chile
email: cyarur@fermat.usach.cl

[^0]: ${ }^{*}$ Mathematics Subject Classifications: 35C20, 35D10.
 Key words: Dirichlet Problem, Non-negative solutions.
 (C) 2001 Southwest Texas State University.

 Published January 8, 2001.
 Partially supported by Fondecyt grant 1990877 and DICYT

