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A new a priori estimate for multi-point

boundary-value problems ∗
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Abstract

Let f : [0, 1]× R2 → R be a function satisfying Caratheodory’s condi-
tions and e(t) ∈ L1[0, 1]. Let 0 < ξ1 < ξ2 < · · · < ξm−2 < 1 and ai ∈ R
for i = 1, 2, . . . ,m− 2 be given. A priori estimates of the form

‖x‖∞ ≤ C‖x′′‖1, ‖x′‖∞ ≤ C‖x′′‖1,

are needed to obtain the existence of a solution for the multi-point bound-
ary-value problem

x′′(t) = f(t, x(t), x′(t)) + e(t), 0 < t < 1,

x(0) = 0, x(1) =

m−2∑
i=1

aix(ξi),

using Leray Schauder continuation theorem. The purpose of this paper
is to obtain a new a priori estimate of the form ‖x‖∞ ≤ C‖x′′‖1. This
new estimate then enables us to obtain a new existence theorem. Further,
we obtain a new a priori estimate of the form ‖x‖∞ ≤ C‖x′′‖1 for the
three-point boundary-value problem

x′′(t) = f(t, x(t), x′(t)) + e(t), 0 < t < 1,

x′(0) = 0, x(1) = αx(η),

where η ∈ (0, 1) and α ∈ R are given. The estimate obtained for the
three-point boundary-value problem turns out to be sharper than the one
obtained by particularizing the m-point boundary value estimate to the
three-point case.

1 Introduction

Let f : [0, 1] × R2 → R be a function satisfying Caratheodory’s conditions
and e(t) ∈ L1[0, 1]. Let 0 < ξ1 < ξ2 < · · · < ξm−2 < 1 and ai ∈ R for
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i = 1, 2, . . . ,m − 2 be given. Let us consider the problem of existence of a
solution for the multi-point boundary-value problem

x′′(t) = f(t, x(t), x′(t)) + e(t), 0 < t < 1,

x(0) = 0, x(1) =
m−2∑
i=1

aix(ξi).
(1)

In [2] the author and Sergei Trofimchuk had studied this problem earlier and
obtained existence results using the Leray-Schauder continuation theorem. Now,
to apply the Leray-Schauder continuation theorem requires a priori estimates
of the form

‖x‖∞ ≤ C‖x′′‖1, ‖x′‖∞ ≤ C‖x′′‖1.

For a function x(t) ∈ W 2,1(0, 1) with x(0) = 0, x(1) =
∑m−2
i=1 aix(ξi), and∑m−2

i=1 aiξi 6= 1, Gupta and Trofimchuk obtained the a priori estimate

‖x′‖∞ ≤
1

1− τ
‖x′′‖1,

where, 0 ≤ τ < 1 is suitable constant defined by ai, and ξi, i = 1, 2, . . . ,m− 2.
Using, then the estimate ‖x‖∞ ≤ ‖x′‖∞, for functions x(t) ∈ W 2,1(0, 1) with
x(0) = 0, they obtained the estimate

‖x‖∞ ≤
1

1− τ
‖x′′‖1.

The purpose of this paper is to obtain a new and sharper estimate ‖x‖∞ ≤
C‖x′′‖1 for x(t) ∈ W 2,1(0, 1) with x(0) = 0, x(1) =

∑m−2
i=1 aix(ξi), and∑m−2

i=1 aiξi 6= 1. This new estimate then enables us to obtain a new existence
theorem for the above boundary-value problem. Further, we obtain a new a
priori estimate of the form ‖x‖∞ ≤ C‖x′′‖1 for the three-point boundary-value
problem

x′′(t) = f(t, x(t), x′(t)) + e(t), 0 < t < 1,
x′(0) = 0, x(1) = αx(η),

(2)

where η ∈ (0, 1) and α ∈ R are given. The estimate obtained for the three-
point boundary-value problem turns out to be sharper than the one obtained
by particularizing the m-point boundary-value estimate to the three-point case.
These a priori estimates have been motivated by the results of [1].

2 A priori estimates

We begin this section by first describing an estimate obtained by Gupta and
Trofimchuk. Let ai ∈ R, ξi ∈ (0, 1), i = 1, 2, . . . ,m − 2, 0 < ξ1 < ξ2 < · · · <
ξm−2 < 1, with

∑m−2
i=1 aiξi 6= 1, be given. Let x(t) ∈ W 2,1(0, 1) be such that

x(0) = 0, x(1) =
∑m−2
i=1 aix(ξi). Let us write the condition x(1) =

∑m−2
i=1 aix(ξi)
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in symmetric form
∑m−1
i=1 aix(ξi) = 0 by setting am−1 = −1 and ξm−1 = 1.

Then the assumption
∑m−2
i=1 aiξi 6= 1 is equivalent to

∑m−1
i=1 aiξi 6= 0. Let us,

define, for i, j = 1, 2, . . . ,m− 1,

σij = ai(ξi − ξj) for i 6= j ,

σjj = (
m−1∑
i=1

ai)ξj .

We observe that

m−1∑
i=1

σij =
m−1∑
i=1

aiξi 6= 0, for j = 1, 2, . . . ,m− 1 .

For a ∈ R, setting a+ = max(a, 0) and a− = max(−a, 0) so that a = a+ − a−,
|a| = a+ + a−, we see that

m−1∑
i=1

(σij)+ 6=
m−1∑
i=1

(σij)−. (3)

We, next, define

σj+ =
m−1∑
i=1

(σij)+, σ
j
− =

m−1∑
i=1

(σij)− for j = 1, 2, . . . ,m− 1 ,

and

τ = min{
σj+

σj−
,
σj−

σj+
: j = 1, 2, . . . ,m− 1}. (4)

We, note, that 0 ≤ τ < 1 in view of (3).

Proposition 1 Let ai ∈ R, ξi ∈ (0, 1), i = 1, 2, . . . ,m − 2, 0 < ξ1 < ξ2 <

· · · < ξm−2 < 1, with
∑m−2
i=1 aiξi 6= 1, be given. Then for x(t) ∈W 2,1(0, 1) with

x(0) = 0, x(1) =
∑m−2
i=1 aix(ξi) we have

‖x‖∞ ≤
1

1− τ
‖x′′‖1, (5)

where τ is as given in (4).

We refer the reader to [2] for a proof of this proposition.

Theorem 2 Let ai ∈ R, ξi ∈ (0, 1), i = 1, 2, . . . ,m − 2, 0 < ξ1 < ξ2 <

· · · < ξm−2 < 1, with
∑m−2
i=1 aiξi 6= 1,

∑m−2
i=1 ai 6= 1, be given. Then for

x(t) ∈W 2,1(0, 1) with x(0) = 0, x(1) =
∑m−2
i=1 aix(ξi) we have

‖x‖∞ ≤ C‖x′′‖1, (6)
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where

C = min{ 1
1− τ

, C1},

with τ as defined in (4),

C1 = max{C2,
1

1− τ

m−2∑
i=1

| ai(1− ξi)
1−

∑m−2
i=1 ai

|},

and C2 as defined below in (12).

Proof Let ξm−1 = 1, am−1 = −1 so that the condition x(1) =
∑m−2
i=1 aix(ξi)

may be written in the symmetric form
∑m−1
i=1 aix(ξi) = 0 and

∑m−1
i=1 ai 6= 0.

Since x(t) ∈ W 2,1(0, 1) there exists a c ∈ [0, 1] such that ‖x‖∞ = |x(c)|. We
may assume that x(c) > 0, by replacing x(t) by −x(t), if necessary. Next, since
x(0) = 0, we see that c ∈ (0, 1]. In case, c ∈ (0, 1) we must have x′(c) = 0.
Applying, now, the Taylor’s formula with integral remainder after the second
term at each ξi, i = 1, 2, . . . ,m− 1, to get

x(ξi) = x(c) + ri, (7)

where

ri =
∫ ξi

c

(ξi − s)x′′(s)ds ≤ 0, (8)

i = 1, 2, . . . ,m− 1. Multiplying the equation (7) by ai, i = 1, 2, . . . ,m− 1, and
adding the resulting equations we obtain

0 =
m−1∑
i=1

aix(ξi) =
m−1∑
i=1

aix(c) +
m−1∑
i=1

airi. (9)

Now, equations (8), (9) imply that

0 < x(c) = − 1∑m−1
i=1 ai

m−1∑
i=1

airi = −
m−1∑
i=1

(
ai∑m−1
i=1 ai

)
∫ ξi

c

(ξi − s)x′′(s)ds

≤
m−1∑
i=1

(
ai∑m−1
i=1 ai

)+|
∫ ξi

c

(ξi − s)x′′(s)ds|. (10)

We, next, observe that

|
∫ ξi

c

(ξi − s)x′′(s)ds| ≤ |ξi − c|
∫ ξi

c

|x′′(s)|ds ≤ |ξi − c|
∫ 1

0

|x′′(s)|ds,
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for i = 1, 2, . . . ,m− 1. We thus see from (8) that

‖x‖∞ = x(c) ≤
m−1∑
i=1

(
ai∑m−1
i=1 ai

)+|
∫ ξi

c

(ξi − s)x′′(s)ds|

≤
m−1∑
i=1

(
ai∑m−1
i=1 ai

)+|ξi − c|
∫ 1

0

|x′′(s)|ds

≤ max
u∈[0,1]

(
m−1∑
i=1

(
ai∑m−1
i=1 ai

)+|ξi − u|)
∫ 1

0

|x′′(s)|ds. (11)

Since, now,
∑m−1
i=1 ( ai∑m−1

i=1 ai
)+|ξi−u| is a piecewise linear function, its maximum

value is attained at one of the points, 0, ξj , j = 1, 2, . . . ,m− 1. Accordingly, we
get

max
u∈[0,1]

(
m−1∑
i=1

(
ai∑m−1
i=1 ai

)+|ξi − u|)

= max

{ ∑m−1
i=1 ξi( ai∑m−1

i=1 ai
)+,∑m−1

i=1,i 6=j(
ai∑m−1
i=1 ai

)+|ξi − ξj |, j = 1, 2, . . . ,m− 1,

}
(12)

= max



∑m−2
i=1 ξi( ai

1−
∑m−2
i=1 ai

)− + ( 1
1−
∑m−2
i=1 ai

)+,∑m−2
i=1,i 6=j(

ai
1−
∑m−2
i=1 ai

)−|ξi − ξj |+ ( 1
1−
∑m−2
i=1 ai

)+(1− ξj),
j = 1, 2, . . . ,m− 2,∑m−2

i=1 ( ai
1−
∑m−2
i=1 ai

)−(1− ξi)

 ≡ C2.

Accordingly, when x(c) = ‖x‖∞ with c ∈ (0, 1) we see that

‖x‖∞ ≤ C2‖x′′‖1. (13)

Let, now, c = 1 so that ‖x‖∞ = x(1). We, then, see that there exists a λi, for
each i = 1, 2, . . . ,m− 2, such that

x(1)− x(ξi) = (1− ξi)x′(λi). (14)

It follows from equations (14) that

(
m−2∑
i=1

ai − 1)x(1) =
m−2∑
i=1

ai(x(1)− x(ξi)) =
m−2∑
i=1

ai(1− ξi)x′(λi).
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Accordingly, we get

‖x‖∞ = x(1) =
m−2∑
i=1

ai(1− ξi)∑m−2
i=1 ai − 1

x′(λi)

≤
m−2∑
i=1

| ai(1− ξi)∑m−2
i=1 ai − 1

|‖x′‖∞

≤ (
1

1− τ

m−2∑
i=1

| ai(1− ξi)∑m−2
i=1 ai − 1

|)‖x′′‖1. (15)

Thus from estimates (13), (15) we obtain

‖x‖∞ ≤ max{C2,
1

1− τ

m−2∑
i=1

| ai(1− ξi)∑m−2
i=1 ai − 1

|}‖x′′‖1 ≡ C1‖x′′‖1. (16)

The estimate (6) is now immediate since ‖x‖∞ ≤ 1
1−τ ‖x

′′‖1, from Proposition
1. This completes the proof of Theorem 2. �

Remark 3 Let η ∈ (0, 1), α ∈ R with αη 6= 1 be given. It was proved earlier
by Gupta and Trofimchuk for x(t) ∈ W 2,1(0, 1) with x(0) = 0, x(1) = αx(η)
that

‖x‖∞ ≤ ‖x′′‖1 if α ≤ 1,

‖x‖∞ ≤
1− η

1− αη
‖x′′‖1 if αη < 1 and α > 1,

‖x‖∞ ≤
α− 1
αη − 1

‖x′′‖1 if α > 1 and αη > 1,

so that
τ = 0 if α ≤ 1,

1
1− τ

=
1− η

1− αη
if α > 1 and αη < 1,

1
1− τ

=
α− 1
αη − 1

if α > 1 and αη > 1 .

Remark 4 Let us note that for x(t) ∈ W 2,1(0, 1) with x(0) = 0, x(1) = αx(η)
the constant C2 defined in (12) is given by

C2 = max{η(
α

1− α
)− + (

1
1− α

)+, (
1

1− α
)+(1− η), (

α

1− α
)−(1− η)}.

It follows that

C2 =


max{ 1+|α|η

1+|α| ,
|α|(1−η)

1+|α| } for α ≤ 0,
1

1−α for 0 ≤ α < 1,
max{ αη

α−1 ,
α(1−η)
α−1 } for α > 1 .
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Next, we see from the definition of C1 in (16) and (3) that

C1 =


max{ 1+|α|η

1+|α| ,
|α|(1−η)

1+|α| } for α ≤ 0,
1

1−α for 0 ≤ α < 1,

max{ αη
α−1 ,

α(1−η)2

(α−1)(1−αη)} for αη < 1 and α > 1,

max{ αη
α−1 ,

α(1−η)
(αη−1)} for αη > 1 and α > 1 .

Finally, we see that for x(t) ∈W 2,1(0, 1) with x(0) = 0, x(1) = αx(η) we have

‖x‖∞ ≤ C‖x′′‖1, (17)

where C = min{ 1
1−τ , C1} is given by

C =


max{ 1+|α|η

1+|α| ,
|α|(1−η)

1+|α| } for α ≤ 0,
1 for 0 ≤ α < 1,

min{ 1−η
1−αη ,max{ αη

α−1 ,
α(1−η)2

(α−1)(1−αη)}} for αη < 1 and α > 1,

min{ α−1
αη−1 ,max{ αη

α−1 ,
α(1−η)
(αη−1)}} for αη > 1 and α > 1.

The following theorem gives a better estimate than (17) for an x(t) ∈W 2,1(0, 1)
with x(0) = 0, x(1) = αx(η).

Theorem 5 Let α ∈ R and η ∈ (0, 1) with α 6= 1, αη 6= 1, be given. Then for
x(t) ∈W 2,1(0, 1) with x(0) = 0, x(1) = αx(η) we have

‖x‖∞ ≤M‖x′′‖1

where

M =



max{ 1+|α|η
1+|α| ,

|α|(1−η)
1+|α| } if α ≤ −1.

1−αη
1−α if − 1 ≤ α < 0,

1 if 0 ≤ α < 1,
max{η2 ,

α(1−η)
α−1 , αη(1−η)

1−αη } if α > 1 and αη < 1,
max{η2 ,

αη−1
α−1 ,

αη(1−η)
αη−1 } if α > 1 and αη > 1 .

Proof For α ≤ 0 we see from Theorem 2 and remark 4 that

M = max{1 + |α|η
1 + |α|

,
|α|(1− η)

1 + |α|
}.

This implies, in particular, for α ≤ −1 that M = max{ 1+|α|η
1+|α| , |α|(1−η)

1+|α| }. Note
that for −1 ≤ α < 0,

1− αη
1− α

=
1 + η|α|
1 + |α|

≥ |α|(1 + η)
1 + |α|

>
|α|(1− η)

1 + |α|

and so we again see from Theorem 2 and Remark 4 that

M =
{ 1−αη

1−α if − 1 ≤ α < 0
1 if 0 ≤ α < 1 .
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Finally, we consider the case α > 1. Let x(η) = z so that x(1) = αz. We
may assume without loss of generality that z ≥ 0, replacing x(t) by −x(t) if
necessary. Suppose, now, ‖x‖∞ = 1 so that there exists a c ∈ [0, 1] such that
either x(c) = 1 or x(c) = −1. We consider all possible cases of the location for
c.

(i) Suppose that c ∈ (0, η] and x(c) = 1. Then x′(c) = 0, c 6= η. Now, by
mean value theorem there exist ν1 ∈ [c, η], ν2 ∈ [η, 1] such that

x′(ν1) =
x(η)− x(c)

η − c
= −1− z

η − c
, x′(ν2) =

x(1)− x(η)
1− η

=
αz − z
1− η

.

We note that x′(ν1) ≤ 0, x′(ν2) ≥ 0 since 0 ≤ z ≤ 1 and α > 1. It follows that∫ 1

0

|x′′(s)|ds ≥|
∫ ν1

c

x′′(s)ds|+ |
∫ ν2

ν1

x′′(s)ds|

=2|x′(ν1)|+ x′(ν2) = 2
1− z
η − c

+
αz − z
1− η

≥ min
c∈[0,η),z∈[0, 1

α ]
{21− z
η − c

+
αz − z
1− η

}

≥ min
c∈[0,η)

{ 2
η − c

,
2(α− 1)
α(η − c)

+
α− 1

α(1− η)
}

≥min{2
η
,
α− 1

α(1− η)
}.

(ii) Let, now, c ∈ (0, η], x(c) = −1. Then since x′(c) = 0, c 6= η, we again
see from mean value theorem that there exist ν3 ∈ [c, η], ν4 ∈ [η, 1] such that

x′(ν3) =
x(η)− x(c)

η − c
=
z + 1
η − c

, x′(ν4) =
x(1)− x(η)

1− η
=
αz − z
1− η

.

Again we note that x′(ν3) > 0, x′(ν4) ≥ 0 since 0 ≤ z ≤ 1 and α > 1 and we
have∫ 1

0

|x′′(s)|ds ≥|
∫ ν3

c

x′′(s)ds|+ |
∫ ν4

ν3

x′′(s)ds|

=x′(ν3) + |x′(ν4)− x′(ν3)| = 1 + z

η − c
+ |αz − z

1− η
− 1 + z

η − c
|.

(18)

Let F (z, c) = 1+z
η−c + |αz−z1−η −

1+z
η−c |. We need to estimate minc∈[0,η),z∈[0, 1

α ] F (z, c).
We note that

F (0, c) =
2

η − c
≥ 2
η

for c ∈ [0, η),

F (
1
α
, c) =

α+ 1
α(η − c)

+ | α− 1
α(1− η)

− α+ 1
α(η − c)

| ≥ α− 1
α(1− η)

for c ∈ [0, η).

Let z0 be such that αz0−z0
1−η −

1+z0
η−c = 0 so that z0 = 1−η

αη−1−c(α−1) . It is easy to see
that z0 ∈ [0, 1

α ] if η > α+1
2α and c ∈ (0, 2αη−α−1

α−1 ). In this case we get F (z0, c) =
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α−1
αη−1−c(α−1) ≥

α−1
αη−1 . Accordingly we see that F (z, c) ≥ min{ 2

η ,
α−1

α(1−η)} if
αη ≤ 1 and F (z, c) ≥ min{ 2

η ,
α−1

α(1−η) ,
α−1
αη−1} if αη > 1. We thus have from (18)

that∫ 1

0

|x′′(s)|ds ≥|
∫ ν3

c

x′′(s)ds|+ |
∫ ν4

ν3

x′′(s)ds| = x′(ν3) + |x′(ν4)− x′(ν3)|

=
1 + z

η − c
+ |αz − z

1− η
− 1 + z

η − c
|

≥

{
min{ 2

η ,
α−1

α(1−η)}, if αη ≤ 1,
min{ 2

η ,
α−1

α(1−η) ,
α−1
αη−1}, if αη > 1.

(iii) Next, suppose that c ∈ (η, 1), x(c) = 1. Again, x′(c) = 0 and we have
from mean value theorem that there exist ν5 ∈ [η, c], ν6 ∈ [c, 1] such that

x′(ν5) =
x(c)− x(η)

c− η
=

1− z
c− η

, x′(ν6) =
x(1)− x(c)

1− c
=
αz − 1
1− c

.

Note that x′(ν5) ≥ 0, x′(ν6) ≤ 0 since x(1) = αz ≤ 1. Accordingly, we obtain∫ 1

0

|x′′(s)|ds ≥|
∫ ν5

0

x′′(s)ds|+ |
∫ ν6

ν5

x′′(s)ds|

=x′(ν5) + |x′(ν6)− x′(ν5)| = 2x′(ν5) + |x′(ν6)|

=2
1− z
c− η

+
1− αz
1− c

≥ 2(α− 1)
α(1− η)

, since 0 ≤ z ≤ 1
α
.

(19)

(iv) Next, suppose that c ∈ (η, 1), x(c) = −1. Again, x′(c) = 0 and we have
from mean value theorem that there exist ν7 ∈ [η, c], ν8 ∈ [c, 1] such that

x′(ν7) =
x(c)− x(η)

c− η
=
−1− z
c− η

, x′(ν8) =
x(1)− x(c)

1− c
=
αz + 1
1− c

.

Note that x′(ν7) ≤ 0, x′(ν8) ≥ 0. Accordingly, we obtain∫ 1

0

|x′′(s)|ds ≥|
∫ ν7

0

x′′(s)ds|+ |
∫ ν8

ν7

x′′(s)ds|

=|x′(ν7)|+ |x′(ν8)− x′(ν7)| = 2|x′(ν7)|+ x′(ν8)

=2
1 + z

c− η
+

1 + αz

1− c
≥ 2
c− η

+
1

1− c

≥ 2
1− η

≥ 2(α− 1)
α(1− η)

.

(v) Finally suppose that c = 1, so that x(1) = 1 = αz. We then have that
there exists a ν9 ∈ (η, 1) such that

x′(ν9) =
x(1)− x(η)

1− η
=

1− 1
α

1− η
=

α− 1
α(1− η)

.
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Also, there exists a ν10 ∈ (0, η) such that

x′(ν10) =
x(η)− x(0)

η − 0
=

1
αη
.

Thus ∫ 1

0

|x′′(s)|ds ≥ |
∫ ν9

υ10

x′′(s)ds| = |x′(ν9)− x′(ν10)|

= |
1− 1

α

1− η
− 1
αη
| = | αη − 1

αη(1− η)
|.

We thus see from (i), (ii), (iii), (iv) and (v) that for α > 1, ‖x‖∞ ≤ M‖x′′‖1
with

M =

{
max{η2 ,

α(1−η)
α−1 , αη(1−η)

1−αη } if αη ≤ 1,

max{η2 ,
αη−1
α−1 ,

αη(1−η)
αη−1 } if αη > 1,

since for α > 1, αη > 1, αη(1−η)
αη−1 > α(1−η)

α−1 . This completes the present proof.
�

Remark 6 Let α = 4 and η = 1
2 . Let us consider the estimate

‖x‖∞ ≤ C‖x′′‖1, (20)

for x(t) ∈W 2,1(0, 1) with x(0) = 0, x(1) = 4x( 1
2 ). Now, the function

ϕ(t) =
{

2t3, for t ∈ [0, 1
2 ],

3t−1
2 , for t ∈ [ 1

2 , 1], (21)

is such that ϕ(t) ∈ W 2,1(0, 1) with ϕ(0) = 0 and ϕ(1) = 4ϕ( 1
2 ). Moreover,

‖ϕ‖∞ = 1 and ‖ϕ′′‖1 = 3
2 . It follows that C ≥ 2

3 in (20). Now, Proposition 1
and Remark 3 give C = 3 in (20); while Theorem 2 and Remark 4 give C = 2 in
(20); and Theorem 5 gives C = 1 in (20). This shows that Theorem 5 gives the
best estimate ‖x‖∞ ≤ ‖x′′‖1 for x(t) ∈W 2,1(0, 1) with x(0) = 0, x(1) = 4x( 1

2 ).
However, the function ϕ(t) defined in (21) indicates that it may be possible to
improve C in (20). This question remains open at this time.

To explore this further we introduce the notion of approximate best constant
in the following.

Definition B ∈ R is called “approximate best constant” if for every ε > 0
there exists an α ∈ R and an η ∈ (0, 1) such that (i) for every x(t) ∈W 2,1(0, 1)
with x(0) = 0, x(1) = αx(η), ‖x‖∞ ≤ (B + ε)‖x′′‖1; (ii) there exists a function
φ(t) ∈W 2,1(0, 1) with φ(0) = 0, φ(1) = αφ(η), and ‖φ‖∞ > B‖φ′′‖1.

Theorem 7 For every k > 1, 1− 1
k is an approximate best constant.
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Proof For each integer n > 2, consider the function φkn(t) ∈ W 2,1(0, 1) de-
fined by

φkn(t) =
{

tn, for t ∈ [0, 1
k ],

nt
kn−1 − n−1

kn , for t ∈ [ 1
k , 1].

It is easy to see that φkn(t) ∈W 2,1(0, 1), with φkn(0) = 0, φkn(1) = αknφkn( 1
k ),

where αkn = n(k − 1) + 1, and

‖φ′′kn‖1 =
n

kn−1
, ‖φkn‖∞ = φkn(1) =

n(k − 1) + 1
kn

,

so that

‖φkn‖∞ =
n(k − 1) + 1

nk
‖φ′′kn‖1. (22)

Now, since αkn · 1
k = n(k−1)+1

k = n − n−1
k > 1 for n > 2, we obtain using

Theorem 5 the estimate

‖x‖∞ ≤
n(k − 1) + 1
k(n− 1)

‖x′′‖1 for x(t) ∈W 2,1(0, 1)

x(0) = 0, x(1) = αknx(
1
k

).
(23)

Let us set Bkn = n(k−1)+1
nk = 1− 1

k + 1
nk , Mkn = n(k−1)+1

k(n−1) = 1− 1
k + 1

n−1 . We
notice that

Mkn −Bkn =
1

n− 1
− 1
nk

=
n(k − 1) + 1
n(n− 1)k

> 0,

so that Mkn −Bkn > 0. Also, we note that

lim
n→∞

Bkn = lim
n→∞

Mkn = 1− 1
k
.

Let, now, ε > 0 be given. Choose, n0 such that Mkn0 < 1 − 1
k + ε. It, now,

follows from (23) and (22) that

‖x‖∞ ≤ (1− 1
k

+ ε)‖x′′‖1 for x(t) ∈W 2,1(0, 1)

x(0) = 0, x(1) = αkn0x(
1
k

),

and
‖φkn0‖∞ = (1− 1

k
+

1
n0k

)‖φ′′kn‖1 > (1− 1
k

)‖φ′′kn‖1.

This completes the proof of the Theorem. �

Remark 8 We note that limk→∞(1 − 1
k ) = 1. In view of this, it may be

conjectured that 1 may be a best constant in the sense that there exists an α ∈ R
and an η ∈ (0, 1) such that for x(t) ∈ W 2,1(0, 1) with x(0) = 0, x(1) = αx(η)
one has the estimate

‖x‖∞ ≤ ‖x′′‖1.
However, since limk→∞ αkn =∞ and limk→∞

1
k = 0, it is not clear if such α ∈ R

and an η ∈ (0, 1) exist.



58 A priori estimate for multi-point boundary-value problems

3 Existence theroems

We state below the existence theorems one obtains using the a priori estimates
obtained above. We omit the proof of these theorems as they are similar to the
corresponding theorems in [2].

Theorem 9 Let f : [0, 1] × R2 → R be a function satisfying Caratheodory’s
conditions. Assume that there exist functions p(t), q(t), r(t) in L1(0, 1) such
that

|f(t, x1, x2)| ≤ p(t) |x1|+ q(t) |x2|+ r(t)

for a.e. t ∈ [0, 1] and all (x1, x2) ∈ R2. Let ai ∈ R, ξi ∈ (0, 1), i = 1, 2, . . . ,m−
2, 0 < ξ1 < ξ2 < · · · < ξm−2 < 1 with

∑m−2
i=1 aiξi 6= 1 and

∑m−2
i=1 ai 6= 1, be

given. Then the multi-point boundary-value problem

x′′(t) = f(t, x(t), x′(t)) + e(t), 0 < t < 1,

x(0) = 0, x(1) =
m−2∑
i=1

aix(ξi).

has at least one solution in C1[0, 1] provided

C ‖p(t)‖1 +
1

1− τ
‖q(t)‖1 < 1,

where C is as given in Theorem 2 and τ as given in Proposition 1.

Theorem 10 Let f : [0, 1] × R2 7→ R be a function satisfying Caratheodory’s
conditions. Assume that there exist functions p(t), q(t), r(t) such that the func-
tions p(t), q(t), r(t) are in L1(0, 1) and

|f(t, x1, x2)| ≤ p(t) |x1|+ q(t) |x2|+ r(t)

for a.e. t ∈ [0, 1] and all (x1, x2) ∈ R2. Let α ∈ R, η ∈ (0, 1), α 6= 1, and
αη 6= 1 be given. Then, the three-point boundary-value problem

x′′(t) = f(t, x(t), x′(t)) + e(t), 0 < t < 1,
x(0) = 0, x(1) = αx(η).

has at least one solution in C1[0, 1] provided

M ‖p(t)‖1 +
1

1− τ
‖q(t)‖1 < 1.

where M is as given in Theorem 5 and τ as given in Proposition 1.
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