A new a priori estimate for multi-point boundary-value problems *

Chaitan P. Gupta

Abstract

Let $f:[0,1] \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function satisfying Caratheodory's conditions and $e(t) \in L^{1}[0,1]$. Let $0<\xi_{1}<\xi_{2}<\cdots<\xi_{m-2}<1$ and $a_{i} \in \mathbb{R}$ for $i=1,2, \ldots, m-2$ be given. A priori estimates of the form $$
\|x\|_{\infty} \leq C\left\|x^{\prime \prime}\right\|_{1}, \quad\left\|x^{\prime}\right\|_{\infty} \leq C\left\|x^{\prime \prime}\right\|_{1}
$$ are needed to obtain the existence of a solution for the multi-point bound-ary-value problem $$
\begin{gathered} x^{\prime \prime}(t)=f\left(t, x(t), x^{\prime}(t)\right)+e(t), \quad 0<t<1, \\ x(0)=0, \quad x(1)=\sum_{i=1}^{m-2} a_{i} x\left(\xi_{i}\right), \end{gathered}
$$

using Leray Schauder continuation theorem. The purpose of this paper is to obtain a new a priori estimate of the form $\|x\|_{\infty} \leq C\left\|x^{\prime \prime}\right\|_{1}$. This new estimate then enables us to obtain a new existence theorem. Further, we obtain a new a priori estimate of the form $\|x\|_{\infty} \leq C\left\|x^{\prime \prime}\right\|_{1}$ for the three-point boundary-value problem

$$
\begin{gathered}
x^{\prime \prime}(t)=f\left(t, x(t), x^{\prime}(t)\right)+e(t), \quad 0<t<1, \\
x^{\prime}(0)=0, \quad x(1)=\alpha x(\eta),
\end{gathered}
$$

where $\eta \in(0,1)$ and $\alpha \in \mathbb{R}$ are given. The estimate obtained for the three-point boundary-value problem turns out to be sharper than the one obtained by particularizing the m-point boundary value estimate to the three-point case.

1 Introduction

Let $f:[0,1] \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function satisfying Caratheodory's conditions and $e(t) \in L^{1}[0,1]$. Let $0<\xi_{1}<\xi_{2}<\cdots<\xi_{m-2}<1$ and $a_{i} \in \mathbb{R}$ for

[^0]$i=1,2, \ldots, m-2$ be given. Let us consider the problem of existence of a solution for the multi-point boundary-value problem
\[

$$
\begin{gather*}
x^{\prime \prime}(t)=f\left(t, x(t), x^{\prime}(t)\right)+e(t), 0<t<1 \\
x(0)=0, x(1)=\sum_{i=1}^{m-2} a_{i} x\left(\xi_{i}\right) \tag{1}
\end{gather*}
$$
\]

In [2] the author and Sergei Trofimchuk had studied this problem earlier and obtained existence results using the Leray-Schauder continuation theorem. Now, to apply the Leray-Schauder continuation theorem requires a priori estimates of the form

$$
\|x\|_{\infty} \leq C\left\|x^{\prime \prime}\right\|_{1}, \quad\left\|x^{\prime}\right\|_{\infty} \leq C\left\|x^{\prime \prime}\right\|_{1}
$$

For a function $x(t) \in W^{2,1}(0,1)$ with $x(0)=0, x(1)=\sum_{i=1}^{m-2} a_{i} x\left(\xi_{i}\right)$, and $\sum_{i=1}^{m-2} a_{i} \xi_{i} \neq 1$, Gupta and Trofimchuk obtained the a priori estimate

$$
\left\|x^{\prime}\right\|_{\infty} \leq \frac{1}{1-\tau}\left\|x^{\prime \prime}\right\|_{1}
$$

where, $0 \leq \tau<1$ is suitable constant defined by a_{i}, and $\xi_{i}, i=1,2, \ldots, m-2$. Using, then the estimate $\|x\|_{\infty} \leq\left\|x^{\prime}\right\|_{\infty}$, for functions $x(t) \in W^{2,1}(0,1)$ with $x(0)=0$, they obtained the estimate

$$
\|x\|_{\infty} \leq \frac{1}{1-\tau}\left\|x^{\prime \prime}\right\|_{1}
$$

The purpose of this paper is to obtain a new and sharper estimate $\|x\|_{\infty} \leq$ $C\left\|x^{\prime \prime}\right\|_{1}$ for $x(t) \in W^{2,1}(0,1)$ with $x(0)=0, x(1)=\sum_{i=1}^{m-2} a_{i} x\left(\xi_{i}\right)$, and $\sum_{i=1}^{m-2} a_{i} \xi_{i} \neq 1$. This new estimate then enables us to obtain a new existence theorem for the above boundary-value problem. Further, we obtain a new a priori estimate of the form $\|x\|_{\infty} \leq C\left\|x^{\prime \prime}\right\|_{1}$ for the three-point boundary-value problem

$$
\begin{gather*}
x^{\prime \prime}(t)=f\left(t, x(t), x^{\prime}(t)\right)+e(t), \quad 0<t<1 \\
x^{\prime}(0)=0, \quad x(1)=\alpha x(\eta) \tag{2}
\end{gather*}
$$

where $\eta \in(0,1)$ and $\alpha \in \mathbb{R}$ are given. The estimate obtained for the threepoint boundary-value problem turns out to be sharper than the one obtained by particularizing the m-point boundary-value estimate to the three-point case. These a priori estimates have been motivated by the results of [1].

2 A priori estimates

We begin this section by first describing an estimate obtained by Gupta and Trofimchuk. Let $a_{i} \in \mathbb{R}, \xi_{i} \in(0,1), i=1,2, \ldots, m-2,0<\xi_{1}<\xi_{2}<\cdots<$ $\xi_{m-2}<1$, with $\sum_{i=1}^{m-2} a_{i} \xi_{i} \neq 1$, be given. Let $x(t) \in W^{2,1}(0,1)$ be such that $x(0)=0, x(1)=\sum_{i=1}^{m-2} a_{i} x\left(\xi_{i}\right)$. Let us write the condition $x(1)=\sum_{i=1}^{m-2} a_{i} x\left(\xi_{i}\right)$
in symmetric form $\sum_{i=1}^{m-1} a_{i} x\left(\xi_{i}\right)=0$ by setting $a_{m-1}=-1$ and $\xi_{m-1}=1$. Then the assumption $\sum_{i=1}^{m-2} a_{i} \xi_{i} \neq 1$ is equivalent to $\sum_{i=1}^{m-1} a_{i} \xi_{i} \neq 0$. Let us, define, for $i, j=1,2, \ldots, m-1$,

$$
\begin{aligned}
\sigma_{i j} & =a_{i}\left(\xi_{i}-\xi_{j}\right) \text { for } i \neq j \\
\sigma_{j j} & =\left(\sum_{i=1}^{m-1} a_{i}\right) \xi_{j}
\end{aligned}
$$

We observe that

$$
\sum_{i=1}^{m-1} \sigma_{i j}=\sum_{i=1}^{m-1} a_{i} \xi_{i} \neq 0, \text { for } j=1,2, \ldots, m-1
$$

For $a \in \mathbb{R}$, setting $a_{+}=\max (a, 0)$ and $a_{-}=\max (-a, 0)$ so that $a=a_{+}-a_{-}$, $|a|=a_{+}+a_{-}$, we see that

$$
\begin{equation*}
\sum_{i=1}^{m-1}\left(\sigma_{i j}\right)_{+} \neq \sum_{i=1}^{m-1}\left(\sigma_{i j}\right)_{-} \tag{3}
\end{equation*}
$$

We, next, define

$$
\sigma_{+}^{j}=\sum_{i=1}^{m-1}\left(\sigma_{i j}\right)_{+}, \sigma_{-}^{j}=\sum_{i=1}^{m-1}\left(\sigma_{i j}\right)_{-} \quad \text { for } j=1,2, \ldots, m-1,
$$

and

$$
\begin{equation*}
\tau=\min \left\{\frac{\sigma_{+}^{j}}{\sigma_{-}^{j}}, \frac{\sigma_{-}^{j}}{\sigma_{+}^{j}}: j=1,2, \ldots, m-1\right\} \tag{4}
\end{equation*}
$$

We, note, that $0 \leq \tau<1$ in view of (3).
Proposition 1 Let $a_{i} \in \mathbb{R}, \xi_{i} \in(0,1), i=1,2, \ldots, m-2,0<\xi_{1}<\xi_{2}<$ $\cdots<\xi_{m-2}<1$, with $\sum_{i=1}^{m-2} a_{i} \xi_{i} \neq 1$, be given. Then for $x(t) \in W^{2,1}(0,1)$ with $x(0)=0, x(1)=\sum_{i=1}^{m-2} a_{i} x\left(\xi_{i}\right)$ we have

$$
\begin{equation*}
\|x\|_{\infty} \leq \frac{1}{1-\tau}\left\|x^{\prime \prime}\right\|_{1} \tag{5}
\end{equation*}
$$

where τ is as given in (4).
We refer the reader to [2] for a proof of this proposition.
Theorem 2 Let $a_{i} \in \mathbb{R}, \xi_{i} \in(0,1), i=1,2, \ldots, m-2,0<\xi_{1}<\xi_{2}<$ $\cdots<\xi_{m-2}<1$, with $\sum_{i=1}^{m-2} a_{i} \xi_{i} \neq 1, \sum_{i=1}^{m-2} a_{i} \neq 1$, be given. Then for $x(t) \in W^{2,1}(0,1)$ with $x(0)=0, x(1)=\sum_{i=1}^{m-2} a_{i} x\left(\xi_{i}\right)$ we have

$$
\begin{equation*}
\|x\|_{\infty} \leq C\left\|x^{\prime \prime}\right\|_{1} \tag{6}
\end{equation*}
$$

where

$$
C=\min \left\{\frac{1}{1-\tau}, C_{1}\right\}
$$

with τ as defined in (4),

$$
C_{1}=\max \left\{C_{2}, \frac{1}{1-\tau} \sum_{i=1}^{m-2}\left|\frac{a_{i}\left(1-\xi_{i}\right)}{1-\sum_{i=1}^{m-2} a_{i}}\right|\right\}
$$

and C_{2} as defined below in (12).

Proof Let $\xi_{m-1}=1, a_{m-1}=-1$ so that the condition $x(1)=\sum_{i=1}^{m-2} a_{i} x\left(\xi_{i}\right)$ may be written in the symmetric form $\sum_{i=1}^{m-1} a_{i} x\left(\xi_{i}\right)=0$ and $\sum_{i=1}^{m-1} a_{i} \neq 0$. Since $x(t) \in W^{2,1}(0,1)$ there exists a $c \in[0,1]$ such that $\|x\|_{\infty}=|x(c)|$. We may assume that $x(c)>0$, by replacing $x(t)$ by $-x(t)$, if necessary. Next, since $x(0)=0$, we see that $c \in(0,1]$. In case, $c \in(0,1)$ we must have $x^{\prime}(c)=0$. Applying, now, the Taylor's formula with integral remainder after the second term at each $\xi_{i}, i=1,2, \ldots, m-1$, to get

$$
\begin{equation*}
x\left(\xi_{i}\right)=x(c)+r_{i} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
r_{i}=\int_{c}^{\xi_{i}}\left(\xi_{i}-s\right) x^{\prime \prime}(s) d s \leq 0 \tag{8}
\end{equation*}
$$

$i=1,2, \ldots, m-1$. Multiplying the equation (7) by $a_{i}, i=1,2, \ldots, m-1$, and adding the resulting equations we obtain

$$
\begin{equation*}
0=\sum_{i=1}^{m-1} a_{i} x\left(\xi_{i}\right)=\sum_{i=1}^{m-1} a_{i} x(c)+\sum_{i=1}^{m-1} a_{i} r_{i} \tag{9}
\end{equation*}
$$

Now, equations (8), (9) imply that

$$
\begin{gather*}
0<x(c)=-\frac{1}{\sum_{i=1}^{m-1} a_{i}} \sum_{i=1}^{m-1} a_{i} r_{i}=-\sum_{i=1}^{m-1}\left(\frac{a_{i}}{\sum_{i=1}^{m-1} a_{i}}\right) \int_{c}^{\xi_{i}}\left(\xi_{i}-s\right) x^{\prime \prime}(s) d s \\
\leq \sum_{i=1}^{m-1}\left(\frac{a_{i}}{\sum_{i=1}^{m-1} a_{i}}\right)_{+}\left|\int_{c}^{\xi_{i}}\left(\xi_{i}-s\right) x^{\prime \prime}(s) d s\right| \tag{10}
\end{gather*}
$$

We, next, observe that

$$
\left|\int_{c}^{\xi_{i}}\left(\xi_{i}-s\right) x^{\prime \prime}(s) d s\right| \leq\left|\xi_{i}-c\right| \int_{c}^{\xi_{i}}\left|x^{\prime \prime}(s)\right| d s \leq\left|\xi_{i}-c\right| \int_{0}^{1}\left|x^{\prime \prime}(s)\right| d s
$$

for $i=1,2, \ldots, m-1$. We thus see from (8) that

$$
\begin{align*}
&\|x\|_{\infty}=x(c) \leq \sum_{i=1}^{m-1} \\
&\left(\frac{a_{i}}{\sum_{i=1}^{m-1} a_{i}}\right)_{+}\left|\int_{c}^{\xi_{i}}\left(\xi_{i}-s\right) x^{\prime \prime}(s) d s\right| \\
& \leq \sum_{i=1}^{m-1}\left(\frac{a_{i}}{\sum_{i=1}^{m-1} a_{i}}\right)_{+}\left|\xi_{i}-c\right| \int_{0}^{1}\left|x^{\prime \prime}(s)\right| d s \tag{11}\\
& \quad \leq \max _{u \in[0,1]}\left(\sum_{i=1}^{m-1}\left(\frac{a_{i}}{\sum_{i=1}^{m-1} a_{i}}\right)_{+}\left|\xi_{i}-u\right|\right) \int_{0}^{1}\left|x^{\prime \prime}(s)\right| d s .
\end{align*}
$$

Since, now, $\sum_{i=1}^{m-1}\left(\frac{a_{i}}{\sum_{i=1}^{m-1} a_{i}}\right)+\left|\xi_{i}-u\right|$ is a piecewise linear function, its maximum value is attained at one of the points, $0, \xi_{j}, j=1,2, \ldots, m-1$. Accordingly, we get

$$
\begin{align*}
& \max _{u \in[0,1]}\left(\sum_{i=1}^{m-1}\left(\frac{a_{i}}{\sum_{i=1}^{m-1} a_{i}}\right)_{+}\left|\xi_{i}-u\right|\right) \\
& =\max \left\{\begin{array}{c}
\sum_{i=1}^{m-1} \xi_{i}\left(\frac{a_{i}}{\sum_{i=1}^{m-1} a_{i}}\right)_{+}, \\
\sum_{i=1, i \neq j}^{m-1}\left(\frac{a_{i}}{\sum_{i=1}^{m-1} a_{i}}\right)_{+}\left|\xi_{i}-\xi_{j}\right|, j=1,2, \ldots, m-1,
\end{array}\right\} \tag{12}\\
& =\max \left\{\begin{array}{c}
\sum_{i=1}^{m-2} \xi_{i}\left(\frac{a_{i}}{1-\sum_{i=1}^{m-2} a_{i}}\right)_{-}+\left(\frac{1}{1-\sum_{i=1}^{m-2} a_{i}}\right)_{+}, \\
\sum_{i=1, i \neq j}^{m-2}\left(\frac{a_{i}}{1-\sum_{i=1}^{m-2} a_{i}}\right)-\left|\xi_{i}-\xi_{j}\right|+\left(\frac{1}{1-\sum_{i=1}^{m-2} a_{i}}\right)_{+}\left(1-\xi_{j}\right), \\
j=1,2, \ldots, m-2, \\
\sum_{i=1}^{m-2}\left(\frac{a_{i}}{1-\sum_{i=1}^{m-2} a_{i}}\right)_{-}\left(1-\xi_{i}\right)
\end{array}\right\} \equiv C_{2} .
\end{align*}
$$

Accordingly, when $x(c)=\|x\|_{\infty}$ with $c \in(0,1)$ we see that

$$
\begin{equation*}
\|x\|_{\infty} \leq C_{2}\left\|x^{\prime \prime}\right\|_{1} \tag{13}
\end{equation*}
$$

Let, now, $c=1$ so that $\|x\|_{\infty}=x(1)$. We, then, see that there exists a λ_{i}, for each $i=1,2, \ldots, m-2$, such that

$$
\begin{equation*}
x(1)-x\left(\xi_{i}\right)=\left(1-\xi_{i}\right) x^{\prime}\left(\lambda_{i}\right) \tag{14}
\end{equation*}
$$

It follows from equations (14) that

$$
\left(\sum_{i=1}^{m-2} a_{i}-1\right) x(1)=\sum_{i=1}^{m-2} a_{i}\left(x(1)-x\left(\xi_{i}\right)\right)=\sum_{i=1}^{m-2} a_{i}\left(1-\xi_{i}\right) x^{\prime}\left(\lambda_{i}\right)
$$

Accordingly, we get

$$
\begin{align*}
\|x\|_{\infty} & =x(1)=\sum_{i=1}^{m-2} \frac{a_{i}\left(1-\xi_{i}\right)}{\sum_{i=1}^{m-2} a_{i}-1} x^{\prime}\left(\lambda_{i}\right) \\
& \leq \sum_{i=1}^{m-2}\left|\frac{a_{i}\left(1-\xi_{i}\right)}{\sum_{i=1}^{m-2} a_{i}-1}\right|\left\|x^{\prime}\right\|_{\infty} \\
& \leq\left(\frac{1}{1-\tau} \sum_{i=1}^{m-2}\left|\frac{a_{i}\left(1-\xi_{i}\right)}{\sum_{i=1}^{m-2} a_{i}-1}\right|\right)\left\|x^{\prime \prime}\right\|_{1} \tag{15}
\end{align*}
$$

Thus from estimates (13), (15) we obtain

$$
\begin{equation*}
\|x\|_{\infty} \leq \max \left\{C_{2}, \frac{1}{1-\tau} \sum_{i=1}^{m-2}\left|\frac{a_{i}\left(1-\xi_{i}\right)}{\sum_{i=1}^{m-2} a_{i}-1}\right|\right\}\left\|x^{\prime \prime}\right\|_{1} \equiv C_{1}\left\|x^{\prime \prime}\right\|_{1} . \tag{16}
\end{equation*}
$$

The estimate (6) is now immediate since $\|x\|_{\infty} \leq \frac{1}{1-\tau}\left\|x^{\prime \prime}\right\|_{1}$, from Proposition 1. This completes the proof of Theorem 2.

Remark 3 Let $\eta \in(0,1), \alpha \in \mathbb{R}$ with $\alpha \eta \neq 1$ be given. It was proved earlier by Gupta and Trofimchuk for $x(t) \in W^{2,1}(0,1)$ with $x(0)=0, x(1)=\alpha x(\eta)$ that

$$
\begin{gathered}
\|x\|_{\infty} \leq\left\|x^{\prime \prime}\right\|_{1} \quad \text { if } \alpha \leq 1 \\
\|x\|_{\infty} \leq \frac{1-\eta}{1-\alpha \eta}\left\|x^{\prime \prime}\right\|_{1} \quad \text { if } \alpha \eta<1 \text { and } \alpha>1 \\
\|x\|_{\infty} \leq \frac{\alpha-1}{\alpha \eta-1}\left\|x^{\prime \prime}\right\|_{1} \quad \text { if } \alpha>1 \text { and } \alpha \eta>1
\end{gathered}
$$

so that

$$
\begin{gathered}
\tau=0 \quad \text { if } \alpha \leq 1 \\
\frac{1}{1-\tau}=\frac{1-\eta}{1-\alpha \eta} \quad \text { if } \alpha>1 \text { and } \alpha \eta<1 \\
\frac{1}{1-\tau}=\frac{\alpha-1}{\alpha \eta-1} \quad \text { if } \alpha>1 \text { and } \alpha \eta>1
\end{gathered}
$$

Remark 4 Let us note that for $x(t) \in W^{2,1}(0,1)$ with $x(0)=0, x(1)=\alpha x(\eta)$ the constant C_{2} defined in (12) is given by

$$
C_{2}=\max \left\{\eta\left(\frac{\alpha}{1-\alpha}\right)_{-}+\left(\frac{1}{1-\alpha}\right)_{+},\left(\frac{1}{1-\alpha}\right)_{+}(1-\eta),\left(\frac{\alpha}{1-\alpha}\right)_{-}(1-\eta)\right\}
$$

It follows that

$$
C_{2}= \begin{cases}\max \left\{\frac{1+|\alpha| \eta}{1+|\alpha|}, \frac{|\alpha|(1-\eta)}{1+|\alpha|}\right\} & \text { for } \alpha \leq 0 \\ \frac{1}{1-\alpha} & \text { for } 0 \leq \alpha<1 \\ \max \left\{\frac{\alpha \eta}{\alpha-1}, \frac{\alpha(1-\eta)}{\alpha-1}\right\} & \text { for } \alpha>1\end{cases}
$$

Next, we see from the definition of C_{1} in (16) and (3) that

$$
C_{1}= \begin{cases}\max \left\{\frac{1+|\alpha| \eta}{1+|\alpha|}, \frac{|\alpha|(1-\eta)}{1+|\alpha|}\right\} & \text { for } \alpha \leq 0, \\ \frac{1}{1-\alpha} & \text { for } 0 \leq \alpha<1, \\ \max \left\{\frac{\alpha \eta}{\alpha-1}, \frac{\alpha(1-\eta)^{2}}{(\alpha-1)(1-\alpha \eta)}\right\} & \text { for } \alpha \eta<1 \text { and } \alpha>1, \\ \max \left\{\frac{\alpha \eta}{\alpha-1}, \frac{\alpha(\alpha-\eta)}{(\alpha \eta-1)}\right\} & \text { for } \alpha \eta>1 \text { and } \alpha>1\end{cases}
$$

Finally, we see that for $x(t) \in W^{2,1}(0,1)$ with $x(0)=0, x(1)=\alpha x(\eta)$ we have

$$
\begin{equation*}
\|x\|_{\infty} \leq C\left\|x^{\prime \prime}\right\|_{1} \tag{17}
\end{equation*}
$$

where $C=\min \left\{\frac{1}{1-\tau}, C_{1}\right\}$ is given by

$$
C= \begin{cases}\max \left\{\frac{1+|\alpha| \eta}{1+|\alpha|}, \frac{|\alpha|(1-\eta)}{1+|\alpha|}\right\} & \text { for } \alpha \leq 0 \\ 1 & \text { for } 0 \leq \alpha<1 \\ \min \left\{\frac{1-\eta}{1-\alpha \eta}, \max \left\{\frac{\alpha \eta}{\alpha-1}, \frac{\alpha(1-\eta)^{2}}{(\alpha-1)(1-\alpha \eta)}\right\}\right\} & \text { for } \alpha \eta<1 \text { and } \alpha>1 \\ \min \left\{\frac{\alpha-1}{\alpha \eta-1}, \max \left\{\frac{\alpha \eta}{\alpha-1}, \frac{\alpha(1-\eta)}{(\alpha \eta-1)}\right\}\right\} & \text { for } \alpha \eta>1 \text { and } \alpha>1\end{cases}
$$

The following theorem gives a better estimate than (17) for an $x(t) \in W^{2,1}(0,1)$ with $x(0)=0, x(1)=\alpha x(\eta)$.

Theorem 5 Let $\alpha \in \mathbb{R}$ and $\eta \in(0,1)$ with $\alpha \neq 1, \alpha \eta \neq 1$, be given. Then for $x(t) \in W^{2,1}(0,1)$ with $x(0)=0, x(1)=\alpha x(\eta)$ we have

$$
\|x\|_{\infty} \leq M\left\|x^{\prime \prime}\right\|_{1}
$$

where

$$
M= \begin{cases}\max \left\{\frac{1+|\alpha| \eta}{1+|\alpha|}, \frac{|\alpha|(1-\eta)}{1+|\alpha|}\right\} & \text { if } \alpha \leq-1 \\ \frac{1-\alpha \eta}{1-\alpha} & \text { if }-1 \leq \alpha<0 \\ 1 & \text { if } 0 \leq \alpha<1 \\ \max \left\{\frac{\eta}{2}, \frac{\alpha(1-\eta)}{\alpha-1}, \frac{\alpha \eta(1-\eta)}{1-\alpha \eta}\right\} & \text { if } \alpha>1 \text { and } \alpha \eta<1 \\ \max \left\{\frac{\eta}{2}, \frac{\alpha \eta-1}{\alpha-1}, \frac{\alpha \eta(1-\eta)}{\alpha \eta-1}\right\} & \text { if } \alpha>1 \text { and } \alpha \eta>1 .\end{cases}
$$

Proof For $\alpha \leq 0$ we see from Theorem 2 and remark 4 that

$$
M=\max \left\{\frac{1+|\alpha| \eta}{1+|\alpha|}, \frac{|\alpha|(1-\eta)}{1+|\alpha|}\right\}
$$

This implies, in particular, for $\alpha \leq-1$ that $M=\max \left\{\frac{1+|\alpha| \eta}{1+|\alpha|}, \frac{|\alpha|(1-\eta)}{1+|\alpha|}\right\}$. Note that for $-1 \leq \alpha<0$,

$$
\frac{1-\alpha \eta}{1-\alpha}=\frac{1+\eta|\alpha|}{1+|\alpha|} \geq \frac{|\alpha|(1+\eta)}{1+|\alpha|}>\frac{|\alpha|(1-\eta)}{1+|\alpha|}
$$

and so we again see from Theorem 2 and Remark 4 that

$$
M= \begin{cases}\frac{1-\alpha \eta}{1-\alpha} & \text { if }-1 \leq \alpha<0 \\ 1 & \text { if } 0 \leq \alpha<1\end{cases}
$$

Finally, we consider the case $\alpha>1$. Let $x(\eta)=z$ so that $x(1)=\alpha z$. We may assume without loss of generality that $z \geq 0$, replacing $x(t)$ by $-x(t)$ if necessary. Suppose, now, $\|x\|_{\infty}=1$ so that there exists a $c \in[0,1]$ such that either $x(c)=1$ or $x(c)=-1$. We consider all possible cases of the location for c.
(i) Suppose that $c \in(0, \eta]$ and $x(c)=1$. Then $x^{\prime}(c)=0, c \neq \eta$. Now, by mean value theorem there exist $\nu_{1} \in[c, \eta], \nu_{2} \in[\eta, 1]$ such that

$$
x^{\prime}\left(\nu_{1}\right)=\frac{x(\eta)-x(c)}{\eta-c}=-\frac{1-z}{\eta-c}, \quad x^{\prime}\left(\nu_{2}\right)=\frac{x(1)-x(\eta)}{1-\eta}=\frac{\alpha z-z}{1-\eta} .
$$

We note that $x^{\prime}\left(\nu_{1}\right) \leq 0, x^{\prime}\left(\nu_{2}\right) \geq 0$ since $0 \leq z \leq 1$ and $\alpha>1$. It follows that

$$
\begin{aligned}
\int_{0}^{1}\left|x^{\prime \prime}(s)\right| d s & \geq\left|\int_{c}^{\nu_{1}} x^{\prime \prime}(s) d s\right|+\left|\int_{\nu_{1}}^{\nu_{2}} x^{\prime \prime}(s) d s\right| \\
& =2\left|x^{\prime}\left(\nu_{1}\right)\right|+x^{\prime}\left(\nu_{2}\right)=2 \frac{1-z}{\eta-c}+\frac{\alpha z-z}{1-\eta} \\
& \geq \min _{c \in[0, \eta), z \in\left[0, \frac{1}{\alpha}\right]}\left\{2 \frac{1-z}{\eta-c}+\frac{\alpha z-z}{1-\eta}\right\} \\
& \geq \min _{c \in[0, \eta)}\left\{\frac{2}{\eta-c}, \frac{2(\alpha-1)}{\alpha(\eta-c)}+\frac{\alpha-1}{\alpha(1-\eta)}\right\} \\
& \geq \min \left\{\frac{2}{\eta}, \frac{\alpha-1}{\alpha(1-\eta)}\right\} .
\end{aligned}
$$

(ii) Let, now, $c \in(0, \eta], x(c)=-1$. Then since $x^{\prime}(c)=0, c \neq \eta$, we again see from mean value theorem that there exist $\nu_{3} \in[c, \eta], \nu_{4} \in[\eta, 1]$ such that

$$
x^{\prime}\left(\nu_{3}\right)=\frac{x(\eta)-x(c)}{\eta-c}=\frac{z+1}{\eta-c}, \quad x^{\prime}\left(\nu_{4}\right)=\frac{x(1)-x(\eta)}{1-\eta}=\frac{\alpha z-z}{1-\eta} .
$$

Again we note that $x^{\prime}\left(\nu_{3}\right)>0, x^{\prime}\left(\nu_{4}\right) \geq 0$ since $0 \leq z \leq 1$ and $\alpha>1$ and we have

$$
\begin{align*}
\int_{0}^{1}\left|x^{\prime \prime}(s)\right| d s & \geq\left|\int_{c}^{\nu_{3}} x^{\prime \prime}(s) d s\right|+\left|\int_{\nu_{3}}^{\nu_{4}} x^{\prime \prime}(s) d s\right| \tag{18}\\
& =x^{\prime}\left(\nu_{3}\right)+\left|x^{\prime}\left(\nu_{4}\right)-x^{\prime}\left(\nu_{3}\right)\right|=\frac{1+z}{\eta-c}+\left|\frac{\alpha z-z}{1-\eta}-\frac{1+z}{\eta-c}\right|
\end{align*}
$$

Let $F(z, c)=\frac{1+z}{\eta-c}+\left|\frac{\alpha z-z}{1-\eta}-\frac{1+z}{\eta-c}\right|$. We need to estimate $\min _{c \in[0, \eta), z \in\left[0, \frac{1}{\alpha}\right]} F(z, c)$. We note that

$$
\begin{gathered}
F(0, c)=\frac{2}{\eta-c} \geq \frac{2}{\eta} \quad \text { for } c \in[0, \eta) \\
F\left(\frac{1}{\alpha}, c\right)=\frac{\alpha+1}{\alpha(\eta-c)}+\left|\frac{\alpha-1}{\alpha(1-\eta)}-\frac{\alpha+1}{\alpha(\eta-c)}\right| \geq \frac{\alpha-1}{\alpha(1-\eta)} \quad \text { for } c \in[0, \eta)
\end{gathered}
$$

Let z_{0} be such that $\frac{\alpha z_{0}-z_{0}}{1-\eta}-\frac{1+z_{0}}{\eta-c}=0$ so that $z_{0}=\frac{1-\eta}{\alpha \eta-1-c(\alpha-1)}$. It is easy to see that $z_{0} \in\left[0, \frac{1}{\alpha}\right]$ if $\eta>\frac{\alpha+1}{2 \alpha}$ and $c \in\left(0, \frac{2 \alpha \eta-\alpha-1}{\alpha-1}\right)$. In this case we get $F\left(z_{0}, c\right)=$
$\frac{\alpha-1}{\alpha \eta-1-c(\alpha-1)} \geq \frac{\alpha-1}{\alpha \eta-1}$. Accordingly we see that $F(z, c) \geq \min \left\{\frac{2}{\eta}, \frac{\alpha-1}{\alpha(1-\eta)}\right\}$ if $\alpha \eta \leq 1$ and $F(z, c) \geq \min \left\{\frac{2}{\eta}, \frac{\alpha-1}{\alpha(1-\eta)}, \frac{\alpha-1}{\alpha \eta-1}\right\}$ if $\alpha \eta>1$. We thus have from (18) that

$$
\begin{aligned}
\int_{0}^{1}\left|x^{\prime \prime}(s)\right| d s & \geq\left|\int_{c}^{\nu_{3}} x^{\prime \prime}(s) d s\right|+\left|\int_{\nu_{3}}^{\nu_{4}} x^{\prime \prime}(s) d s\right|=x^{\prime}\left(\nu_{3}\right)+\left|x^{\prime}\left(\nu_{4}\right)-x^{\prime}\left(\nu_{3}\right)\right| \\
& =\frac{1+z}{\eta-c}+\left|\frac{\alpha z-z}{1-\eta}-\frac{1+z}{\eta-c}\right| \\
& \geq\left\{\begin{array}{cl}
\min \left\{\frac{2}{\eta}, \frac{\alpha-1}{\alpha(1-\eta)}\right\}, & \text { if } \alpha \eta \leq 1, \\
\min \left\{\frac{2}{\eta}, \frac{\alpha-1}{\alpha(1-\eta)}, \frac{\alpha-1}{\alpha \eta-1}\right\}, & \text { if } \alpha \eta>1 .
\end{array}\right.
\end{aligned}
$$

(iii) Next, suppose that $c \in(\eta, 1), x(c)=1$. Again, $x^{\prime}(c)=0$ and we have from mean value theorem that there exist $\nu_{5} \in[\eta, c], \nu_{6} \in[c, 1]$ such that

$$
x^{\prime}\left(\nu_{5}\right)=\frac{x(c)-x(\eta)}{c-\eta}=\frac{1-z}{c-\eta}, \quad x^{\prime}\left(\nu_{6}\right)=\frac{x(1)-x(c)}{1-c}=\frac{\alpha z-1}{1-c} .
$$

Note that $x^{\prime}\left(\nu_{5}\right) \geq 0, x^{\prime}\left(\nu_{6}\right) \leq 0$ since $x(1)=\alpha z \leq 1$. Accordingly, we obtain

$$
\begin{align*}
\int_{0}^{1}\left|x^{\prime \prime}(s)\right| d s & \geq\left|\int_{0}^{\nu_{5}} x^{\prime \prime}(s) d s\right|+\left|\int_{\nu_{5}}^{\nu_{6}} x^{\prime \prime}(s) d s\right| \\
& =x^{\prime}\left(\nu_{5}\right)+\left|x^{\prime}\left(\nu_{6}\right)-x^{\prime}\left(\nu_{5}\right)\right|=2 x^{\prime}\left(\nu_{5}\right)+\left|x^{\prime}\left(\nu_{6}\right)\right| \tag{19}\\
& =2 \frac{1-z}{c-\eta}+\frac{1-\alpha z}{1-c} \geq \frac{2(\alpha-1)}{\alpha(1-\eta)}, \quad \text { since } 0 \leq z \leq \frac{1}{\alpha}
\end{align*}
$$

(iv) Next, suppose that $c \in(\eta, 1), x(c)=-1$. Again, $x^{\prime}(c)=0$ and we have from mean value theorem that there exist $\nu_{7} \in[\eta, c], \nu_{8} \in[c, 1]$ such that

$$
x^{\prime}\left(\nu_{7}\right)=\frac{x(c)-x(\eta)}{c-\eta}=\frac{-1-z}{c-\eta}, \quad x^{\prime}\left(\nu_{8}\right)=\frac{x(1)-x(c)}{1-c}=\frac{\alpha z+1}{1-c} .
$$

Note that $x^{\prime}\left(\nu_{7}\right) \leq 0, x^{\prime}\left(\nu_{8}\right) \geq 0$. Accordingly, we obtain

$$
\begin{aligned}
\int_{0}^{1}\left|x^{\prime \prime}(s)\right| d s & \geq\left|\int_{0}^{\nu_{7}} x^{\prime \prime}(s) d s\right|+\left|\int_{\nu_{7}}^{\nu_{8}} x^{\prime \prime}(s) d s\right| \\
& =\left|x^{\prime}\left(\nu_{7}\right)\right|+\left|x^{\prime}\left(\nu_{8}\right)-x^{\prime}\left(\nu_{7}\right)\right|=2\left|x^{\prime}\left(\nu_{7}\right)\right|+x^{\prime}\left(\nu_{8}\right) \\
& =2 \frac{1+z}{c-\eta}+\frac{1+\alpha z}{1-c} \geq \frac{2}{c-\eta}+\frac{1}{1-c} \\
& \geq \frac{2}{1-\eta} \geq \frac{2(\alpha-1)}{\alpha(1-\eta)}
\end{aligned}
$$

(v) Finally suppose that $c=1$, so that $x(1)=1=\alpha z$. We then have that there exists a $\nu_{9} \in(\eta, 1)$ such that

$$
x^{\prime}\left(\nu_{9}\right)=\frac{x(1)-x(\eta)}{1-\eta}=\frac{1-\frac{1}{\alpha}}{1-\eta}=\frac{\alpha-1}{\alpha(1-\eta)} .
$$

Also, there exists a $\nu_{10} \in(0, \eta)$ such that

$$
x^{\prime}\left(\nu_{10}\right)=\frac{x(\eta)-x(0)}{\eta-0}=\frac{1}{\alpha \eta} .
$$

Thus

$$
\begin{aligned}
\int_{0}^{1}\left|x^{\prime \prime}(s)\right| d s & \geq\left|\int_{v_{10}}^{\nu_{9}} x^{\prime \prime}(s) d s\right|=\left|x^{\prime}\left(\nu_{9}\right)-x^{\prime}\left(\nu_{10}\right)\right| \\
& =\left|\frac{1-\frac{1}{\alpha}}{1-\eta}-\frac{1}{\alpha \eta}\right|=\left|\frac{\alpha \eta-1}{\alpha \eta(1-\eta)}\right|
\end{aligned}
$$

We thus see from (i), (ii), (iii), (iv) and (v) that for $\alpha>1,\|x\|_{\infty} \leq M\left\|x^{\prime \prime}\right\|_{1}$ with

$$
M= \begin{cases}\max \left\{\frac{\eta}{2}, \frac{\alpha(1-\eta)}{\alpha-1}, \frac{\alpha \eta(1-\eta)}{1-\alpha \eta}\right\} & \text { if } \alpha \eta \leq 1, \\ \max \left\{\frac{\eta}{2}, \frac{\alpha \eta-1}{\alpha-1}, \frac{\alpha \eta(1-\eta)}{\alpha \eta-1}\right\} & \text { if } \alpha \eta>1,\end{cases}
$$

since for $\alpha>1, \alpha \eta>1, \frac{\alpha \eta(1-\eta)}{\alpha \eta-1}>\frac{\alpha(1-\eta)}{\alpha-1}$. This completes the present proof.

Remark 6 Let $\alpha=4$ and $\eta=\frac{1}{2}$. Let us consider the estimate

$$
\begin{equation*}
\|x\|_{\infty} \leq C\left\|x^{\prime \prime}\right\|_{1} \tag{20}
\end{equation*}
$$

for $x(t) \in W^{2,1}(0,1)$ with $x(0)=0, x(1)=4 x\left(\frac{1}{2}\right)$. Now, the function

$$
\varphi(t)=\left\{\begin{array}{cl}
2 t^{3}, & \text { for } t \in\left[0, \frac{1}{2}\right] \tag{21}\\
\frac{3 t-1}{2}, & \text { for } t \in\left[\frac{1}{2}, 1\right]
\end{array}\right.
$$

is such that $\varphi(t) \in W^{2,1}(0,1)$ with $\varphi(0)=0$ and $\varphi(1)=4 \varphi\left(\frac{1}{2}\right)$. Moreover, $\|\varphi\|_{\infty}=1$ and $\left\|\varphi^{\prime \prime}\right\|_{1}=\frac{3}{2}$. It follows that $C \geq \frac{2}{3}$ in (20). Now, Proposition 1 and Remark 3 give $C=3$ in (20); while Theorem 2 and Remark 4 give $C=2$ in (20); and Theorem 5 gives $C=1$ in (20). This shows that Theorem 5 gives the best estimate $\|x\|_{\infty} \leq\left\|x^{\prime \prime}\right\|_{1}$ for $x(t) \in W^{2,1}(0,1)$ with $x(0)=0, x(1)=4 x\left(\frac{1}{2}\right)$. However, the function $\varphi(t)$ defined in (21) indicates that it may be possible to improve C in (20). This question remains open at this time.

To explore this further we introduce the notion of approximate best constant in the following.

Definition $B \in \mathbb{R}$ is called "approximate best constant" if for every $\varepsilon>0$ there exists an $\alpha \in \mathbb{R}$ and an $\eta \in(0,1)$ such that (i) for every $x(t) \in W^{2,1}(0,1)$ with $x(0)=0, x(1)=\alpha x(\eta),\|x\|_{\infty} \leq(B+\varepsilon)\left\|x^{\prime \prime}\right\|_{1}$; (ii) there exists a function $\phi(t) \in W^{2,1}(0,1)$ with $\phi(0)=0, \phi(1)=\alpha \phi(\eta)$, and $\|\phi\|_{\infty}>B\left\|\phi^{\prime \prime}\right\|_{1}$.

Theorem 7 For every $k>1,1-\frac{1}{k}$ is an approximate best constant.

Proof For each integer $n>2$, consider the function $\phi_{k n}(t) \in W^{2,1}(0,1)$ defined by

$$
\phi_{k n}(t)=\left\{\begin{array}{cl}
t^{n}, & \text { for } t \in\left[0, \frac{1}{k}\right] \\
\frac{n t}{k^{n-1}}-\frac{n-1}{k^{n}}, & \text { for } t \in\left[\frac{1}{k}, 1\right]
\end{array}\right.
$$

It is easy to see that $\phi_{k n}(t) \in W^{2,1}(0,1)$, with $\phi_{k n}(0)=0, \phi_{k n}(1)=\alpha_{k n} \phi_{k n}\left(\frac{1}{k}\right)$, where $\alpha_{k n}=n(k-1)+1$, and

$$
\left\|\phi_{k n}^{\prime \prime}\right\|_{1}=\frac{n}{k^{n-1}}, \quad\left\|\phi_{k n}\right\|_{\infty}=\phi_{k n}(1)=\frac{n(k-1)+1}{k^{n}}
$$

so that

$$
\begin{equation*}
\left\|\phi_{k n}\right\|_{\infty}=\frac{n(k-1)+1}{n k}\left\|\phi_{k n}^{\prime \prime}\right\|_{1} \tag{22}
\end{equation*}
$$

Now, since $\alpha_{k n} \cdot \frac{1}{k}=\frac{n(k-1)+1}{k}=n-\frac{n-1}{k}>1$ for $n>2$, we obtain using Theorem 5 the estimate

$$
\begin{gather*}
\|x\|_{\infty} \leq \frac{n(k-1)+1}{k(n-1)}\left\|x^{\prime \prime}\right\|_{1} \quad \text { for } x(t) \in W^{2,1}(0,1) \tag{23}\\
x(0)=0, \quad x(1)=\alpha_{k n} x\left(\frac{1}{k}\right)
\end{gather*}
$$

Let us set $B_{k n}=\frac{n(k-1)+1}{n k}=1-\frac{1}{k}+\frac{1}{n k}, M_{k n}=\frac{n(k-1)+1}{k(n-1)}=1-\frac{1}{k}+\frac{1}{n-1}$. We notice that

$$
M_{k n}-B_{k n}=\frac{1}{n-1}-\frac{1}{n k}=\frac{n(k-1)+1}{n(n-1) k}>0
$$

so that $M_{k n}-B_{k n}>0$. Also, we note that

$$
\lim _{n \rightarrow \infty} B_{k n}=\lim _{n \rightarrow \infty} M_{k n}=1-\frac{1}{k}
$$

Let, now, $\varepsilon>0$ be given. Choose, n_{0} such that $M_{k n_{0}}<1-\frac{1}{k}+\varepsilon$. It, now, follows from (23) and (22) that

$$
\begin{gathered}
\|x\|_{\infty} \leq\left(1-\frac{1}{k}+\varepsilon\right)\left\|x^{\prime \prime}\right\|_{1} \quad \text { for } x(t) \in W^{2,1}(0,1) \\
x(0)=0, \quad x(1)=\alpha_{k n_{0}} x\left(\frac{1}{k}\right)
\end{gathered}
$$

and

$$
\left\|\phi_{k n_{0}}\right\|_{\infty}=\left(1-\frac{1}{k}+\frac{1}{n_{0} k}\right)\left\|\phi_{k n}^{\prime \prime}\right\|_{1}>\left(1-\frac{1}{k}\right)\left\|\phi_{k n}^{\prime \prime}\right\|_{1}
$$

This completes the proof of the Theorem.
Remark 8 We note that $\lim _{k \rightarrow \infty}\left(1-\frac{1}{k}\right)=1$. In view of this, it may be conjectured that 1 may be a best constant in the sense that there exists an $\alpha \in \mathbb{R}$ and an $\eta \in(0,1)$ such that for $x(t) \in W^{2,1}(0,1)$ with $x(0)=0, x(1)=\alpha x(\eta)$ one has the estimate

$$
\|x\|_{\infty} \leq\left\|x^{\prime \prime}\right\|_{1} .
$$

However, since $\lim _{k \rightarrow \infty} \alpha_{k n}=\infty$ and $\lim _{k \rightarrow \infty} \frac{1}{k}=0$, it is not clear if such $\alpha \in \mathbb{R}$ and an $\eta \in(0,1)$ exist.

3 Existence theroems

We state below the existence theorems one obtains using the a priori estimates obtained above. We omit the proof of these theorems as they are similar to the corresponding theorems in [2].

Theorem 9 Let $f:[0,1] \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function satisfying Caratheodory's conditions. Assume that there exist functions $p(t), q(t), r(t)$ in $L^{1}(0,1)$ such that

$$
\left|f\left(t, x_{1}, x_{2}\right)\right| \leq p(t)\left|x_{1}\right|+q(t)\left|x_{2}\right|+r(t)
$$

for a.e. $t \in[0,1]$ and all $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$. Let $a_{i} \in \mathbb{R}, \xi_{i} \in(0,1), i=1,2, \ldots, m-$ $2,0<\xi_{1}<\xi_{2}<\cdots<\xi_{m-2}<1$ with $\sum_{i=1}^{m-2} a_{i} \xi_{i} \neq 1$ and $\sum_{i=1}^{m-2} a_{i} \neq 1$, be given. Then the multi-point boundary-value problem

$$
\begin{gathered}
x^{\prime \prime}(t)=f\left(t, x(t), x^{\prime}(t)\right)+e(t), \quad 0<t<1, \\
x(0)=0, \quad x(1)=\sum_{i=1}^{m-2} a_{i} x\left(\xi_{i}\right) .
\end{gathered}
$$

has at least one solution in $C^{1}[0,1]$ provided

$$
C\|p(t)\|_{1}+\frac{1}{1-\tau}\|q(t)\|_{1}<1
$$

where C is as given in Theorem 2 and τ as given in Proposition 1.

Theorem 10 Let $f:[0,1] \times \mathbb{R}^{2} \mapsto \mathbb{R}$ be a function satisfying Caratheodory's conditions. Assume that there exist functions $p(t), q(t), r(t)$ such that the functions $p(t), q(t), r(t)$ are in $L^{1}(0,1)$ and

$$
\left|f\left(t, x_{1}, x_{2}\right)\right| \leq p(t)\left|x_{1}\right|+q(t)\left|x_{2}\right|+r(t)
$$

for a.e. $t \in[0,1]$ and all $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$. Let $\alpha \in \mathbb{R}, \eta \in(0,1), \alpha \neq 1$, and $\alpha \eta \neq 1$ be given. Then, the three-point boundary-value problem

$$
\begin{gathered}
x^{\prime \prime}(t)=f\left(t, x(t), x^{\prime}(t)\right)+e(t), \quad 0<t<1, \\
x(0)=0, \quad x(1)=\alpha x(\eta) .
\end{gathered}
$$

has at least one solution in $C^{1}[0,1]$ provided

$$
M\|p(t)\|_{1}+\frac{1}{1-\tau}\|q(t)\|_{1}<1
$$

where M is as given in Theorem 5 and τ as given in Proposition 1.

References

[1] C. P. Gupta, S. I. Trofimchuk, a priori Estimates for the Existence of a Solution for a Multi-Point Boundary Value Problem, J. of Inequalities and Applications, 5(2000) p. 351-365.
[2] C. P. Gupta, S. I. Trofimchuk, Solvability of a multi-point boundary-value problem and related a priori estimates, Canadian Applied Mathematics Quarterly, Vol. 6 (1998) pp. 45-60.

Chaitan P. Gupta

Department of Mathematics
University of Nevada, Reno
Reno, NV 89557 USA
email: gupta@unr.edu chaitang@hotmail.com

[^0]: ${ }^{*}$ Mathematics Subject Classifications: 34B10, 34B15, 34G20.
 Key words: Three-point boundary-value problem, m-point boundary-value problem, a-priori estimates, Leray-Schauder Continuation theorem, Caratheodory's conditions. © 2001 Southwest Texas State University.
 Published July 20, 2001.

