
2001-Luminy conference on Quasilinear Elliptic and Parabolic Equations and Systems,
Electronic Journal of Differential Equations, Conference 08, 2002, pp 1–6.
http://ejde.math.swt.edu or http://ejde.math.unt.edu
ftp ejde.math.swt.edu (login: ftp)

A note on the moving hyperplane method ∗

Céline Azizieh & Luc Lemaire

Abstract

We make precise the domain regularity needed for having the mono-
tonicity and symmetry results recently proved by Damascelli and Pacella
on p-Laplace equations. For this purpose, we study the continuity and
semicontinuity of some parameters linked with the moving hyperplane
method.

Résumé. Dans [1], Ph. Clément et le premier auteur ont établi par
des méthodes de continuation des résultats d’existence pour des problèmes
du type −∆pu = f(u) dans Ω, u = 0 sur ∂Ω, u > 0 sur Ω, où 1 < p ≤ 2,
Ω ⊂ RN est un domaine borné convexe et f : R → [0 +∞) est continue.
La preuve de ces théorèmes fait appel aux récents résultats de monotonie
et de symétrie établis par Damascelli et Pacella dans [3], résultats dont
la démonstration nécessitait la continuité ou semi-continuité de certains
paramètres géométriques liés à la méthode des moving hyperplanes. Notre
but est ici de préciser les hypoth‘eses de régularité et de convexité du
domaine Ω qui sont nécessaires pour satisfaire les différentes conditions
de continuité des paramètres en question.

1 Results

Let us consider the problem

−∆pu = f(u) in Ω,

u = 0 on ∂Ω,

u ∈ C1(Ω), u > 0 in Ω

(1.1)

where 1 < p ≤ 2, Ω ⊂ RN is a bounded convex domain, ∆p is the p-laplacian
operator defined by ∆pu = div(|∇u|p−2∇u) and f : R → [0,+∞) is continuous
on R, locally Lipschitz continuous on (0,+∞) and satisfies

∃C0, C1 > 0 such that C0|u|q ≤ f(u) ≤ C1|u|q ∀u ∈ R+
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where q > p−1. In [1], Ph. Clément and the first author proved the existence of
a nontrivial positive solution to (1.1) by using continuation methods and estab-
lishing a priori estimates for the solutions of some nonlinear eigenvalue problem
associated with (1.1). The desired a priori estimates use a blow up argument
as well as some monotonicity and symmetry results proved by Damascelli and
Pacella in [4] and generalizing to the p-laplacian operator with 1 < p < 2 the
well known results of Gidas–Ni–Nirenberg from [5] and Berestycki–Nirenberg
in [2]. In their proof, Damascelli and Pacella use a new technique consisting in
moving hyperplanes orthogonal to directions close to a fixed one. To be efficient,
this procedure needs some continuity of some parameters linked with the mov-
ing plane method (see the functions λ1(ν) and a(ν) defined below). Therefore
they assume in their result that ∂Ω is smooth to insure this continuity (and
only for that reason). However, such a smoothness hypothesis does not appear
in the case p = 2 in the classical moving plane procedure (see [2]).

Our purpose here is to give more precision on the regularity of the domain
Ω that is needed to have the continuity of the function a(ν) and the lower
semicontinuity of λ1(ν), and so to have the monotonicity and symmetry results
of [4]. This question is also important concerning the existence result from [1].
Specifically, we ask that the domain be of class C1, and we also discuss convexity
conditions relating to the continuity of λ1(ν).

Remark that some symmetry results for solutions of elliptic partial differen-
tial equations have also been obtained by Brock by using the continuous Steiner
symmetrization (cf. [3]).

In this paper, Ω will denote an open bounded domain in RN with C1 bound-
ary. We will say that Ω is strictly convex if for all x, y ∈ Ω and for all t ∈ (0, 1),
(1− t)x + ty ∈ Ω.
For any direction ν ∈ RN , |ν| = 1, we define

a(ν) := inf
x∈Ω

x.ν

and for all λ ≥ a(ν),

Ων
λ := {x ∈ Ω |x.ν < λ},

T ν
λ := {x ∈ Ω |x.ν = λ} (6= ∅ for a(ν) < λ < −a(−ν)).

Let us denote by Rν
λ the symmetry with respect to the hyperplane T ν

λ and

xν
λ := Rν

λ(x) ∀x ∈ RN ,

(Ων
λ)′ := Rν

λ(Ων
λ),

Λ1(ν) :=
{
µ > a(ν) | ∀λ ∈ (a(ν), µ), we have (1.2) and (1.3)

}
,

λ1(ν) := supΛ1(ν)

where (1.2), (1.3) are the following conditions:

(Ων
λ)′ is not internally tangent to ∂Ω at some point p /∈ T ν

λ (1.2)
for all x ∈ ∂Ω ∩ T ν

λ , ν(x).ν 6= 0, (1.3)
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where ν(x) denotes the inward unit normal to ∂Ω at x. Notice that Λ1(ν) 6=
∅ and λ1(ν) < ∞ since for λ > a(ν) close to a(ν), (1.2) and (1.3) are satisfied
and Ω is bounded.
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Figure 1: Illustration of the notations

Propositions 1 and 2 below give sufficient conditions on Ω to guarantee the
continuity of the functions a(ν) and λ1(ν), as well as the lower semicontinuity
of λ1(ν).

Proposition 1 Let Ω be a bounded domain with C1 boundary. Then the func-
tion a(ν) is continuous with respect to ν ∈ SN−1.

Proposition 2 Let Ω ⊂ RN be a bounded domain with C1 boundary. Then the
function λ1(ν) is lower semicontinuous with respect to ν ∈ SN−1. If moreover
Ω is strictly convex, then λ1(ν) is continuous.

As a consequence of these results, we can give more precision on the condi-
tions to impose to Ω in the monotonicity result of [4]. This result becomes:

Theorem 1.1 in Damascelli-Pacella [4] Let Ω be a bounded domain in
RN with C1 boundary, N ≥ 2 and g : R → R be a locally Lipschitz continuous
function. Let u ∈ C1(Ω̄) be a weak solution of

−∆pu = g(u) inΩ
u > 0 inΩ,

u = 0 on ∂Ω

where 1 < p < 2. Then, for any direction ν ∈ RN and for λ in the interval
(a(ν), λ1(ν)], we have u(x) ≤ u (xν

λ) for all x ∈ Ων
λ. Moreover ∂u

∂ν (x) > 0 for all
x ∈ Ων

λ1(ν)\Z where Z = {x ∈ Ω |∇u(x) = 0}.
Below we prove Propositions 1 and 2 and we give a counterexample of a

C∞ convex but not strictly convex domain for which λ1(ν) is not continuous
everywhere.
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Proof of Proposition 1: Let us fix a direction ν ∈ SN−1. We shall prove that
for all sequence νn → ν with |νn| = 1, there exists a subsequence still denoted
by νn such that a(νn) → a(ν). Since Ω is bounded, (a(νn)) is also bounded, so
passing to an adequate subsequence, there exists ā ∈ R such that a(νn) → ā.
We will show that ā = a(ν). Suppose by contradiction that ā 6= a(ν). Then
either ā < a(ν) or ā > a(ν).
Case 1: ā < a(ν): Since

a(ν) = inf
x∈Ω

x.ν = min
x∈Ω

x.ν = min
x∈∂Ω

x.ν,

there exists xn ∈ ∂Ω such that

xn.νn = a(νn). (1.4)

Passing again to a subsequence, there exists x ∈ ∂Ω such that xn → x and
taking the limit of (1.4), we get x.ν = ā < a(ν), a contradiction with the
definition of a(ν).
Case 2: ā > a(ν): There exists x ∈ ∂Ω with x.ν = a(ν). For n large,
|x.νn − x.ν| = |x.νn − a(ν)| is small, and since a(νn) → ā > a(ν), for n large
enough we have x.νn < a(νn), contradicting the definition of a(νn). �

Proof of Proposition 2: We first prove the continuity of λ1(ν) if Ω is strictly
convex. Suppose by contradiction that there exists ν ∈ SN−1 such that λ1 is
not continuous at ν. Then we can fix ε > 0 and a sequence (νn) ⊂ SN−1 such
that νn → ν and |λ1(ν) − λ1(νn)| > ε for all n ∈ N. Passing to a subsequence
still denoted by (νn), we can suppose that

either λ1(ν) > λ1(νn) + ε ∀n ∈ N or λ1(ν) < λ1(νn)− ε ∀n ∈ N.

Case 1: λ1(ν) > λ1(νn) + ε for all n ∈ N. For any fixed n ∈ N, we have the
following alternative: either there exists xn ∈ T νn

λ1(νn) ∩ ∂Ω with ν(xn).νn = 0,

or there exists xn ∈ (∂Ω ∩ Ωνn

λ1(νn)) \ T νn

λ1(νn) with (xn)νn

λ1(νn) ∈ ∂Ω. Passing
once again to subsequences, we can suppose that we are in one of the two
situations above for all n ∈ N. We treat below each situation and try to reach
a contradiction.
(1.a) For all n ∈ N, there exists xn ∈ T νn

λ1(νn) ∩ ∂Ω with ν(xn).νn = 0.
Passing if necessary to a subsequence, there exist λ̄ ≤ λ1(ν)−ε and x ∈ T ν

λ̄
∩∂Ω

such that xn → x and ν(x).ν = 0. This contradicts the definition of λ1(ν).
(1.b) For all n ∈ N, there exists xn ∈ (∂Ω ∩Ωνn

λ1(νn)) \ T νn

λ1(νn) with (xn)νn

λ1(νn) ∈
∂Ω.
Passing if necessary to a subsequence, there exist λ̄ ≤ λ1(ν)−ε and x ∈ ∂Ω∩Ων

λ̄
such that xn → x and xν

λ̄
∈ ∂Ω. If x 6∈ T ν

λ̄
, we reach a contradiction with the

definition of λ1(ν). Suppose now that x ∈ T ν
λ̄
. Let us denote (xn)νn

λ1(νn) by un.
Since Ω is a C1 domain, it holds that ν(un).νn ≤ 0 for all n. By definition of
λ1(νn), ν(xn).νn ≥ 0. If x ∈ T ν

λ̄
, x = lim xn = lim un and so ν(x).ν = 0, which
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contradicts the definition of λ1(ν).
Observe that we do not use the convexity of the domain in Case 1.
Case 2: λ1(ν) < λ1(νn) − ε for all n ∈ N: As in the first case, either there
exists x ∈ T ν

λ1(ν) ∩ ∂Ω with ν(x).ν = 0 or there exists x ∈ (∂Ω∩Ων
λ1(ν)) \ T ν

λ1(ν)

such that xν
λ1(ν) ∈ ∂Ω. We treat the first situation in (2.a) and the second one

in (2.b).
(2.a) For ε small enough, T ν

λ1(ν)+ ε
2
∩ ∂Ω 6= ∅. Since Ω is strictly convex, there

exists x′ ∈ T ν
λ1(ν)+ ε

2
∩ ∂Ω such that

ν(x′).ν < 0. (1.5)

For ε > 0 small enough, there exists n0 ∈ N such that for all n ≥ n0, the
sets T νn

λ1(ν)+ ε
2
∩ ∂Ω are non empty and since they are compact, we can choose a

sequence (xn) satisfying

xn ∈ T νn

λ1(ν)+ ε
2
∩ ∂Ω, |x′ − xn| = min

{
|x′ − y| : y ∈ T νn

λ1(ν)+ ε
2
∩ ∂Ω

}
.

Passing if necessary to a subsequence, xn → y for some y ∈ T ν
λ1(ν)+ ε

2
∩ ∂Ω such

that
|x′ − y| = lim

n→∞
dist(x′, T νn

λ1(ν)+ ε
2
∩ ∂Ω),

but since this limit is equal to 0, we infer that x′ = y. Now, since λ1(ν) <
λ1(νn) − ε for all n ∈ N, ν(xn).νn > 0 for all n and thus ν(x′).ν ≥ 0, a
contradiction with (1.5).
(2.b) The convexity of Ω implies that xν

λ1(ν)+ ε
2

/∈ Ω. Now, xνn

λ1(ν)+ ε
2
→ xν

λ1(ν)+ ε
2
,

so that
xνn

λ1(ν)+ ε
2

/∈ Ω (1.6)

for n large enough. But since x.ν < λ1(ν) by definition of x, we also have
x.νn < λ1(ν) < λ1(ν) + ε

2 for n sufficiently large, and so

x ∈
(
∂Ω ∩ Ωνn

λ1(ν)+ ε
2

)
\ T νn

λ1(ν)+ ε
2

for these values of n. This fact together with (1.6) contradicts the definition of
λ1(νn).

The proof of the lower semicontinuity follows from Case 1, which uses only
the C1 regularity of the domain. �

A counterexample in R2

This is an example of a convex but not strictly convex domain in R2. It con-
tradicts case (2.a) in the proof and indeed, case (2.a) is the only one using the
strict convexity. The example can be made smooth. In fact all is required is a
convex domain in R2 whose boundary contains a piece of (straight) line, say of
length L. Then for ν parallel to the line, there exists a sequence νn → ν such
that λ1(νn) ≥ λ1(ν) + L

2 .
A variation of this construction will produce similar examples in higher di-

mensions.
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Figure 2: Counterexample of a smooth convex but not strictly convex domain
for which λ1(ν) is not continuous everywhere.
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