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A new a priori estimate for multi-point
boundary-value problems *

Chaitan P. Gupta

Abstract

Let f:[0,1] x R? — R be a function satisfying Caratheodory’s condi-
tions and e(t) € LI[O, 1. Let 0 < &1 < & < -+ <&m—2<land a; € R
fori=1,2,...,m — 2 be given. A priori estimates of the form

[2lloe < Cllz"l1, 2"l < Cllz”|l1,

are needed to obtain the existence of a solution for the multi-point bound-
ary-value problem

using Leray Schauder continuation theorem. The purpose of this paper
is to obtain a new a priori estimate of the form ||z|lcc < Cllz”||1. This
new estimate then enables us to obtain a new existence theorem. Further,
we obtain a new a priori estimate of the form ||z|| < C|lz”||1 for the
three-point boundary-value problem

where n € (0,1) and a € R are given. The estimate obtained for the
three-point boundary-value problem turns out to be sharper than the one
obtained by particularizing the m-point boundary value estimate to the
three-point case.

1 Introduction

Let f : [0,1] x R?> — R be a function satisfying Caratheodory’s conditions
and e(t) € L0,1]. Let 0 < & < & < -+ < &n2 < 1 and a; € R for
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48 A priori estimate for multi-point boundary-value problems

1 =1,2,...,m — 2 be given. Let us consider the problem of existence of a
solution for the multi-point boundary-value problem

2"(t) = f(t,x(t),2'(t)) +e(t),0 < t < 1,
2(0) = 0,0(1) = 3 asa(6) W

In [2] the author and Sergei Trofimchuk had studied this problem earlier and
obtained existence results using the Leray-Schauder continuation theorem. Now,
to apply the Leray-Schauder continuation theorem requires a priori estimates
of the form

[2lloe < Cllz"[l1,  ll2"]loe < Clla”]J1-

For a function z(t) € W2(0,1) with z(0) = 0, z(1) = > _1 a;x(&;), and
Yo 12 a;&; # 1, Gupta and Trofimchuk obtained the a priori estimate

Il < 12— ll2"1h,

where, 0 < 7 < 1 is suitable constant defined by a;, and §;, i =1,2,...,m — 2.
Using, then the estimate ||z|/oo < ||2']|00, for functions z(t) € W21(0,1) with
x(0) = 0, they obtained the estimate

//||

Izl < 7=l

1-—
The purpose of this paper is to obtain a new and sharper ebtimate z|loo <
Cllz"|l1 for z(t) € W21(0,1) with z(0) = 0, =(1) = > _1 a;x(&;), and
221_12 a;&; # 1. This new estimate then enables us to obtain a new existence
theorem for the above boundary-value problem. Further, we obtain a new a
priori estimate of the form |||/, < C||z”||; for the three-point boundary-value
problem
2/ (t) = f(t,z(t), 2" (t)) +et), 0<t<I1,

2'(0) =0, =z(1)=az(n), 2)

where 7 € (0,1) and o € R are given. The estimate obtained for the three-
point boundary-value problem turns out to be sharper than the one obtained
by particularizing the m-point boundary-value estimate to the three-point case.
These a priori estimates have been motivated by the results of [1].

2 A priori estimates

We begin this section by first describing an estimate obtained by Gupta and
Trofimchuk. LetaZGR &€(0,1),i=1,2,....m—2,0< & <& < <
Em—2 < 1, with Y7" azfz # 1, be given. Let :17( ) € W2(0,1) be such that

2(0) = 0, 2(1) = 7" % a;z(&;). Let us write the condition (1) = 3277 % a;2(&;)
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in symmetric form ") aZ x(&) = 0 by setting a,,—1 = —1 and &,-1 = 1.
Then the assumption Zi:l a;& # 1 is equivalent to Zf;l a;& # 0. Let us,
define, for i, j =1,2,...,m—1,

055 = @ (fz g]) for 4 7é Js

m—1

055 = E al

‘We observe that

m—1

m—1
Zaij: Zaigi;«é(), forj=1,2,...,m—1.
i=1

i=1

For a € R, setting a4 = max(a,0) and a_ = max(—a,0) so that « = ay —a_,
la| = ay + a_, we see that

We, next, define

and

j
o’ —
7 = min{ +—,:
]

We, note, that 0 < 7 < 1 in view of (3).

Proposition 1 Let a; € R, & € (0,1), i = 1,2,...,m —2, 0 < & < & <
- < &m—2 <1, with ZTIQ a;& # 1, be given. Then for x(t) € W21(0,1) with
z(0) =0, z(1) = >1", % 4 x(&;) we have

1
— "1, (5)

[]loe <

1
where T is as given in (4).
We refer the reader to [2] for a proof of this proposition.

Theorem2Leta,€R§z (0,1), ¢ :12 om—=2,0< & < & <
v < Lo < 1, with Y0 il # L > ;é 1, be given. Then for
z(t) € W21(0,1) with (0) =0, z(1) = Z”i_l (fl) we have

[zlleo < Cllz"|l1, (6)
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where

C = min{liT, Cy}

with T as defined in (4),

Ci = max{027 Z | Z 7 [},
i=1 ?

and Cs as defined below in (12).

Proof Let &, 1 =1, a,_1 = —1 so that the condition z(1) = Zl 1 2aix x(&;)

may be written in the symmetric form Y ;" Ya;2(€) = 0 and 21:1 a; # 0.
Since z(t) € W21(0,1) there exists a ¢ € [0,1] such that |z = |z(c)|. We
may assume that x(c) > 0, by replacing x(t) by —z(t), if necessary. Next, since
x(0) = 0, we see that ¢ € (0,1]. In case, ¢ € (0,1) we must have 2/(c) = 0.
Applying, now, the Taylor’s formula with integral remainder after the second
term at each &;,7=1,2,...,m — 1, to get

z(&) = z(c) + 14, (7)
where

&
v = / (& — )2 (s)ds < 0, (8)

i=1,2,...,m— 1. Multiplying the equation (7) by a;, i = 1,2,...,m — 1, and
adding the resulting equations we obtain

m—1 m—1 m—1
0= Z a;x(&;) = Z a;z(c) + Z a;r;. 9)
i=1 i=1 i=1

Now, equations (8), (9) imply that
m—1

Q; & "
0<z(c) = Z - zzgarl— z(m)/c (& — s)x"(s)ds

1
. m— ‘ - // d 0
z: m 1 + S S| ( )
z 1 @

=1

We, next, observe that

&
| / 2(s)ds| < |& — ¢ / 2(s)|ds < |6 — / 12" (s)\ds,
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fori=1,2,...,m — 1. We thus see from (8) that

-
|

m
<3 (et )il — d / 27 (5)]ds
i=1 Z:n 11 a; '

m—1
< max (3 ()6 — / 2(s)lds. (1)
u€[0,1] P Zz 1 a;
Since, now, > ", 1(Z )Jr|§z u| is a piecewise linear function, its maximum
value is attained at one of the points, 0, &, j = 1,2,...,m—1. Accordingly, we
get
m—1 @
3
urg[gﬁ](Z( )+ 1& = ul)

T Din1 G
~ z:"?mﬁn,
- e S () 6 — &1,7 = 1,20 m = 1, }
2?12&(1 Zi’}zai)_—‘_(lfz;ffai)"_’
S o) -6 = &l + (e )+ (- 69),
J=12,...,m—2,
S (ste,) - (1= &)

— max

—_— T
Il
S

Accordingly, when z(c) = ||zl with ¢ € (0,1) we see that
2lloo < Callz”[l1- (13)

Let, now, ¢ = 1 so that ||z]cc = x(1). We, then, see that there exists a \;, for
each i =1,2,...,m — 2, such that

2(1) = 2(&) = (1= &)a' (M) (14)

It follows from equations (14) that
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Accordingly, we get

m—2

1x'(>\¢)

(B[P
i=1 z 1 ai

m—2
< 3 Bl8)

i=1 Z?i 2ai_1

1
m—2
Z |)||$"||1~ (15)
i=1 z 1 ai 1
Thus from estimates (13), (15) we obtain
12]loc < max{Ch, Z| S e "li=Cull2" (16)

a; —

The estimate (6) is now immediate since ||z[o < 12||2"|1, from Proposition
1. This completes the proof of Theorem 2.

Remark 3 Let n € (0,1), « € R with an # 1 be given. It was proved earlier
by Gupta and Trofimchuk for z(t) € W2(0,1) with z(0) = 0, z(1) = az(n)
that

II’IHoo < l2"ly <1,

2] oo < ||;v l1 ifan<1landa>1,

1-—
7)o < 1||:1c”||1 if « > 1 and an > 1,
so that
7=0 ifa<l,

1 1-—

= iU ifa>1land an <1,
1-7 1—oan
1 a—1

= ifa>1land an > 1.
1—-7 an-1

Remark 4 Let us note that for z(t) € W%1(0,1) with z(0) = 0, z(1) = az(n)
the constant Co defined in (12) is given by

a 1 1

)+ (

Cy = max{n( T—a

It follows that

1t]aln Jaj(1—n)
max{ 5 Tl 1ila] } for a <0,

Cy = _1 for0 <a <1,

1—a
max{ -2 @U= ")} for o > 1.

a— 17
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Next, we see from the definition of C in (16) and (3) that

1—
max{ 1+‘a|| 5 ‘allsr‘ar’)} for a <0,
ﬁ for0<a<l,
Cr = a(1=n)?
max{ 17m} foran<1land a > 1,
max{ ;4 1a?05717 7173} foran>1and a > 1.

Finally, we see that for z(t) € W21(0,1) with 2(0) = 0, 2(1) = ax(n) we have
[2loe < Clla”|l1, (17)

where C' = min{i, C4} is given by

al(l1—
max{ 1+‘a|n, | 1'5_‘a|77)} for a <0,
1 for0 <a<l,
C fr—
mln{1 an7maX{a 1,(a0‘(11—177m7}} for an <1 and a > 1,
min (fn—_ll,max — (O‘OE}, 7Z)}} for an > 1 and o > 1.

The following theorem gives a better estimate than (17) for an x(t) € W21(0,1)
with z(0) = 0, (1) = ax(n).

Theorem 5 Let « € R and n € (0,1) with a # 1, an # 1, be given. Then for
x(t) € W21(0,1) with x(0) = 0, 2(1) = az(n) we have

[2lloo < Mll2"|[1

where
max{ 1+\0t|| , ‘allsrl‘;r)} if o < —1.
110;’7 if —1<a<0,
M=11 if0<a<l,
max{ 3, O‘(al 17’), == 1&77)} if a>1 and an < 1,
max{ 3, T 170‘1771 1”)} ifa>1andan>1.

Proof For a <0 we see from Theorem 2 and remark 4 that

Lt Joln Jol(1—n),

M = max ,
{1+|a| 1+ |

This implies, in particular, for « < —1 that M = max{ llﬂizll", |a1\(+1|;‘17) 1. Note
that for —1 < a <0,

L—an _ Linlef _ [of(1+n) S laf(1 —n)

11—« 1+ al = 14|« 1+ |af

and so we again see from Theorem 2 and Remark 4 that

yo{ T -1<a<0
1 if0<a<l.
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Finally, we consider the case o > 1. Let z(n) = z so that z(1) = az. We
may assume without loss of generality that z > 0, replacing z(t) by —z(t) if
necessary. Suppose, now, ||z|l.c = 1 so that there exists a ¢ € [0,1] such that
either z(¢) =1 or z(c) = —1. We consider all possible cases of the location for
c.

(i) Suppose that ¢ € (0,n] and z(c) = 1. Then 2'(c) = 0, ¢ # n. Now, by
mean value theorem there exist 11 € [¢,n],v2 € [n, 1] such that

oy 2 Bl 1=z a) ey _az—:

R =

n—c n—c : 1—nm 1—nm

We note that 2'(11) <0, 2'(r3) > 0 since 0 < z < 1 and a > 1. Tt follows that

/ 12" (s) |ds>\/ ds|+|/ (5)ds|

z az —Zz

1-—
=22’ / =92
2 @)l + ) = 20— + T

1—2 az—z

> min {
celom),zef0,2] n—c  1—nq

2 2a-1) a—1

>

_cIer[lén n—c a(n-—c) Jra(l—n)}
-1

Zmin{ a }.

n a(l—n)
(ii) Let, now, ¢ € (0,7], (¢) = —1. Then since z'(c) = 0, ¢ # 7, we again
see from mean value theorem that there exist v € [c, 7], v € [n, 1] such that

o (vs) = x(n) — x(c) _z+ 17 o (vs) = x(1) — z(n) _az—z
n-c n-c L=mn L=mn
Again we note that z’(v3) > 0, 2’'(v4) > 0 since 0 < z < 1 and a > 1 and we
have

/ 12 (s) |ds>|/ ds|—|—|/ (5)ds|

1+ I+ %)
- , . _ z oz —z z
=a'(vs) + [a'(va) ')l = L+ 19— — )
Let F(z,c) = 1“ 2 | g };_rﬂ We need to estimate min ¢ ) .cjo,2) F'(2, ¢).
We note that
2 2
F(0,c) = > — forcel0,n),
n—ec . n
1 1 ~1 1 —1
F(=,c)= ot + | a __at | > a for c € [0,n).
o an—c) ‘all-n) an—c T all-n)
Let zg be such that —‘“10__7720 — 1n+zco = 0 so that zg = 77]_11:07(7(1_1). It is easy to see

that zo € [0, 2] if n > %E and ¢ € (0, 2"”;%) In this case we get F'(zg,c) =
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s 10‘_0%& 0 = ;‘7_11 Accordingly we see that F(z,¢) > mm{77 oﬁ;n} if
an <1 and F(z,c) > mln{2 T 177), an*l} if an > 1. We thus have from (18)
that

/ 2" (s)|ds >‘/ (s)ds| +| [ a"(s)ds| = ' (vs) + [a'(va) — 2"(vs)]

v3

_1—|—z oz —z 142

n—c+| 1—n nfc|
: 2 a—1 :
> .ml;{g, mh 1.f an <1,
mm{w7 oo n)’om a=ly ifanp > 1.

(ili) Next, suppose that ¢ € (,1), z(c) = 1. Again, 2'(c) = 0 and we have
from mean value theorem that there exist vs € [, c],vs € [¢, 1] such that

, z(c)—x(n) 1—=z , (1) —z(c) az-—-1
@(vs) = c—n  c—n #(ve) = l-¢c  1-c¢’

Note that z'(vs) > 0, 2'(vs) < 0 since (1) = az < 1. Accordingly, we obtain

/ |2" (s)|ds >|/ ds|+\/ (s)ds|

=a'(vs) + [ (ve) — o' (vs)| = 22" (v5) + |2 (v6))| (19)
:2172 1—o¢z>2(a71)
c—n l1l—c¢c ~a(l-n)

since 0 < z <

LI=

(iv) Next, suppose that ¢ € (n,1), z(c) = —1. Again, 2’/(c) = 0 and we have
from mean value theorem that there exist v; € [, c],vs € [¢, 1] such that

(o) = z(c) — x(n) _ -1- z’ o (vs) = z(1) — z(c) _ oaz+1

c—n c—n 1—c l1—c’
Note that z'(v7) <0, 2'(vg) > 0. Accordingly, we obtain

/ |z" (s)|ds >|/ ds|—|—|/ (s)ds|

=|2' (o)l + [a' (vs) — &' (vr)| = 2|2’ (vr)| + 2 (v8)

:21—1—24_14—042Z 2 n 1
c—n 1-c¢ c—n 1l-c¢
2 2(a—1)

> >

“1-n " al-n)

(v) Finally suppose that ¢ = 1, so that (1) = 1 = az. We then have that
there exists a v9 € (1, 1) such that

x/(y)il‘(l)*x(n)il_i a—1
YT - 1= a(l-n)
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Also, there exists a v19 € (0,7) such that

ol —w(0) _ 1
T (1/10) = 77_0 0”7.

Thus

/Ola?"(S)IdS > I/ (s)ds| = |2"(v9) — 2’ (v10)]

1
-3 1 an —1

|1 n o lant—n)
We thus see from (i), (ii), (iii), (iv) and (v) that for a > 1, ||z||cc < M||z" |1
with

a—1 7 1l—an

1 1 :
max{#, & I,O‘Z(n 1")} if an > 1,

I { max{Z, a(l=mn) an(1- n)} if an < 1,

an(l-n) > a(l-n)

since for a > 1, an > 1, on T — - This completes the present proof.

O

Remark 6 Let « =4 and n = % Let us consider the estimate

lzllos < Cllz"l1, (20)
for z(t) € W21(0,1) with z(0) = 0, z(1) = 4z(3). Now, the function

2t3,  fort e [0,4],
o) ={ i 93] (21)
2 0 2

is such that o(t) € W21(0,1) with ¢(0) = 0 and ¢(1) = 4¢(3). Moreover,
¢llc =1 and [¢”|ly = 3. It follows that C' >  in (20). Now, Proposition 1
and Remark 3 give C' = 3 in (20); while Theorem 2 and Remark 4 give C'= 2 in
(20); and Theorem 5 gives C' =1 in (20). This shows that Theorem 5 gives the
best estimate ||z]/oo < [|2”[|1 for z(t) € W21(0,1) with z(0) = 0, (1) = 4z(3).
However, the function ¢(t) defined in (21) indicates that it may be possible to
improve C' in (20). This question remains open at this time.

To explore this further we introduce the notion of approzimate best constant
in the following.

Definition B € R is called “approximate best constant” if for every ¢ > 0
there exists an o € R and an n € (0,1) such that (i) for every z(t) € W21(0,1)
with 2(0) = 0, (1) = az(n), [|2]c < (B +e¢)||z”|1; (ii) there exists a function
¢(t) € W1(0,1) with ¢(0) = 0, ¢(1) = ag(n), and [|¢]le > Bl|¢"[|1-

Theorem 7 For every k >1,1— % is an approximate best constant.
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Proof For each integer n > 2, consider the function ¢x,(t) € W21(0,1) de-
fined by

" for t € [0, 1]
(1) = " ’n y L
0 { to_n-l for¢e [%,1].

kn—1 k:_TL’
It is easy to see that ¢p, (t) € W1(0,1), with ¢ (0) = 0, dpen(1) = kndin (%),
where ay, = n(k —1)+1, and

n nk—1)+1
[l = g, knlleo = dn(2) = “E=DEL

km ’
so that k1) 41
n(rk—1)+
[9tnlloe = "L 00 1. (22)
Now, since oy, - % = w =n- an1 > 1 for n > 2, we obtain using
Theorem 5 the estimate
k—1)+1
el < - DL for a(r) € W2 0,1)
(n—1) . (23)
z(0)=0, z(1)= ozkn:c(%).
_ nlk=D41 _ 1 1 _ nk—D)+1 _ 1 1
Let us set Brp = =—p—— =1—- ¢+ o5 Mikn = S5 =1 -5 + =3 We
notice that
1 1 nk—1)+1

Mkn - Bkn =

n—1 nk nn—1)k >0,

so that My, — Br, > 0. Also, we note that

1
lim Bkn = lim Mkn =1—-—-.
n—oo n—oo k
Let, now, € > 0 be given. Choose, ng such that My,, < 1— 4 +¢. It, now,
follows from (23) and (22) that

1
lzlloe < (1= 2+ e)lla”"ll for 2(t) € w=(0,1)

z(0)=0, «(1)= aknox(%),

and 1 1 1
1 Prnolloo = (1 = + W)II%nHl >(1- E)||¢Zn||1-

This completes the proof of the Theorem. [

Remark 8 We note that limy_, o (1 — %) = 1. In view of this, it may be
conjectured that 1 may be a best constant in the sense that there exists an o € R
and an n € (0,1) such that for x(t) € W%1(0,1) with 2(0) = 0, z(1) = az(n)
one has the estimate

2l < 12”1

However, since limy_, oo g, = 00 and limy_ o % = 0, it is not clear if such o € R
and an n € (0,1) exist.
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3 Existence theroems

We state below the existence theorems one obtains using the a priori estimates
obtained above. We omit the proof of these theorems as they are similar to the
corresponding theorems in [2].

Theorem 9 Let f : [0,1] x R2 — R be a function satisfying Caratheodory’s
conditions. Assume that there exist functions p(t), q(t), r(t) in L*(0,1) such
that

[f(t 21, 2)| < p(8) 21| + q(#) 2] +r(2)

for a.e. t €[0,1] and all (z1,22) € R%. Leta; €R, & € (0,1),i=1,2,...,m—
2,0<E <& < < Epo <1 with Y 2ai&i #1 and Y02 ai # 1, be
given. Then the multi-point boundary-value problem

() = f(tx(t), 2 () +elt), 0<t <L,

z(0)=0, z(1)= Z a;x(&;).
i=1
has at least one solution in C1[0,1] provided

1
el + 1= lla®ll; <1,

where C is as given in Theorem 2 and T as given in Proposition 1.

Theorem 10 Let f : [0,1] x R? — R be a function satisfying Caratheodory’s
conditions. Assume that there exist functions p(t), q(t), r(t) such that the func-
tions p(t), q(t), r(t) are in L'(0,1) and

[f(t, 21, 22)| < p(t) [21] + g(8) 2] + r(2)

for a.e. t € [0,1] and all (z1,72) € R% Let « € R, 5 € (0,1), a # 1, and
an # 1 be given. Then, the three-point boundary-value problem

has at least one solution in C1[0,1] provided

1
Mlp@lly + 7= lla@®l, <1.

where M is as given in Theorem 5 and 7 as given in Proposition 1.
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